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The fates of individual human cells in vivo are difficult to recon-
struct. In animal models, the use of transgenic or exogenous 
cell labeling enables straightforward clonal lineage tracing1–10, 

but in humans, these methods are precluded. Instead, human stud-
ies must use somatic genomic alterations, termed ‘molecular clocks’, 
to trace somatic cell fates. The key principle is that the ancestry of 
a population of cells is revealed by the somatic alterations shared 
amongst the cells: closely related cells are likely to share multiple 
alterations, whereas distantly related cells will have few alterations 
in common. Thus, human lineage tracing studies rely on the notion 
that the clonal history of a cell is recorded in its genome. Various 
types of somatic genomic alterations have been exploited for lin-
eage tracing in human tissues, including mitochondrial DNA muta-
tions11–24, DNA methylation at selectively neutral loci25–32, allelic loss 
at heterozygous loci33,34 and single-nucleotide variants detected by 
genome sequencing35–47.

Most molecular clocks use ‘unidirectional’ measurements that 
count the accumulation of changes since birth to infer the related-
ness of lineages. The resolution at which a molecular clock can track 
clonal ancestry is a function of the rate at which genomic altera-
tions accrue. A slow rate of alteration accrual can only reveal clonal 
dynamics occurring over long timescales. For example, genome 
sequencing studies of normal skin47, blood37, intestinal crypts38 and 
endometrial glands39 identified multiple subclones in each tissue, 
but in most cases, the reconstructed lineages diverged many years 
in the past, and recent cell turnover was not evident in the data.  

In comparison, a faster rate of alteration accrual has the potential 
to reveal rapid and/or recent clonal dynamics, but in practice, these 
approaches are compromised by ‘saturation’ wherein the same pat-
tern of alterations evolve convergently in distinct clonal popula-
tions48, and effectively recording stops in childhood.

In particular, somatic cell turnover is pervasive in mammalian 
tissues, but the dynamics of birth, death and replacement are dif-
ficult to measure. For example, in the intestine, small numbers of 
mitotic epithelial stem cells maintain intestinal crypts and undergo 
random turnover such that only one lineage persists. It takes several 
months in mice for one stem cell lineage to repopulate the entire 
crypt1,2. The expansion and fixation of stem cell clones presum-
ably recur throughout life, but most fate marker methods can only 
record a single clonal dominance cycle.

Previous work has shown that DNA methylation at specific 
CpG loci can oscillate back and forth under specific conditions49,50, 
including stem cell exit from pluripotency51,52. In these cases, CpG 
oscillations occur with a period of hours to days and are therefore 
less useful in timing replacement dynamics that occur over months 
and years.

Here, we introduce the concept of FMCs, whereby epigenomic 
alterations reversibly change state. We test the hypothesis that 
certain CpG sites stochastically and measurably fluctuate in their 
DNA methylation levels (specifically the fraction of methylated 
alleles, typically referred to as the β value) between 0% (homozy-
gously unmethylated CpG), 50% (heterozygous methylation) and 
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100% (homozygous methylation) in individual diploid cells (Fig. 
1a,b). When this fluctuation occurs at a timescale on the order of 
decades, we show that these fCpGs can be used to infer recurrent 
dynamics of contemporary cell populations. Unlike traditional 
lineage tracing methods, which typically use a single molecular 
marker and thus rely on aggregating information over multiple 
individuals to infer the average population dynamics (exemplified 
in ref. 53), the presence of thousands of FMCs enables individual 
clone-specific measurements to be made. This allows inter- and 
intraindividual heterogeneity of the stem cell dynamics to be  
directly probed.

In this study, we show how fCpG methylation can be conve-
niently measured with commercial microarrays (Illumina EPIC 
arrays) that provide the methylation value at thousands of candi-
date fCpGs. We develop a mathematical inference methodology to 

extract ancestral information encoded within fluctuating sites. We 
validate our methodology using a simplified spatial model of a crypt 
cell evolution driven by different stem cell numbers then apply our 
fluctuating clock method to measure stem cell dynamics in individ-
ual human intestinal crypt and endometrial gland populations. The 
approach is further applied to whole blood to detect and distinguish 
between acute and chronic leukemias. The measurement of FMCs 
provides a powerful tool for quantifying somatic cell evolution in 
human tissues.

Results
Identification of fCpG loci. We isolated DNA from individual sin-
gle colon or small intestinal crypts (31 colon samples originating 
from eight individuals and 28 small intestinal samples originating 
from seven individuals; Supplementary Table 1) and measured DNA 
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Fig. 1 | Fluctuating methylation status as a lineage tracing marker. a, Illustration of the three possible methylation states at a specific CpG locus within 
a particular cell. A cell can either be homozygously (de)methylated or heterozygously methylated at that CpG locus. It is the spontaneous transitions 
between these states that allow methylation to act as a lineage tracing marker. b, Illustration of the link between the methylation status of a given CpG 
locus within a particular cell and the β value (the fraction of methylated DNA at that locus) associated with that cell. c, Graphical representation of how 
the methylation status in a small population of five stem cells at a particular CpG locus can change over time due to (1) methylation, (2) demethylation 
or (3) cell replacement. d, Methylation (β) distributions from an individual crypt; the peaks near 0% and 100% correspond to a clonal methylated or 
unmethylated CpG locus, respectively, whereas the peak at 50% corresponds both to clonal heterozygous CpG loci and subclonal populations caught 
mid-sweep.
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methylation in each crypt using Illumina EPIC arrays (Methods). 
Samples from each tissue were treated separately to account for 
tissue-specific differences in DNA (de)methylation processes.

To select fCpG sites, we identified CpG loci unlikely to be actively 
regulated and that exhibited a high degree of intraindividual hetero-
geneity (Fig. 2a and Methods). This process identified 7,073 putative 
fCpGs within the colon sample cohort and 8,828 fCpGs within the 
small intestine cohort, of which 1,794 fCpGs were shared between 
tissue types (Supplementary Fig. 1a). There was a good correlation 
(R2 = 0.62) in the heterogeneity scores between colon and small 
intestine samples (Supplementary Fig. 1b), and fCpG loci that were 
exclusive to the colon had a substantially higher average variability 
score in the small intestine than all CpG loci (Supplementary Fig. 
1c), suggesting that the relatively large number of non-overlapping 
loci was due to the arbitrary strictness of our identification proce-
dure (Methods). Further analysis was performed on these shared 
1,794 fCpG loci (Supplementary Table 2) to aid the generalizability 
of our approach. Methylation of the 1,794 fCpG loci when averaged 

across the 31 colon crypts was ~50%, consistent with uncorrelated 
stochastic (de)methylation at fCpG sites occurring independently 
in each crypt, but in individual crypts, we observed a characteristic 
trimodal ‘W-shaped’ distribution of methylation values that likely 
was similar to the methylation pattern of the most recent common 
ancestor of the crypt population (Fig. 1d).

fCpG loci are enriched in minimally expressed genes. For CpG 
loci to act as a molecular clock, the loci should not be subject to 
strong evolutionary selection or cell-specific regulation. We com-
pared the proportion of the 1,794 fCpG sites that were associated 
with a specific gene to the 428,511 CpG sites that were not iden-
tified as fluctuating (Methods). fCpG loci were strongly enriched 
for non-genic CpG sites (Fig. 2b; odds ratio (OR) = 1.8, chi-squared 
test, P < 0.001). We tested RNA expression using 40 normal colon 
samples from The Cancer Genome Atlas (TCGA)54 and found 
that the mean expression of genes associated with fCpG loci was 
lower than that of genes associated with the non-fCpG loci (Fig. 2b; 

