Skip to main content
. 2022 May 3;9:863141. doi: 10.3389/fmolb.2022.863141

TABLE 1.

Disorder–order classification using three wavelengths. a

Wavelength (nm) Error (%)
Cutoff (nm) Algorithm WL1 WL2 WL3 Ordered Disordered Global
175 SVM–RBF 182 194 209 0 0 0
Discr-quadratic 179 214 225 0.8 0 0.7
Tree-medium 192 220 228 0.8 0 0.7
180 KNN-fine 184 197 208 0.7 0 0.6
Discr-quadratic 197 216 221 1.3 0 1.1
SVM–RBF 195 217 227 2 0 1.7
Tree-simple 185 192 211 2 0 1.7
185 Tree-medium 191 201 250 1.3 2.7 1.6
SVM–RBF 195 217 227 2 2.4 2.1
Discr-quadratic 199 213 234 2 2.4 2.1
190 Tree-medium 191 201 250 1.9 5.6 2.8
SVM–RBF 196 216 229 2.4 5.1 3.1
Discr-quadratic 199 213 234 3.5 1.7 3.1
195 Discr-quadratic 199 213 234 3.5 2.9 3.3
SVM-linear 196 212 235 4.1 1.5 3.4
KNN-cosine 197 206 233 4.7 1.5 3.8
SVM–RBF 196 216 223 3.5 4.4 3.8
Discr-linear 195 219 237 3.5 4.5 3.8
200 KNN-cosine 212 217 225 4.7 1.5 3.8
SVM-linear 202 205 231 7.2 2.5 5.7
SVM–RBF 206 212 229 5 7.5 5.7
Discr-quadratic 201 211 215 6.6 3.8 5.7
KNN-fine 212 215 227 3.9 10 5.7
205 KNN-cosine 212 217 225 3.3 7.4 4.6
SVM–RBF 206 212 229 5 7.4 5.7
KNN-fine 212 215 227 3.9 9.9 5.7
a

Algorithms showing the least errors using three wavelengths (WL1, WL2, WL3) for classification as a function of the cutoff wavelength are presented. For training dataset, for a given wavelength triplet, all proteins’ spectra that covered those wavelengths were used.