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Abstract

Introduction: Blood pressure (BP) lowering reduces the risk for cognitive impairment and 

the progression of cerebral white matter lesions. It is unclear whether hypertension control 

also influences plasma biomarkers related to Alzheimer’s disease and non-disease-specific 

neurodegeneration.

Methods: We examined the effect of intensive (<120 mm Hg) vs standard (<140 mm Hg) BP 

control on longitudinal changes in plasma Aβ40 and Aβ42, total tau, and neurofilament light chain 

(NfL) in a subgroup of participants from the Systolic Blood Pressure Intervention Trial (N=517).

Results: Over 3.8 years, there were no significant between-group differences for Aβ40, Aβ42, 

Aβ42 / Aβ40, or total tau. Intensive treatment was associated with larger increases in NfL 

compared to standard treatment. Adjusting for kidney function, but not BP, attenuated the 

association between intensive treatment and NfL.

Discussion: Intensive BP treatment was associated with changes in NfL, which were correlated 

with changes in kidney function associated with intensive treatment.

TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01206062

1. INTRODUCTION

Meta-analyses of randomized trials have indicated that blood pressure (BP) lowering reduces 

the incidence of dementia [1,2]. Observational data [3,4], the Systolic Blood Pressure 

Intervention Trial (SPRINT) [5], and other randomized trials [6,7] have shown hypertension 

and its control are also associated with the presence and progression of white matter 

lesions. While cerebrovascular mechanisms are a likely explanation for the reduction in 

cognitive impairment observed in SPRINT [8], studies have also shown that vascular 

risk is associated the presence of brain amyloid deposition based on positron emission 

tomography [9] and that antihypertensive treatment is associated with a reduced risk of 

incident dementia and Alzheimer’s disease (AD) [10]. It is, however, unknown whether 

intensive BP control may impact biomarkers of AD pathology, which frequently co-occurs 

with vascular contributors to dementia. There is considerable observational evidence that 

vascular damage may contribute to the progression of AD neuropathology [11,12], but 

causal experimental evidence to this effect is lacking [13]. Intensive BP control in SPRINT 

has also been associated with greater decreases in total brain and hippocampal volumes 

[5,14], but not with changes in other magnetic resonance imaging (MRI) markers that are 

sensitive, but not specific for, AD-related neurodegeneration [14].

The characterization of AD has transitioned to a biological definition of the disease, relying 

upon quantitative measurements of beta-amyloid, tau, and neurodegeneration via imaging or 

cerebrospinal fluid [15]. Given the expense of imaging, patient burden related to imaging 

and cerebrospinal fluid sampling, and resulting potential selection biases, there is a major 

effort to use and calibrate blood based protein biomarkers [16–18] to reduce both the burden 
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and cost of identifying pathologic AD. Using stored samples from a subgroup of SPRINT 

participants, here we examine the effect of intensive BP control on changes in plasma 

biomarkers related to AD and neurodegeneration more broadly (beta-amyloid, total tau, and 

neurofilament light chain). In addition, given the known effects of intensive treatment on 

kidney function [19,20], an important modulator of the composition of the blood proteome 

[21], we also explored the association of these biomarkers with changes in kidney function.

2. METHODS

2.1 Trial design

The trial design and methods have been published previously [22,23]. Briefly, we conducted 

a multicenter randomized clinical trial that compared two strategies for managing systolic 

BP (SBP) in older adults with hypertension who were at increased risk of cardiovascular 

disease. Participants were aged 50 years or older and had an SBP between 130 and 

180 mm Hg at the screening visit, depending on the number of anti-hypertensive agents 

prescribed. Participants were considered to have an increased cardiovascular risk if they 

had clinical or subclinical cardiovascular disease, chronic kidney disease (defined by an 

estimated glomerular filtration rate of <60 mL/min/1.73 m2), or a Framingham Risk Score 

of 15% or greater or if they were aged 75 years or older. Individuals residing in a nursing 

home, persons with a diagnosis of dementia (based on medical record review), and those 

treated with medications primarily used for dementia therapy were excluded, as were 

persons with prevalent diabetes mellitus, history of stroke, proteinuria > 1 gram per day, 

or polycystic kidney disease. Individuals at 102 sites in the United States and Puerto Rico 

were randomized (1:1) to a SBP goal of less than 120 mm Hg (intensive treatment group, 

n = 4678) or a goal of less than 140 mm Hg (standard treatment group, n = 4683), using 

random permuted blocks with the randomization stratified by clinic site. The algorithms and 

formulary for the trial are listed in the published study protocol [8,23]. Trial enrollment 

began in November 2010 and ended in March 2013, with follow-up through July 1, 2016. 