Fig. 2 | Identification of selectively neutral fCpG loci. a, Workflow used to identify fCpG loci that exhibit high intraindividual heterogeneity. Input data 
were the ~850,000 CpG loci assayed by an Illumina EPIC array. We removed type I probes and probes that cross-hybridize highly homologous DNA 
regions. For each CpG locus, we calculated the standard deviation for each set of approximately four crypts per individual and then calculated the mean 
standard deviation across the cohort as a metric for the intraindividual heterogeneity. We selected the top 5% most highly variable CpG loci and then 
removed CpG loci that have a mean β value (across the entire cohort) less than 0.4 or greater than 0.6; kb, kilobases. b, Left: fCpGs are enriched for 
CpG loci not associated with any genes (P = 6.5 × 10−34, chi-squared test). Right: the set of genes associated with fCpG loci exhibit lower average RNA 
expression (P = 6.6 × 10−6, two-sided Welch’s t-test performed following the log-transformed data) in normal colon than those genes associated with 
non-fCpG loci (center line, median; box limits, upper and lower quartiles; whiskers, 1.5 interquartile range). ***P < 0.001. c, β values of fCpG loci are 
correlated between the bottom and top halves of a crypt.
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−0.24 Cohen’s d calculated for log-transformed expression, Welch’s 
unequal variance t-test, P < 0.001). Furthermore, none of the genes 
that had fCpG loci in their promoter region had intermediate (10 
transcripts per million (TPM)) or greater expression in single-cell 
RNA sequencing data of normal colon (Supplementary Fig. 2a). 
Together, these analyses were suggestive that methylation at the 
fCpG sites was unlikely to be under strict regulation or evolutionary 
selection in the colon.

Methylation status of fCpGs is conserved along the crypt. Previous 
research has found that the methylation profile of the whole crypt 
is typically representative of the stem cell population at the base of 
the crypt55. To ensure that this was the case specifically for the fCpG 
loci identified above, we split seven crypts into their respective tops 
and bottoms (Supplementary Fig. 2c) and ran Illumina EPIC arrays 
on both halves using the same protocol described previously. Due to 
the low input DNA amounts, three of the samples failed the quality 
control step. The remaining four crypts exhibited a good correlation 
between the β values of the fCpG loci in the tops and bottoms of the 
crypts (Fig. 2c; R2 > 0.6, P < 0.001 in all cases), and binarizing the 
CpG calls (β < 0.2 encoded as 0 versus β > 0.8 encoded as 1) showed 
only 2/988 (0.2%) of fCpGs changed methylation status between 
crypt base and top (Supplementary Fig. 2d).

Mathematical model of the methylation distribution of fCpGs. 
We hypothesized that the precise shape of the methylation β value 
distribution for fCpGs was determined by the underlying dynam-
ics of cell evolution. To test this hypothesis in the context of intes-
tinal crypts, we developed a mathematical model and associated 
Bayesian inference framework to relate the competitive dynamics of 
stem cells within their crypt to the measured distribution of fCpG 
methylation.

The mathematical model consisted of a hidden Markov model 
that described the time-dependent probability distribution of the 
number of methylated and unmethylated copies of a single CpG 
locus within a stem cell niche of fixed size S. We considered three 
possible processes that changed the methylation status at a given 
CpG locus: (1) spontaneous methylation (at constant rate μ per 
allele per stem cell per year), (2) spontaneous demethylation (con-
stant rate γ per allele per stem cell per year) and (3) one stem cell 
replacing another stem cell (constant rate 𝜆 per stem cell per year) 
(Fig. 1c). We further assumed that the stem cells could be treated 
as a well-mixed population such that each stem cell could replace 
any other stem cell within the niche with equal probability. The 
system could be fully characterized with just two state variables: k, 
which represents the number of stem cells in the crypt with one 
allele methylated, and m, which represents the number of stem 
cells with both alleles methylated. By considering the possible 
(k,m) →

(

k′ , m′

)

 transitions, we derived a system of ordinary dif-
ferential equations describing how the probability (P (k,m|λ, μ, γ;t)) 
of the system being in state (k,m) changes over time (Methods and 
Supplementary Information). For a pool of S stem cells, there are 
2S + 1 discrete states the niche methylation level could take, with a β 
value of z

2S (for z ∈ [0, 2S]). To link the probability that a particular 
CpG locus has a population methylation status z to the output of 
our stem cell dynamics model, we marginalized over the various 
combinations of k and m that correspond to a particular z value, as 
described in the Methods.

We developed a Bayesian inference framework (Methods)56 that 
allowed for simultaneous inference of the number of stem cells (S), 
the replacement rate per stem cell (λ), and the methylation (μ) and 
demethylation (γ) rates per stem cell per allele per year for an indi-
vidual gland. Thus, we could fit our model of stem cell dynamics to 
the data from individual crypts, allowing us to probe tissue-specific 
stem cell dynamics while accounting for intra- and interindividual 
heterogeneity.

Stem cell dynamics are inferred with high accuracy in silico. To 
verify that our Bayesian inference framework was able to accurately 
infer the stem cell dynamics of a crypt from FMC patterns, we 
generated three ‘synthetic’ crypts each containing five stem cells, a 
mean replacement rate of 1 per stem cell per year and a de novo (de)
methylation event rate of 0.0005, 0.05 or 0.5 per allele per stem cell 
per year (Fig. 3a) and used our inference framework to attempt to 
recover the (known) underlying parameter values from the simu-
lated methylation distributions.

At intermediate (de)methylation rates (where the clock fluctu-
ated at a just-right rate), crypt FMC distributions showed the same 
characteristic W shape that we observed in the individual crypt 
data. Major peaks were evident near 0%, 50% and 100%, along with 
additional minor peaks near ~10–40% and ~60–90% which were 
due to recent (de)methylation events that had expanded to some, 
but not all, crypt cells (subclonal (de)methylation events). There 
are 2S + 1 peaks in the underlying distribution with a separation of 
approximately 12S. Hence, the positions of these subclonal peaks hold 
information on the number of stem cells within the niche. Similarly, 
the number of fCpG loci in each peak contains information regard-
ing the (de)methylation and replacement rates.

At low (de)methylation rates (where the clock fluctuated too 
slowly), the methylation distribution was essentially concentrated 
near 0% and 100% methylated, with a small minority of fCpG loci in 
the intermediate 50% methylation state, mainly due to clonal hetero-
geneous methylation. This is because at such a low (de)methylation 
rate, very few of the fCpG sites had changed their methylation status 
even once, and further, (de)methylation events that could distinguish 
a subclone were unlikely to occur. If this too slow system was to be 
left until it had relaxed to the steady state, the distribution would 
exhibit three sharp peaks near 0%, 50% and 100%, with the 50% peak 
containing approximately twice as many fCpG loci as the 0% or 100% 
peaks (due to the multiplicity of the clonal heterogeneous state).

Conversely, at high (de)methylation rates (where the FMCs 
fluctuated too fast) the methylation distribution approached a 
binomial-like distribution centered at 50%. The intuition behind 
this behavior is that when the (de)methylation rate was very fast, 
the record of clonal dynamics caused by the stem cell replacement 
process changing methylation allele frequency was immediately 
lost; hence, the system was effectively equivalent to 2S independent 
binary oscillators, with a probability of a given fCpG being in the 
methylated state equal to μ

μ+γ
≈ 0.5.

