Skip to main content
. 2022 May 17;129:102323. doi: 10.1016/j.artmed.2022.102323

Table 3.

Performance of the hybrid learning-based classification model for different numbers of selected sensors evaluated using a 5-fold cross-validation and repeated 10 times. Similar performances in terms of accuracy, sensitivity, and specificity can be achieved by the models with 5 and 10 sensors, demonstrating the possibility of reducing the used sensor number in GeNose C19.

Number of sensors Selected sensors Accuracy (%) Sensitivity (%) Specificity (%)
2 S4, S9 78 ± 3 78 ± 6 78 ± 7
3 S4, S9, S10 83 ± 3 86 ± 4 80 ± 6
4 S4, S9, S10, S2 85 ± 3 89 ± 5 82 ± 6
5 S4, S9, S10, S2, S8 86 ± 3 88 ± 6 84 ± 6
6 S4, S9, S10, S2, S8, S3 85 ± 3 87 ± 6 83 ± 6
10 S1–S10 86 ± 3 87 ± 6 84 ± 6