The study was approved by the institutional review board at each participating site, and each 

participant provided written informed consent. The study is registered at ClinicalTrials.gov 

(NCT01206062).

2.2 Magnetic resonance imaging sub-study

A subset of participants (n = 2913) were recruited into a cognitive function sub-study 

to more extensively evaluate the effects of intensive SBP control on specific domains of 

cognitive function [24]. MRI scans were obtained in a further subset of these participants to 

evaluate brain structure [5]. All participants accessible to any one of 7 designated MRI sites 

(drawing from 27 clinic sites) were screened for the MRI sub-study, and eligible participants 

provided written informed consent. Exclusion criteria for the MRI sub-study included any 

implanted electrical medical device, such as a pacemaker, any MRI-incompatible or MRI 

compatibility unknown metallic foreign material, or claustrophobia. Structural MRI of the 

brain included 1-mm isotropic T1, T2, and fluid-attenuated inversion recovery imaging, and 

was processed using an automated pipeline [5].
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2.3 Core laboratory measures

Participants were instructed to fast overnight for the randomization visit and for annual 

follow-up assessments. Blood was collected by venipuncture at the clinical sites into EDTA-

plasma tubes, chilled for 20-30 minutes in a refrigerator, and then centrifuged for 10-15 

minutes at 1800-1900 x g. Plasma was transferred into transport tubes, refrigerated, and 

shipped overnight on ice-cold gel packs the day of collection to the SPRINT Central 

Laboratory at the University of Minnesota. On receipt in the Laboratory, samples were 

aliquoted into 0.5 mL cryovials and stored at −70°C. Serum and urine creatinine were 

measured using a method traceable to isotope dilution mass spectrometry. Urine creatinine 

was measured with the Siemens ProSpec nephelometric analyzer. We calculated the 

estimated glomerular filtration rate (eGFR) with the Chronic Kidney Disease Epidemiology 

Collaboration equation [25]. Serum bicarbonate was measured at baseline using an 

enzymatic method with phosphoenolpyruvate carboxylase using Roche CO2-L reagent and 

Roche Cobas 6000 Chemistry Analyzers (Roche Diagnostics Corporation).

2.4 Plasma biomarkers

This work was intended as a pilot study. We included participants from the MRI sub-study 

that were 60 years or older at the time of randomization because biomarker changes would 

be most likely to be observed in older trial participants (Figure S1). We used stored plasma 

samples from the baseline visit, and then, if available, from a single follow-up visit for 

each participant (median follow-up of 3.8 years [interquartile range, 3.5 to 4.0 years]). For 

participants who completed the follow-up MRI assessment, we utilized the stored follow-up 

sample nearest to the date of the follow-up MRI. For participants who did not complete 

the follow-up MRI, we utilized their latest available stored follow-up sample (Table S1). 

Assays for plasma human beta-amyloid 40 (Aβ40), beta-amyloid 42 (Aβ42), total tau, 

and neurofilament light chain (NfL) were performed at the University of Kentucky on a 

single molecule-array (Simoa) HD-1 analyzer platform. NfL was measured using the Simoa 

Nf-light advantage kit. Aβ40, Aβ42, and total tau were assessed using the Simoa Human 

Neurology 3-Plex A assay. Frozen plasma samples from the SPRINT Central Laboratory 

were shipped on dry ice without thawing to the University of Kentucky where they were 

stored at −80°C. Samples were then thawed on ice and centrifuged at maximum speed for 10 

minutes at 4°C. All samples were assayed in duplicate and were run with kits from the same 

lot for each analyte. Samples were randomly distributed across assay batches, with paired 

baseline and follow-up samples always performed within the same assay batch. While the 

median coefficients of variation by assay batch were generally <10% for Aβ40, Aβ42, and 

total tau, coefficients of variation were consistently higher for NfL (10-20%, Table S2).

2.5 Assessment of cognitive function

Methods for neuropsychological testing of cognitive function have been previously 

described [8,24]. All participants in the MRI sub-study were administered a comprehensive 

cognitive battery at baseline including the Montreal Cognitive Assessment, Logical Memory 

I and II, Digit Symbol Coding, Trail Making Test Parts A and B, Hopkins Verbal Learning 

Test-Revised, Modified Rey-Osterreith Complex Figure (Copy and Immediate Recall), Digit 

Span, Category Fluency – Animals, and the 15-item Boston Naming Test. Centrally trained 
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and certified examiners administered the cognitive tests. They were administered in either 

English or Spanish, depending on the participant’s preferred language. Here we utilize 

composite cognitive domain scores at baseline representing memory, processing speed, 

executive function, language, and global cognitive function. Each composite domain score 

was calculated as the average of specific standardized test scores [24].