Bayesian inference could not satisfactorily determine the poste-
rior for the number of stem cells for the too slow crypt, as there were 
too few fCpG sites with intermediate values that held information 
on stem cell number. By contrast, the inference framework accu-
rately recovered the number of stem cells for the too fast crypt, as 
subclonal methylation events were abundant, but the replacement 
rate could not be inferred accurately. This was because the clonal 
information that is propagated by stem cell replacement (increase/
decrease in β values from the expanding clone) was almost immedi-
ately lost due to the high (de)methylation rate.

When the simulated (de)methylation rate was just right, the 
model was accurately able to recover all known parameter values 
with good confidence (Fig. 3b,c). We note that this in silico analysis 
shows that we were able to confidently confirm that the (de)meth-
ylation rate for a given set of CpG loci is within the just-right range 
by the presence of the characteristic W shape. Note that the range of 
the methylation error rates that give rise to the W shape and which 
are suitable for timing using our analysis is relatively broad, cover-
ing over two orders of magnitude. Despite the apparent correlations 
between the rate parameters, the parameters were separately identi-
fiable within the region of the parameter space our model explores 
(Supplementary Information and Supplementary Fig. 7).

To further validate our Bayesian inference framework, we imple-
mented a simplified agent-based spatial model of crypt cell evolution 
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Fig. 3 | W-shaped methylation distributions are indicative of clonal dynamics. In silico evaluation of the accuracy of Bayesian inference on stem 
cell number (S), replacement rate (λ) and (de)methylation rates (μ,γ) as a function of input (de)methylation rates. Three regimens were evaluated: 
μ = γ = 0.0005 methylation events per allele per stem cell per year (‘too slow’), very high methylation rates (μ = γ = 0.5 per allele per stem cell per year 
(‘too fast’)) and intermediate methylation rates (μ = γ= 0.05 per allele per stem cell per year (‘just right’)). a, Simulated fCpG methylation distributions 
from individual crypts at each of three input (de)methylation rates. The characteristic W distribution is only evident for the just-right (de)methylation rate. 
b, Posterior distributions of inferred replacement and (de)methylation rates for each input (de)methylation rate. c, Posterior distributions of inferred stem 
cell number. The stem cell number posterior mean was calculated by taking the softmax of the log evidence, while the error bars were calculated from 
the estimated error (1 s.d.) on the log evidence. In b and c, red dashed lines indicate the true (inputted) value of the parameter. The simulated datasets 
each contained S = 5 stem cells, had a replacement rate of λ = 1.0 per stem cell per year, and the noise due to sampling was simulated with offsets due to 
background noise Δ = 0.04, ϵ = 0.92 and peak specific noise with sample size kz = 100. d, Independent validation of the inference method on a spatial 
representation of the single crypt with varying stem cells. Methylation distributions are noise adjusted (Methods) for the inferences on the stem pool only. 
Mean inferred stem cell numbers are shown for ten replicate simulations, and the red bar represents the mean of the ten replicates while the error bars 
denote 1 s.d.
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(Methods)57 where each cell (agent) incorporates molecular-level 
CpG tracking with (de)methylation errors possible following each 
cell division. We used this in silico crypt model to generate fCpG 
patterns from a range of stem cell pool sizes. Then applying our 
inference framework on the resulting CpG patterns, we were able 
to accurately recover the stem cell numbers (Fig. 3d) for each of the 
three different pool sizes (3.76 ± 0.73, 6.42 ± 0.98 and 12.39 ± 1.16 
stem cells (mean ± s.d.)).

The mathematical model and inference framework relied on 
a number of assumptions, such as the stem cell niche being well 
mixed and that individual fCpG loci act independently, the impact 
of which was explored via generating synthetic crypts with these 
assumptions loosened. Our analysis was found to be generally 
robust to altering these assumptions (Methods and Supplementary 
Information).

Measurement of stem cell dynamics in human intestine. We mea-
sured human colon and small intestinal crypt stem cell dynamics 
using our FMC methodology. Methylation data were generated for 
each crypt individually, followed by crypt-by-crypt inference of 
stem cell dynamics, producing crypt-specific posterior estimates of 
effective stem cell number and replacement rate (Fig. 4a).

The mean number of stem cells was found to be similar across tis-
sues, with 5.8 ± 1.7 stem cells in normal colon samples and 6.5 ± 1.0 
stem cells within small intestinal glands (mean ± 1 s.d.; Fig. 4b). The 
replacement rate in normal colon was 1.1 ± 0.8 replacements per 
stem cell per year and was reduced to 0.79 ± 0.5 replacements per 
stem cell per year in small intestine (Fig. 4c).

We used a hierarchical Bayesian generalized linear model (GLM) 
to account for the hierarchical structure in our data and compared 
stem cell numbers and replacement rates between tissues (Methods). 
We found that glands from the small intestine had a greater number 
of stem cells (Fig. 4d; P < 0.05, GLM) but a lower replacement rate 
per stem cell than normal colon (Fig. 4e), such that the total number 
of replacements per crypt was not significantly different between 
colon and small intestine (Fig. 4f; P < 0.05, GLM).

Individuals with familial adenomatous polyposis (FAP) carry 
a heterozygous germline mutation in the APC gene and are at 
increased risk of developing colorectal cancer58–60. APC is a key reg-
ulator of Wnt signaling, and, therefore, pathogenic APC mutations 
cause alterations to Wnt signaling61–63. Wnt signaling is essential 
for the maintenance of intestinal stem cells64–66. Consequently, we 
hypothesized that individuals with FAP would have altered stem cell 
dynamics. Inference on fCpG sites in individual FAP crypts from 
morphologically normal colon showed that stem cell numbers were 
similar in FAP crypts and non-FAP colon (6.7 ± 0.3 stem cells per 
crypt), but the stem cell replacement rate was almost doubled at 
1.9 ± 0.3 replacements per stem cell per year (Fig. 4a–c), resulting 
in a significantly higher total number of replacements per crypt per 
year in FAP (Fig. 4f).

Stem cell dynamics in human endometrial glands. We analyzed 
fCpG methylation in 32 endometrial glands derived from eight 
individuals using the same methodology as for intestinal crypts 
(Fig. 5). We derived a set of 7,721 fCpG sites, of which 807 were 
shared with the set of loci identified in the colon (Supplementary 
Table 3). The resulting methylation distributions exhibited the same 
characteristic W shape as in the intestine (Fig. 5a).

We then applied our Bayesian inference pipeline to each endome-
trial gland to infer the effective stem cell dynamics67. The inferred 
stem cell replacement rate was broadly similar compared to colon at 
1.2 ± 0.3 (mean ± s.d.) replacements per stem cell per year (Fig. 5b), 
whereas the number of stem cells per gland was significantly higher 
in endometrium than in colon (P < 0.05, GLM), with each endome-
trial gland containing 8.6 ± 2.9 stem cells (Fig. 5c–e). Intriguingly, 
the endometrium exhibited a significantly greater degree of intra-

individual variability regarding the number of stem cells (P < 0.05, 
GLM), perhaps due to the dynamic nature of the endometrium 
through menstrual cycles and age-related changes. We acknowledge 
that the stem cell structure of endometrial glands is likely more 
complex than that of colon crypts68, limiting the degree to which our 
simple model reflects the underlying biology. Nevertheless, the fact 
that we still observe large clonal peaks near 0% and 100% methyla-
tion suggests that monoclonal conversion does still occur, and our 
model is still applicable as a simplified caricature of the complicated 
dynamics present in endometrial glands.

The above analysis of human intestinal crypts and endometrial 
glands indicates that these small populations are maintained by small 
numbers of stem cells that stochastically and recurrently turnover 
throughout life. Experimental lineage markers can record a single 
clonal replacement cycle in murine crypts1,2,69, but FMCs continu-
ously record ongoing stem cell dynamics that otherwise lack defini-
tive starts or ends in adults. Although stem cell pool sizes remain 
constant, replacement bottlenecks and succession to a single lineage 
recur with a mean fixation time of 8.3 ± 5.5 years (mean ± s.d.) in 
the small intestine, 7.0 ± 6.4 years in the colon and 6.8 ± 4.2 years 
in the endometrium (Supplementary Information). Furthermore, 
we found that the inferred mean fixation time decreases with age, 
suggesting that the dynamics of stem cell replacement slow over the 
course of one’s lifetime (Supplementary Fig. 5b).

FMCs in human blood. The fCpG behavior seen in intestinal 
crypts and endometrial glands is likely to be present across tissues. 
Therefore, we next searched for similar FMCs in whole human 
blood, which has abundant public methylation array data for nor-
mal and disease states. Unlike intestinal crypts, which recurrently 
drift to clonality, blood is a large, well-mixed tissue with diverse cell 
types and is normally polyclonal because it is produced by thou-
sands of bone marrow stem cells36,37. Normal hematopoietic stem 
cell turnover is not synchronized. As in the intestines, CpG loci that 
randomly fluctuate through 0, 50 and 100% methylation in indi-
vidual cells will have average methylation around 50% in normal 
polyclonal blood samples.

We identified suitable fCpG loci by averaging normal 
whole-blood DNA methylation at ~450,000 autosomal CpG loci 
from a commonly used aging database of 656 healthy individu-
als70. We selected all loci (N = 27,634) with average values between 
40% and 60% methylation in these 656 specimens. fCpGs appear 
to be tissue specific because only ~5% of the intestinal loci were in 
the blood set. Fluctuating methylation for each individual sample 
revealed tight distributions around 50% methylation, which can be 
described by its variance (Fig. 6a). Serial samples 10 years apart71 
revealed variance to be relatively stable for an individual, with a 
slight significant trend for increases with age (Fig. 6b), which was 
also observed throughout aging (Fig. 6a).

Clonal hematopoiesis in the blood is an early step in the evo-
lution of neoplasia and will increase variances because clonal cells 
will initially share the 0%, 50% and 100% methylation pattern of 
the progenitor. For rapid clonal expansions (that is acute leuke-
mias), W-shaped blood distributions similar to those observed 
in the crypts are expected. Consistent with these expectations, 
whole-blood samples from different types of major hematopoietic 
neoplasm had higher than normal variances (Fig. 6c). ALL and 
AML had the highest variances and characteristic W-shaped distri-
butions. More indolent chronic myeloproliferative or myelodysplas-
tic whole-blood specimens showed more modest variance increases 
and generally lacked the W shape of the acute leukemias, crypts and 
glands.

Hematopoiesis simulations. We simulated hematopoiesis to bet-
ter understand how FMCs detect clonality in whole blood (Fig. 6 
and Supplemental Material)72. Methylation fluctuates between 0, 

Nature Biotechnology | VOL 40 | May 2022 | 720–730 | www.nature.com/naturebiotechnology 725

http://www.nature.com/naturebiotechnology


Articles NATure BIoTeCHnoloGy

Fig. 4 | Tissue-specific differences in stem cell dynamics. The stem cell dynamics Bayesian inference framework was applied to 71 individual intestinal 
crypts originating from 17 individuals. a, Examples of the posterior predictive distributions, the discrete stem cell number posterior and the posterior 
for the replacement rate, methylation rate and demethylation rate in crypts derived from normal colon, small intestine and the colon of individuals with 
FAP (left to right). Error bars were calculated from the estimated error (1 s.d.) on the log evidence. b, Individual crypt and posterior mean per individual 
for the stem cell number; AFAP, attenuated familial adenomatous polyposis. c, Replacement rate per stem cell with the 95% credible range of the GLM 
expectation, accounting for age, sex, tissue, disease state and intra- and interindividual heterogeneity. d–f, Posterior distributions for the effect of age (per 
decade), sex (with female encoded as reference), tissue type and disease state on the relative number of stem cells (d), replacement rate per stem cell 
(e) and total number of replacements (f) compared to normal colon. A Bayesian parameter estimation hypothesis testing approach was taken, such that a 
difference was called significant if the 95% credible region did not overlap.
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50 and 100% in single cells, and the simulations indicate polyclonal 
whole-blood variance is low and stable through time because human 
hematopoiesis is maintained by large numbers of stem cells. Clonal 
expansion by a single cell synchronizes fluctuations and results in 
higher whole-blood variances that depend on growth rates (Fig. 6d). 
As in the crypts, there is a balance between clonal expansion rates, 
which increase population variances, and the rates at which fluctu-
ating sites drift back to 50% average methylation, which decreases 
variance. A rapid expansion (less than 2 years) to high blood levels 
as in acute leukemias produces high variances and W-shaped dis-
tributions. The W methylation pattern resembles the methylation 
at 0%, 50% and 100% methylation of the initiating cell. Expansions 
that grow more slowly have variances greater than normal blood 
but lack the W shape as methylation fluctuations become increas-
ingly desynchronized with time. These more indolent expansions 
are more consistent with the experimental data for chronic myelo-
proliferative neoplasms, which may be asymptomatic and persist for 

years. Clones that grow even slower and arise later, as may occur 
with CHIP73, leads to slightly higher variances, as seen with aging in 
the normal whole-blood cohort. A simple model with 27,634 fCpG 
sites and different rates of clonal expansion was broadly consistent 
with the experimental data from hundreds of clinical samples.

Discussion
Here, we demonstrate how to model a class of FMCs that can recon-
struct human cell population dynamics that start or recur at dif-
ferent times during life, using standard Illumina EPIC methylation 
arrays applied to bulk tissue samples. Large numbers of fCpG sites 
reversibly flip–flop their methylation status like an erratically swing-
ing pendulum between 0%, 50% and 100% (representing homozy-
gous and heterozygous (de)methylation). In polyclonal populations, 
these fluctuations are unsynchronized between individual cells, 
and the average fCpG methylation is around 50%. However, FMCs 
that fluctuate at a suitable fraction of the replacement rate within 
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a clonal population leads to a characteristic W-shaped distribution 
with modal peaks at 0%, 50% and 100% methylation for each fCpG 
site following bulk measurement of the clone that resembles the 
state of the most recent common ancestor cell of the extant clone.