2.6 Statistical analyses

Because of skewed distributions for some of the biomarkers, Spearman rank correlations 

and partial correlation coefficients [26] adjusting for age (or age and eGFR) were used to 

describe correlations between measures at baseline. Robust linear mixed models, including 

random effects for participant and assay batch, were used to estimate the change in each 

plasma biomarker between the BP treatment groups, including time since randomization 

as a covariate [27]. Intuitively, robust mixed models address skewed outcome distributions 

by down-weighting observations with large residuals or random effects, reducing their 

influence on model estimates. We also conducted several sensitivity analyses. First, we 

fit models adjusting for baseline and follow-up SBP, diastolic BP, or eGFR measured at 

the same study visit as the biomarkers. Second, we examined treatment group differences 

as a function of the baseline level of each biomarker and white matter lesion volumes. 

All hypothesis tests were 2-sided, and P values less than .05 were considered statistically 

significant. No adjustments for multiple comparisons were made.

2.7 Role of the funding source

The National Institutes of Health and the US Department of Veterans Affairs had roles in 

the design and conduct of the trial; collection, management, analysis, and interpretation 

of the data; and in the preparation and review of the manuscript. Neither was involved in 

formal approval of the manuscript or the decision to submit the manuscript for publication. 

The Alzheimer’s Association had a role in the design and conduct of the biomarker 

study; but not in the collection, management, analysis, and interpretation of the data; 

preparation, review, or approval of the manuscript; or the decision to submit the manuscript 

for publication.

3. RESULTS

3.1 Baseline characteristics

Table 1 contains baseline information for participants 60 years or older in this biomarker 

sub-study, with 283 randomized to intensive treatment and 234 to standard treatment. At 

baseline, participants had a mean age of 69.9 ± 7.1 years, 42.9% were female, and 28.2% 

were Black. Participants had a mean SBP of 138.3 ± 16.8 mm Hg, and mean eGFR 

of 70.6 ± 18.6 ml/min/1.73 m2, with 29.8% having an eGFR <60 ml/min/1.73 m2. In 

comparison to non-included trial participants who were 60 years or older at the time of 

randomization (Table S3), participants in the biomarker sub-study were younger, more likely 

to be female, were less likely to have a history of cardiovascular disease, had higher mean 

eGFR levels, and higher baseline cognitive test scores. Table S4 includes comparative data 

from the Rotterdam Study (mean age 71.9 ± 7.5 years, 58.0% female), where plasma 

biomarkers were measured using the same Simoa kits [28]. In comparison to that population, 
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participants in this sub-study had higher levels of Aβ42 and total tau, lower levels of Aβ40, 

with similar levels of NfL.

3.2 Cross-sectional associations with plasma biomarkers

Figure 1 displays baseline cross-sectional correlations between the plasma biomarkers and 

age, vital signs, and laboratory measures. All of the biomarkers were positively correlated 

with age, with the strongest associations observed for NfL (Spearman’s rho = 0.43, p<0.001) 

and Aβ40 (rho = 0.27, p <0.001). Adjusting for age, NfL (partial Spearman’s correlation 

(PSC) = −0.30, p<0.001) and Aβ40 (PSC = −0.32, p<0.001) were also negatively correlated 

with eGFR. Table S5 displays baseline levels for each biomarker stratified by eGFR. With 

the exception of the ratio Aβ42 / Aβ40, all of the biomarkers exhibited increasing levels 

with lower eGFR. Baseline correlations between the biomarkers, neuropsychological test 

scores, and structural MRI measures were generally much weaker, with no significant partial 

correlations after accounting for age and eGFR (Figure 1).

3.3 Association of intensive treatment with changes in plasma biomarkers

Figure 2 displays the association between changes in each biomarker with BP treatment 

group. For each of the biomarkers, with the exception of Aβ42 / Aβ40 [29], increases would 

generally be associated with a more pathogenic state and increased risk for dementia. The 

mean change per year (MCPY) for Aβ40 was an increase of 11.8 pg/ml (95% CI: 9.2 to 

14.4) with intensive treatment, as compared to 7.8 pg/ml (95% CI: 4.9 to 10.8) for standard 

treatment (p=0.05, Table S6). We observed larger mean increases in NfL with intensive 

treatment (between-group difference in MCPY = 0.8 pg/ml, 95% CI: 0.3 to 1.2, p=0.002). 