Intestinal crypts contain multiple stem cells but are clonal popu-
lations because neutral drift recurrently eliminates all stem lineages 
except one1,2. The clonality of human crypts has been previously 
inferred by several methods that use single or relatively few mark-
ers22,53. The fCpG sites represent a magnitude (>100-fold) increase 
in clock-like loci suitable for inferring recently occurred stem cell 

dynamics. These fCpG sites are common in methylation array data 
and show tissue specificity, likely reflecting differential gene expres-
sion between tissues (fluctuating sites are enriched at non-expressed 
loci). One of the major difficulties experiments with human tissue 
often encounter is the ‘snapshot’ nature of the data, making infer-
ence concerning dynamic processes difficult. To address this, we 
assessed how different temporal dynamics affect the distribution 
of methylation patterns across cells as measured in a ‘bulk’ sam-
ple consisting of many cells (such as an individual crypt), which, 
together with the relatively high de novo error rate of methylation, 

Fig. 6 | FMC dynamics can further be observed in chronic and acute leukemia. a, The variance of the fCpG methylation distribution experiences a gradual 
increase with age in healthy individuals. The confidence band was calculated via bootstrapping and represents 95% confidence intervals. b, Left: the 
variance (center line, median; box limits, upper and lower quartiles; whiskers, 1.5 interquartile range) of paired blood samples taken 10 years apart (1997 
and 2007) also exhibits a small but marked increase (0.37 Cohen’s d, P = 2.8 × 10−5 two-sided paired t-test). Right: a scatterplot showing the matched 
variance per individual sample taken 10 years apart, demonstrating that the variance typically rises with age. ***P < 0.001. c, The variance of the fCpG 
methylation distribution (center line, median; box limits, upper and lower quartiles; whiskers, 1.5 interquartile range) is a proxy for the rapidity of the clonal 
expansion within the blood. In normal samples, the large stem cell population size leads to the methylation distribution being concentrated near 50% (as 
one would expect for uncorrelated oscillators). However, as a clonal cancerous population expands, clonal peaks begin to separate from the 50% peak. In 
the case of acute lymphoblastic leukemia (ALL), the large, well-separated peaks near 0% and 100% are indicative of a single clonal population making up 
the majority of the remaining stem cells following rapid growth; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; ET, essential 
thrombocythemia; PRV, polycythemia vera; PMF, primary myelofibrosis; CML, chronic myeloid leukemia; AML, acute myeloid leukemias. d, Simulations 
confirm that a simple model of hematopoiesis can recapitulate the observed methylation distribution overserved in human data. Data represent 
mean ± s.e.m.; CHIP, clonal hematopoiesis of indeterminate potential.
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allowed us to track the stem cell dynamics within individual crypts. 
fCpG loci have different error rates, and a key to analysis is to match 
error rates with the underlying rate of cell dynamics. Fluctuations 
that occur too fast fail to record cell dynamics because fluctuat-
ing methylation becomes desynchronized even in closely related 
cells. Fluctuations that are too infrequent will maintain synchrony 
between distantly related cells and not capture more contemporary 
cell turnover. However, by matching FMC fluctuation rates with the 
biological interval of interest, we demonstrated the ability to infer 
stem cell dynamics within glands.

Stem cell numbers may have important fundamental roles in 
cancer risks because mutations that lead to cancer can only accumu-
late in a long-lived stem cell lineage74. Consistent with experiments 
in mice75, we inferred only small differences in stem cell numbers 
between small intestinal and colon crypts (small intestinal crypts 
contain approximately 16% more stem cells than colon). Whereas 
colon carcinoma is the fourth most common human cancer76, small 
intestinal carcinoma is between 14 and 50 times less common76,77, 
even though their tissues have similar numbers of crypts and accu-
mulate similar numbers of mutations during aging38. According to 
the ‘bad luck hypothesis’78, the discrepancy in cancer rates could be 
explained by differences in the stem cell dynamics of the two tissues, 
with more stem cells dividing more rapidly carrying a higher risk of 
progressing to cancer. We only detect moderate differences in the 
number of stem cells and the replacement rates per crypt between 
small intestine and colon. Hence, our data and analysis indicate that 
much lower small intestinal carcinoma rates are unlikely to be solely 
attributable to the difference in stem cell dynamics between the two 
tissue types. We did observe a slight increase in the total number 
of replacements per crypt in non-dysplastic FAP colon crypts that 
carry heterozygous APC mutations, perhaps suggesting that the 
‘first-hit’ loss of APC in the development of sporadic colorectal can-
cer confers a selective advantage, which may help explain why APC 
mutations are common in colorectal cancers.

We further demonstrate that fCpG dynamics are present in hema-
topoietic cells and can be used to reconstruct clonal dynamics within 
the hematopoietic system. The identity of the fCpG sites in hema-
topoietic cells differs from those in the epithelium, likely reflecting 
that fCpGs tend to be found within non-expressed genes and the 
fact that gene expression patterns vary between tissues. Our blood 
studies illustrate the ability of fCpG sites to detect clonal hemato-
poiesis, with increases in average fCpG variances with clonality and 
characteristic W-shaped distributions in acute leukemias. Chronic 
leukemias had intermediate fCpG variance increases and generally 
lacked W-shaped distributions, likely reflecting their slower growth. 
There was a trend for an age-related increase in fCpG variances that 
may reflect the increased incidence of CHIP in older people73.

Our stem cell dynamics inference method relies on relatively 
inexpensive methylation arrays, but, nevertheless, a potential limit 
to this technique is the requirement of high-quality DNA derived 
from relatively small quantities of input material. The mathematical 
model-based inference necessarily relies on a number of assump-
tions (key assumptions are discussed and evaluated), and the validity 
of these naturally affects the accuracy of our inference. Additionally, 
the dimensionality of the matrix encoding the stem cell dynamics 
scales quadratically with the number of stem cells; hence, our infer-
ence framework is only tractable for reasonably small numbers of 
stem cells.

In summary, fCpG methylation molecular clocks have many fea-
tures ideal for the analysis of human cell populations. The erratic 
flip–flop behavior of fCpG sites is otherwise elusive in polyclonal 
populations but becomes detectable in clonal cell populations. 
FMCs can measure alterations that start or recur later in life and 
can infer changes that occur over a few years. Measurements are  
individual and gland specific, which allows us to probe intra- and 
interindividual heterogeneity. Large numbers of potential fCpG 

sites suitable for the time intervals and cell populations of inter-
est are found on commercially available methylation arrays. FMCs 
enable the inference of the ongoing dynamics of many different 
human somatic cell populations.
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Methods
Ethics. Tissues were collected at the University of Southern California Keck School 
of Medicine from excess surgical samples taken in the course of routine clinical 
care, with Institutional Review Board approval. Additional normal colon specimens 
were obtained from University College London Hospital (UCLH) Cancer Biobank 
(REC approval: 15/YH/0311).

Methylation array. Crypts or endometrial glands were isolated using an EDTA 
washout method, as previously described26,67. DNA methylation was measured with 
EPIC bead arrays (Illumina) using the Restore protocol and the manufacturers’ 
protocols79. IDAT files were processed using the noob normalization function in 
the minfi R package80.

Blood methylation data were obtained from the Gene Expression Omnibus 
(GEO)81,82 using β values as provided. The datasets are GSE40279 (normal blood; 
Fig. 6a)70, GSE73115 (10-year serial samples; Fig. 6b)83, GSE51759 (myelodysplastic 
syndromes84), GSE42042 (essential thrombocythemia, polycythemia vera, primary 
myelofibrosis85), GSE106600 (chronic myeloid leukemia86), GSE105420 (chronic 
myelomonocytic leukemia87), GSE62298 (AML88) and GSE69229 (ALL89).

RNA expression data for normal tissue derived from 40 individuals were 
retrieved from TCGA54.