There were no significant differences for change in Aβ42, Aβ42 / Aβ40, or total tau between 

the treatment groups.

3.4 Sensitivity analyses

We also investigated how changes in eGFR might influence our results, given the early 

initial decline in eGFR associated with intensive BP treatment (Figure S2) [30]. During 

follow-up, 17 participants (6.0%) in the intensive treatment group experienced a ≥30% 

decline in eGFR on or before the collection of the follow-up blood sample used in this 

study, as compared to 2 (0.8%) in the standard treatment group. While based on a small 

number of participants, we found that the 19 participants that experienced a ≥30% decline 

in eGFR had significantly larger increases for all of the biomarkers with the exception of 

Aβ42 / Aβ40 (Table S7). For example, the MCPY for Aβ40 was 30.0 pg/ml (95% CI: 19.8 to 

40.1) for participants who experienced a ≥30% decline in eGFR, as compared to a MCPY 

of 9.3 pg/ml (95% CI: 7.4 to 11.3) for participants that did not (between-group difference 

= 20.6 pg/ml, 95% CI: 10.3 to 30.9, p<0.001). Experiencing a 30% decline in eGFR was 

similarly associated with larger increases in NfL (between-group difference in MCPY = 2.2 

pg/ml, 95% CI: 0.9 to 2.4, 0.001). When we adjusted treatment group comparisons for both 

baseline and follow-up eGFR, the between-group difference for NfL was attenuated (Table 

2). In comparison, the effect on NfL was not attenuated when we analogously adjusted for 

either SBP or diastolic BP (Table 2).
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Figure 3 shows estimated mean differences between intensive and standard treatment on 

follow-up levels for each plasma biomarker as a function of baseline concentration. We did 

not observe evidence of statistical interactions with baseline levels for Aβ40, Aβ42, total tau, 

or NfL. While there was nominal evidence of heterogeneity with Aβ42 / Aβ40, estimates 

were consistent with a null effect of intensive treatment overall and were driven by a small 

number of participants with high values for Aβ42 / Aβ40. There were also no significant 

interactions in follow-up plasma concentrations as a function of baseline white matter lesion 

volume (Figure S3).

4. DISCUSSION

In this sub-study of a large randomized clinical trial, intensive SBP control resulted in 

greater increases in plasma NfL, which was attenuated by accounting for treatment-related 

changes in kidney function, as assessed by eGFR. There were not significant between-

group differences for longitudinal change in Aβ40, Aβ42, Aβ42 / Aβ40, and total tau. 

SPRINT [5] and other randomized trials [6,7] have shown that intensive SBP control 

reduces the progression of cerebral white matter lesions measured via MRI. These results 

add to other observations that intensive BP treatment is associated with larger changes, 

albeit small, for several non-specific measures of atrophy and neurodegeneration, including 

TBV [5], hippocampal volume [14], and now plasma NfL. However, because all of these 

results emanate from the smaller and non-representative MRI sub-study in SPRINT, the 

implications of these biomarker results for the differences in adjudicated cognitive status 

observed in SPRINT remains unclear [8]. Several explanations are possible, though the 

most likely are selection biases due to sampling for the MRI sub-study and/or random 

variation. The lack of effect of intensive treatment on beta-amyloid and total tau is 

challenging to interpret with respect to effects on AD pathology. While plasma Aβ42 / 

Aβ40 is a sensitive marker for amyloid positivity measured by either positron emission 

tomography or cerebrospinal fluid, inference is limited by the somewhat lower accuracy of 

the Simoa platform relative to mass spectrometry [29] as well as the absence of a measure of 

phosphorylated tau, which is more specific for AD tauopathy [31–33].

A somewhat unexpected aspect of our results was the strength of the association between 

the plasma biomarkers and kidney function. Previous cross-sectional studies have noted 

associations between serum creatinine and plasma amyloid and NfL [34–39]. However, to 

our knowledge, this is the first study to demonstrate changes in these biomarkers within 

the context of an intervention known to affect kidney function [19,20] and also slow the 

development of cognitive impairment [8]. Declines in eGFR occurred more frequently with 

intensive treatment, though this effect is thought to reflect acute hemodynamic effects with 

BP lowering, as it did not lead to increases in urinary kidney injury markers or kidney 

failure [19,20,40]. The majority of studies to date investigating the potential diagnostic 

utility of plasma and serum AD biomarkers have largely ignored kidney function [16–18]. 