Derivation of fCpG loci. To isolate those CpG sites that behave as FMCs, it was 
first necessary to filter out those loci that are likely to have a regulatory function 
or change their methylation status over the length of the crypt. This was done by 
selecting only those CpG sites that lie in the ‘open sea’ (further than 4 kb from a 
CpG island). Furthermore, probes of CpG loci that were identified90,91 as being 
cross-reactive were filtered out, along with CpG loci positioned on sex-determinant 
chromosomes. Given the relatively low amounts of DNA contained within a single 
crypt, we also filtered out probes that were likely to have experienced incomplete 
binding by restricting our analysis to probes that had a total intensity greater than 
1,200 (arbitrary units).

The Illumina EPIC array features two different probe types, type I and type II 
(ref. 91). Type I probes feature a higher dynamic range, leading to the two probe 
types having different underlying distributions of β values. Due to difficulties 
in simultaneously modeling the two different probe types, and given that type I 
probes are overrepresented in CpG-dense regions of the genome, the analysis was 
restricted to type II probes.

CpG sites with fluctuating methylation were then detected by comparing 
between-individual to within-individual heterogeneity in methylation value. At 
fluctuating sites, we expect the average methylation in non-clonal bulk samples 
to follow a distribution centered on 0.5 (because methylation at the site is 
uncorrelated between the multiple lineages that make up the bulk sample), whereas 
in individual clonal samples, the methylation value can take any value between 0 
and 1. Thus, to select for fCpG loci, we selected CpG sites that had the highest 5% 
of variance in β value between individual samples and then filtered these for sites 
with mean methylation across all samples and individuals of ~0.5 (mean β value 
between 0.4 and 0.6) (Fig. 2a).

To demonstrate technical accuracy in methylation measurement from the small 
amounts of DNA in single small intestinal crypts (~400 cells), colon crypts (~2,000 
cells) or endometrial glands (~5,000 cells), we identified similar fCpG sites on the 
X chromosome and compared methylation between male and female individuals. 
In males, there is only a single copy of the X chromosome; hence, only two modal 
peaks near 0% and 100% methylation should be present in clonal populations, 
as opposed to the trimodal distribution observed on autosomes. Consistent 
with the ability to measure fluctuating methylation in small tissue samples, the 
X chromosome fluctuating sites exhibited trimodal W-shaped distributions in 
female colon crypts and bimodal ‘U-shaped’ distributions in male colon crypts 
(Supplementary Fig. 1d). This observation is supportive of the hypothesis that 
the methylation distribution of fCpG loci is reflective of that of the most recent 
recurrent clone rather than varying with cell type or differentiation status.

We compared methylation of fluctuating sites between crypts from the same 
individual. If fluctuating methylation occurs stochastically and without biological 
regulation, then each crypt should independently evolve a unique pattern of 
fCpG site methylation. Intercrypt comparison between crypts within the colon 
or small intestine, both across the set of crypts sampled from each individual and 
across crypts from different individuals, showed that fluctuating methylation 
patterns between crypts were uncorrelated (Supplementary Fig. 2e). There was 
weak correlation of fluctuating methylation patterns between crypts for younger 
individuals (age <30 years), but this was lost with advancing age (Supplementary 
Fig. 2f).

Mathematical model of methylation within the stem cell niche. We developed 
a stochastic model to describe how the fraction of methylated alleles (β value) in 
the stem cell niche of a given CpG locus changes over time. This model draws 
on previous attempts1,75 to model the behavior of the stem cell niche in colonic 
crypts but with a number of modifications that account for the differences when 
considering methylation as a lineage tracing marker rather than DNA. Namely, 
while DNA mutations occur relatively infrequently, allowing for a model that only 
considers a single mutant population expanding or contracting with reference to a 

single wild-type population, the relatively high methylation switching rate requires 
us to consider the potential of multiple clones existing simultaneously. Further, 
while DNA mutations can be generally regarded as irreversible, the methylation 
status of a given cell (that is, whether a particular cell is homozygously (de)
methylated or heterozygously methylated) can theoretically flip–flop, necessitating 
a careful consideration regarding the possible ways the overall β value can change.

For this reason, we made the simplifying assumption that the population was 
well mixed, such that any of the S stem cells can replace any of the other S – 1 stem 
cells with equal probability and that these replacements occur at a constant rate λ 
per stem cell. This assumption greatly simplified our analysis, as the system can 
be fully characterized using just two state variables: k – the number of stem cells 
containing a single methylated allele, and m – the number of stem cells containing 
two methylated alleles. The admitted states are constrained by the inequality 
0 ≤ k + m ≤ S for a total of 12 (S + 1) (S + 2) states.

Along with the replacement process, we assumed that a previously 
unmethylated CpG locus could spontaneously become methylated with a rate μ per 
year and, conversely, that a previously methylated CpG locus could spontaneously 
become demethylated with a rate γ per year.

To develop the series of ordinary differential equations that fully determine 
the system, we considered the ways in which a state (k,m) could transition to a 
state 

(

k′, m′
)

. As an example, if we consider Fig. 1c, we observe that of the S = 5 
stem cells, 3 of the stem cells are heterozygously methylated, and 1 of the cells 
is homozygously methylated; hence, the system is initially in state (k = 3,m = 1). 
To transition to state 

(

k′ = 3, m′
= 2

)

, the homozygously methylated stem cell 
must clonally expand, replacing the homozygously demethylated cell. The rate at 
which any one of the stem cells replaces another is λS = 5λ, but of the S(S – 1) = 20 
possible transitions, only 1 would lead to the desired (3,2) state; hence, the rate 
at which the system transitions (3, 1) → (3, 2) is 1

20 ∗ 5λ =
1
4 λ. We continue 

this process (Supplementary Information) considering the general transition 
(k, m) →

(

k′, m′
)

, deriving the following master equation:

dP(k,m|λ,μ,γ;t)
dt = (S − m − (k − 1))

(

(k − 1) λ
S−1 + 2μ

)

P (k − 1, m|λ, μ, γ;t)

+ (m − 1) (S − (m − 1) − k) λ
S−1 P (k, m − 1|λ, μ, γ;t)

+ (k + 1)
(

(m − 1) λ
S−1 + μ

)

P (k + 1, m − 1|λ, μ, γ;t)

+ (k + 1)
(

(S − m − (k + 1)) λ
S−1 + γ

)

P (k + 1, m|λ, μ, γ;t)

+ (m + 1) (S − (m + 1) − k) λ
S−1 P (k, m + 1|λ, μ, γ;t)

+ (m + 1)
(

(k − 1) λ
S−1 + 2γ

)

P (k − 1, m + 1|λ, μ, γ;t)

−

(

2 (k (S − k) + m (S − k − m))
λ

S−1 + (2S − (k + 2m)) μ + (k + 2m) γ
)

P (k, m|λ, μ, γ;t)

This linear series of differential equations can be solved computationally by 
rewriting the equations into a matrix equation, d

⇀

P (t)
dt = T

⇀

P (t) and applying 
matrix exponentiation to the resulting transition matrix T.

⇀

P (t) = etT
⇀

P (t = 0)

During the very early stages of embryogenesis, the existing methylation 
patterns inherited from parental gametes are largely erased before a large wave 
of de novo methylation remodels the entire genome, resulting in a bimodal 
methylation distribution92. Given that all the stem cells within a niche are initially 
clonal, we thus assumed that it was equally likely to find a given fCpG locus as 
homozygously methylated or unmethylated across all the stem cells within the 
niche at time 0. Further study is necessary to ensure the validity of this assumption.

P (k, m|λ, μ, γ;t = 0) =















0.5 if k = 0 ∧ m = S

0.5 if k = 0 ∧ m = 0

0 otherwise

However, the methylation status of individual cells is not available using 
methylation arrays; hence, the hidden states must be marginalized over to calculate 
the probability of there being z methylated copies within the stem cell niche (note 
that 0 ≤ z ≤ 2S). This can be achieved by summing the various combinations of k 
and m states that satisfy the equation z = k + 2m.

P (z|λ, μ, γ;t) =

S
∑

m=0

S−m
∑

k=0

P (k, m|λ, μ, γ;t) δk+2m,z

The resulting distribution of P (z|λ, μ, γ;t) can qualitatively reproduce the 
characteristic W shape exhibited in the methylation fraction of individual crypts.

Error model. The probability distribution calculated above, P (z|λ, μ, γ;t), gives the 
probability that exactly z of the 2S alleles (across S stem cells) are methylated at a 
particular CpG locus; however, the Illumina EPIC array quantifies the methylation 
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level at specific loci aggregated over the whole crypt. As such, we introduced an 
error model to link the measured β value with the ‘true’ z value at a specific site. 
We chose to model the measured β values as a mixture of z β-distributed random 
variables, each with a mean value determined by z and a scale parameter kz.

To account for the background noise of the array, the mean value of each β 
peak was set to be equal to a linear transform of z: x = (ϵ − Δ)

z
2S + Δ, with 

the parameters describing this transform (ϵ and Δ) to be inferred. The scale 
parameters (sometimes referred to as the sample size), κ⃗ , of each β peak were 
modeled as hierarchical, with each κz being drawn from a lognormal distribution 
parameterized in terms of the population mean, θ, and its standard deviation, σ. 
These hyperparameters were also inferred during the Bayesian inference.

Likelihood and prior functions. As rate parameters are naturally positive 
quantities, λ, μ and γ were constrained to positive real values by defining the prior 
distributions in terms of positive half-normals with a scale informed by prior 
literature. Following the finding of Nicholson et al.53 that the replacement rate 
is approximately 1.3 replacements per stem cell per year, we set the scale of the 
prior on the replacement rate equal to 1. Similarly, θ and σ were also constrained 
to positive values using broad half-normal prior distributions, with a scale of 500 
and 50, respectively. Previous work has found that methylation fidelity can vary 
dramatically across the genome, from ~10−4 to 10−2, and we will take an estimate 
of 10−3 per division as a reasonable scale93. If we assume intestinal stem cells divide 
every ~3 d and we consider that our definition of μ, γ is in units of (per allele 
per year), this corresponds to a (de)methylation rate of ~0.05. We note that the 
inference is relatively insensitive to the exact choice of prior on the (de)methylation 
rate (Supplementary Fig. 7b,c). The lognormal hierarchical prior distribution 
naturally constrains κ⃗  to real values. The ‘offsets’ in the linear transform, Δ and 
ϵ, were constrained to lie between 0 and 1 by placing a β distribution on each 
parameter, such that the mean prior value was 0.05 and 0.95, respectively.

The behavior of individual CpG loci was assumed to be independent, such that 
the likelihood of all N = 1,794 CpG loci was simply the product of the per-CpG 
likelihood computed according to the mathematical model outlined above.

Likelihood:

x = (ϵ − Δ)

z
2S + Δ

P (βi|z,Δ, ϵ, κz) =

β
κzx−1
i (1 − βi)

κz(1−x)−1

B (κzx, κz (1 − x))

L
(

λ, μ, γ,Δ, ϵ, κ⃗, S|⃗β
)

=

N
∏

i=1

2S
∑

z=0
P (βi|z,Δ, ϵ, κz) P (z|λ, μ, γ;t)

Hyperpriors:

θ ∼ halfnormal (500)

σ ∼ halfnormal (50)

Priors:

λ ∼ halfnormal (1.0)

μ ∼ halfnormal (0.05)

γ ∼ halfnormal (0.05)

Δ ∼ β (5, 95)

ϵ ∼ β (95, 5)

κz ∼ lognormal
(

ln
(

θ2
√

θ2
+ σ2

)

,

√

ln
(

1 +

σ2

θ2

)

)

Bayesian inference. A Bayesian inference methodology was developed to infer the 
biological model parameters (number of stem cells within the stem cell niche (S), 
replacement rate per stem cell per year (λ), and methylation (μ) and demethylation 
(γ) rate per CpG locus per stem cell per year) directly from the distribution of FMC 
β values for each crypt.

Investigation of simulated datasets revealed that the resulting posterior 
distributions were multimodal, with each S value associated with a local maxima 
(due to the correlation in the posterior between S and λ). This multimodality can 
make the posterior difficult to explore using traditional Markov chain Monte Carlo 
techniques, such as Hamiltonian Monte Carlo. To overcome this, a nested sampling 
method94 was developed to calculate the Bayesian evidence (marginal probability 
density, Z) of each S value considered (S ∈ [3..20]) while simultaneously 

generating samples from the posterior associated with each value of S. The 
probability of S for a given crypt can then be calculated as

P
(

S|⃗β
)

=

Z
(

S|⃗β
)

∑

j Z
(

Sj |⃗β
)

The full posterior can be approximated by drawing samples from each S 
mode with a weight equal to the inferred probability of S. The nested sampling 
was performed using dynesty95, a Python implementation of the nested sampling 
algorithm, using the ‘rwalk’ sampling option, such that new live points are 
generated from existing live points under random walk behavior.

To ensure that the posterior samples had converged to the equilibrium 
distribution, four independent samples were run with random initializations 
for each sample, and the rank-normalized potential scale reduction statistic (ˆR) 
was calculated96,97. ˆR was found to be less than 1.1 (a typical threshold used to 
determine convergence) in all cases. The inference code can be obtained from 
https://github.com/CalumGabbutt/flipflop.git (ref. 56).

Impact of simplifying assumptions. Our mathematical model of intestinal stem 
cell niche dynamics inevitably rested on a number of simplifying assumptions. We 
investigated the impact of these assumptions.

First, we assumed a well-mixed population. This differed from previous 
prominent modeling approaches, foremost the approach of Lopez-Garcia et al.1 
who assumed that stem cells were organized in a ring geometry where replacement 
could only happen between neighboring cells on the ring (Supplementary Fig. 3a 
and Supplementary Information). We used stochastic simulation to explore the 
effect of a well-mixed versus ring geometry. Across biologically relevant numbers 
of stem cells (S � 10), the differing geometry was found to have a negligible 
effect on the resulting fCpG methylation distribution (Supplementary Fig. 3b). 
We performed statistical inference upon these simulations (using the inference 
framework that makes the well-mixed assumption) and were able to accurately 
recover the known parameters (Supplementary Fig. 3c). We note that Lopez-Garcia 
et al.’s model only needed to consider the clonal expansion or retraction of a single 
labeled clone, whereas our model had to account for the possibility of multiple 
labeled clones due to the increased mutation rate of the epigenome; hence, the 
well-mixed assumption was chosen to minimize mathematical complexity. Further, 
we note that live-imaging data from mouse crypts69 show that murine stem cells 
can exchange places within the niche, suggesting that the stem cell population may 
be neither strictly ring-like nor well mixed but rather a hybrid model between the 
two extremes.