Chronic kidney disease has a high prevalence in older adults, estimated to affect one in five 

adults 65 to 79 years and half of those 80 years or older in the United States [41], and 

is a known risk factor for mild cognitive impairment and dementia [42]. With movement 

towards the amyloid, tau, and neurodegeneration (AT[N]) research framework as part of 

diagnostic screening and future clinical trials [15], these findings suggest a need to clarify 

Pajewski et al. Page 7

Alzheimers Dement. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the diagnostic interpretation of plasma and serum biomarkers and dementia more broadly 

within the context of impaired kidney function as well as populations with generally normal 

cognitive function. Similar to the use of brain natriuretic peptide in the diagnosis of heart 

failure, appropriate clinical thresholds for dementia biomarkers may differ in the context of 

chronic kidney disease [43].

Another non-intuitive result was that none of the plasma biomarkers, after accounting for 

age and eGFR, were associated with neuropsychological test scores or structural brain MRI 

measures at baseline. One explanation is that cognitive heterogeneity at baseline was limited 

given that dementia was a specific exclusion criterion. Other cohorts primarily comprised 

of individuals with normal cognition have generally shown rather weak cross-sectional 

correlations between cognitive test scores, white matter lesions, and amyloid biomarkers 

[44,45]. In addition, weak cross-sectional associations would certainly be expected viewing 

the plasma biomarkers as risk factors for subsequent cognitive decline. Unfortunately, very 

few participants included in this sub-study were adjudicated with cognitive impairment 

during the course of follow-up, precluding meaningful analyses correlating the plasma 

biomarkers with subsequent changes in cognitive function.

This study has several additional limitations that should be considered. First, there are 

several differences between participants included in this sub-study versus the much larger 

group of trial participants that were not. As such, our results should be considered 

preliminary, with a future need to study plasma biomarkers related to AD and vascular 

contributors to dementia in a larger, more representative group of participants both in 

SPRINT and in other populations. Second, the population in SPRINT was free of diagnosed 

dementia at baseline, follow-up was limited to a median of roughly 4 years, and the intensive 

blood pressure intervention was stopped early, all of which may have limited power to detect 

differential changes in these biomarkers. Third, the prevalence of AD pathology, indicated 

by amyloid positivity, in this cohort was likely low at baseline (<10-15%) on the basis of 

plasma Aβ42/Aβ40 levels [18].

In summary, within a subgroup of SPRINT participants, intensive treatment did not lead to 

significant changes in several plasma biomarkers of AD and neurodegeneration. Intensive 

treatment did, however, lead to larger increases in NfL, but this effect was explained by 

changes in kidney function. Future studies of blood-based dementia biomarkers should 

consider kidney function and distinguish between elevated biomarker levels due to increased 

production versus reduced clearance, especially within the context of chronic kidney disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: The PubMed database was searched to review literature 

concerning the relationship between vascular mechanisms and Alzheimer’s 

disease pathology, and whether the treatment of hypertension influences 

biomarkers of Alzheimer’s disease and neurodegeneration.

2. Interpretation: Findings from a sub-study of a randomized trial indicate 

that intensive treatment of hypertension (target systolic blood pressure <120 

mm Hg), as compared to less aggressive treatment (<140 mm Hg), is 

not associated with changes in plasma biomarkers of plasma beta-amyloid 

and total tau. Intensive treatment was associated with greater increases in 

plasma neurofilament light chain, though this difference was attenuated after 

accounting for changes in kidney function.

3. Future directions: Future studies addressing the interpretation of blood-

based biomarkers should evaluate populations prior to the onset of 

symptomatic cognitive impairment, and examine the role that kidney function 

plays in circulating levels of these biomarkers.
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Figure 1. 
Baseline correlations between plasma biomarkers and age, vital signs, laboratory measures, 

cognitive test scores, and structural MRI measures

For age, values represent Spearman’s rank correlation for each biomarker. For all other 

variables, values represent a partial Spearman’s correlation adjusting for age (top panel), or 

adjusting for age and eGFR (bottom panel). BMI denotes body mass index, eGFR estimated 

glomerular filtration rate based on the CKD-EPI equation, HDL high density lipoprotein, 

UACR urine albumin to creatinine ratio, MoCA Montreal Cognitive Assessment, and 
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WML white matter lesion. The memory composite domain score consisted of scores from 

the HVLT-R immediate and delayed recall, the ROCFm immediate recall, and Logical 

Memory I and II; Processing speed included the TMT-Parts A and B and Digit Symbol 

Coding; Executive function included the TMT – Part B minus Part A and Digit Span; 

Language included the Boston Naming and Category Fluency; and global cognitive function 

consisted of all tests included in the above domain scores. *** denotes P value<0.001, ** P 

value<0.01, and * P value<0.05.

Pajewski et al. Page 15

Alzheimers Dement. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Change in plasma biomarkers comparing intensive treatment to standard treatment

Left panels display raw trajectories for each biomarker by participant as a function of 

baseline age. Dashed horizontal lines correspond to the y-axis limits for the right panel 

figures. Right panels display mean estimates from a robust linear mixed model with follow-

up values computed at 3.81 years since randomization.
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Figure 3. 
Association of intensive treatment versus standard treatment on follow-up plasma 

biomarkers as a function of baseline levels

Estimates based on linear model for follow-up plasma biomarker levels, adjusted for time 

since randomization, including an interaction between baseline levels and treatment group, 

with the effect of baseline levels modeled using cubic splines. Lines represent estimated 

treatment group difference at 3.81 years post-randomization (intensive treatment minus 

standard treatment) with associated 95% simultaneous confidence bands.
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Table 1.

Baseline characteristics of participants in the blood biomarker sub-study by treatment group

Characteristic
Intensive Treatment

N = 283
Standard Treatment

N = 234

Age, years, mean (SD) 69.8 (6.9) 69.9 (7.4)

 Age ≥ 75 years, No. (%) 82 (29.0) 65 (27.8)

Female sex, No. (%) 126 (44.5) 96 (41.0)

Race/Ethnicity, No. (%)

 White 192 (67.8) 152 (65.0)

 Black 81 (28.6) 65 (27.8)

 Hispanic 6 (2.1) 14 (6.0)

 Other 4 (1.4) 3 (1.3)

History of Cardiovascular Disease, No. (%) 42 (14.8) 37 (15.8)

Systolic Blood Pressure, mm Hg, mean (SD) 138.0 (17.6) 138.7 (15.9)

Diastolic Blood Pressure, mm Hg, mean (SD) 75.7 (10.5) 77.0 (12.3)

eGFR, ml/min/1.73 m2, mean (SD) 71.1 (19.0) 70.1 (18.0)

 eGFR<60 ml/min/1.73 m2 77 (27.9) 74 (32.0)

Urine Albumin to Creatinine Ratio, mg/g, median [IQR] 9.4 [5.3 to 21.3] 9.9 [6.2 to 20.4]

Use of Statin, No. (%) 125 (44.3) 109 (47.2)

Use of Aspirin, No. (%) 156 (55.1) 131 (56.0)

Montreal Cognitive Assessment, median [IQR]
a 24 [21 to 26] 24 [21 to 27]

Logical Memory II, median [IQR]
b 9 [6.5 to 12] 8 [6 to 11]

Digit Symbol Coding, median [IQR]
c 52 [43. to 60] 52 [41 to 62]

Total Brain Volume, cm3, mean (SD) 1124.7 (116.8) 1133.4 (114.4)

WML Volume, cm3, median [IQR] 3.6 [1.7 to 7.5] 3.9 [2.0 to 6.8]

Aβ40, pg/ml, median [IQR] 194.9 [133.9 to 277.5] 186.0 [123.1 to 267.5]

Aβ42, pg/ml, median [IQR] 21.0 [16.2 to 26.4] 21.6 [16.5 to 28.8]

Aβ42 / Aβ40, median [IQR] 0.10 [0.07 to 0.15] 0.10 [0.08 to 0.22]

Total Tau, pg/ml, median [IQR] 7.7 [6.3 to 9.3] 8.1 [6.1 to 9.7]

Neurofilament Light Chain, pg/ml, median [IQR] 13.7 [9.3 to 20.1] 14.9 [8.6 to 23.4]

eGFR denotes estimated glomerular filtration rate based on the CKD-EPI equation, IQR Interquartile Range, SD Standard Deviation, and WML 
White Matter Lesion.

Alzheimers Dement. Author manuscript; available in PMC 2023 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pajewski et al. Page 19

a
Scores range from 0 to 30, with higher scores denoting better cognitive function.

b
Subtest of the Wechsler Memory Scale. Scores range from 0 to 14, with higher scores denoting better cognitive function.

c
Subtest of the Wechsler Adult Intelligence Scale. Scores range from 0 to 135, with higher scores denoting higher cognitive function.
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