Second, we neglected genetic ‘linkage’ between different CpG loci (each cell 
carries a set of linked CpGs) to prevent mathematical complexity. We explored 
the effect of linkage using the same well-mixed Gillespie simulations as above 
and found that the mean methylation per peak of the individual crypts simulated 
with linkage exactly matches that of the analytic probability distribution that 
we derived but that the individual crypts exhibit a greater degree of variability 
than that predicted by sampling from the analytic model (Supplementary Fig. 6). 
Consequently, credible intervals of the posterior inferred with our non-linkage 
inference method will be marginally too narrow.

Third, we assumed that all of the fCpG loci that we had identified as fluctuating 
were not under selection or active regulation. We explored the consequence of 
a fraction of CpG sites not behaving in a fluctuating manner on the accuracy of 
the inference (Supplementary Information and Supplementary Fig. 4). Including 
non-fluctuating sites caused a systematic underestimation of the replacement rate, 
but when the number of non-fluctuating sites was sufficiently low (≲5%), the 
number of stem cells and the replacement rate could still be accurately inferred.

Finally, we assumed that the replacement rate, methylation rate and 
demethylation rate are constant over an individual’s lifetime. While previous 
research suggests that the stem cell division rate lowers over an individual’s 
lifetime98, and our findings are consistent with such a decrease, it is likely that both 
the replacement rate and the methylation error rate are proportional to the cell 
division rate, such that the ratio of the two rates does not change over time. In this 
way, our model describes the stem cell dynamics of an individual crypt averaged 
over an individual’s lifetime.

Tissue-specific differences in stem cell dynamics. To compare the stem cell 
dynamics of different tissue and disease types in a statistically rigorous manner, 
we must account for the hierarchical individual structure (that is, we have multiple 
glands from each individual that are likely to be correlated) while controlling for the 
age and sex of each individual. We developed a hierarchical Bayesian GLM using 
a log-link function to constrain our dependent variable to be positive (presented 
fully in the Supplementary Information) and take a hypothesis testing by parameter 
estimation approach (that is, the difference between small intestine and colon is 
statistically significant if the 95% equal-tailed credible interval excludes 0).

Spatial model of the crypt. A crypt ignoring villi in the small intestine forms a 
cylindrical geometry with stem cells at the base and a crypt wall moving up the 
crypt. Here, we have developed an off-lattice mechanistic agent-based model of 
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the human crypt using the hybrid automata library (HAL) modeling framework99 
capable of representing a crypt of the small intestine or colon (Fig. 3d). The 
cylindrical unit is separated into two compartments, the stem cell compartment 
represented as a pool at the base of the crypt and then the wall of the crypt where 
transit amplifying cells are pushed upward until they are removed from the top of 
the crypt. The spatial model of the crypt is dynamic in the sense that the x and y 
dimensions are calculated using the total populations size (NT) and the stem cell 
pool radius (ψ). The x dimension is defined as x = 2πψ. The center of the stem 
cell pool is placed such that the origin of the center of this circular stem cell pool 
whose size, and thus number of stem cells allowed within this pool, is placed at 
(h,k) where h = x/2 and k = ψ + 5 Division for each stem cell is defined by ρc, which 
is randomly assigned as the hourly cell cycle defined by pc ∼ U (ρmin, pmax), where 
ρmin and ρmax are ρ ± 4 h.

As a cell approaches ρc, the cells diameter doubles for the 5 h/time 
steps preceding the cell’s division. Following division, both daughter cells 
occupy this space. When a stem cell (defined by d (xc, yc) ≤ ψ  where 
d (xc, yc) =

√

(xc − h)2 + (yc − k)2) divides, the daughter cells can be  
placed in any arrangement around the parent cell’s xc and yc position; differentiated 
cells can only be placed vertically (that is, the xc values are equal). The base  
of the crypt wall is set just above the origin of the stem cell pool plus ψ and  
a small offset to provide space so that no cell forces interact between the stem  
cell pool and the base of a stem cell wall. If d (xc, yc) > ψ , then the cell is moved 
to the base of the stem cell wall where the cell’s new position (x2,y2) is given as y2, 
and x2 is given by the cell’s exit radians, rads, given by atan2 (yc, xc) so that the cells 
position along the x dimension is x2 = (rads + π)

( x
2π

)

. Boundary conditions 
for the cells within the crypt wall are periodic (that is, allowed to wrap around) 
and no flux at the top and bottom of the crypt (that is, no cell can breach these 
boundaries). A run step in the model is hourly, and updates to cell positions  
occur for the whole crypt and are applied at each time step. We give each cell 1,794 
CpG loci (with the possible status of 0 for demethylated or 1 for methylated). 
At each division, these loci can switch methylation status at a rate defined by ω 
following division.

At each hourly time step, we assume that the forces acting on each individual 
cell are at equilibrium, Fci = 0, where Fci is equal to the contact force between cell 
i and its neighbors. For two cells whose radii are Ri and Rj, respectively, the contact 
force between them is based on a linear spring constant model (Hooke’s law) and 
is calculated as

Fcij =











ki ΔRij
Ri+Rj

if ΔRij
Ri+Rj

> 0

0 if ΔRij
Ri+Rj

< 0

Assuming that each cell has the same spring constant k, the overlap of cells 
( ΔRij
Ri+Rj

) and the overall number of cells in contact with any given cell (ni) give the 
velocity for an individual cell, vi = k

∑nj
j=1

ΔRij
Ri+Rj

. The modeling framework can be 
obtained from https://github.com/MathOnco/flipflopspatialmodel.git (ref. 57).

Inference of stem cell numbers on the spatial model. To provide insights into the 
FMC signal from a first principles model of the homeostatic crypt (balanced birth/
death with a methylation error rate), we have to add noise to the output data of the 
spatial model. This is because the inference framework is designed to fit the noisy 
experimental data and that fCpG sites with values of zero or one are not captured 
within the data. To add a small amount of noise to the output of the perfect 
methylation distribution’s output by the spatial model, a binomial is used with two 
offsets to provide a distribution that the inferences can be performed on. For each 
β value, a sample size (κ) of 1,000 is taken from a β distribution using an offset 
from 0 (Δ = 0.04) and an offset from 1 (ϵ = 0.92) (Fig. 3d). The script required 
to add noise to this model is accompanied with the inference framework (see 
add_noise.py). Once the β values with noise are added, the inference framework 
is executed for each model simulation’s β value distributions for across stem cell 
number ranges from 2 to 9, 3 to 10 and 8 to 15, respectively, using 400 live points 
for the dynesty sampler95.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Illumina EPIC array data (colon, small intestine and endometrium) collected in 
the process of this study are currently available at the European Genome–Phenome 
Archive (EGA) (accession EGAS00001005514). Figs. 2, 4 and 5 are associated with 
these data. Sample information is presented in Supplementary Table 1. The fCpG 
loci identified and the β values of intestinal and endometrial samples are presented 
in Supplementary Tables 2 and 3, respectively.

Code availability
The Bayesian inference framework to infer the stem cell dynamics of individual 
crypts from the distribution of β values of fCpG loci can be obtained on GitHub 
at https://github.com/CalumGabbutt/flipflop.git (ref. 56). The agent-based spatial 

modeling framework of the crypt is available at https://github.com/MathOnco/
flipflopspatialmodel.git (ref. 57).
The blood simulations illustrating how the methylation distribution changes 
following a rapid clonal expansion can be obtained (along with sample simulation 
results) at https://github.com/MathOnco/flipflopblood.git (ref. 72). A graphical user 
interface compatible with most operating systems is accompanied to allow for rapid 
evaluation of different parameters.
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