TABLE 1.
Wavelength (nm) | Error (%) | ||||||
---|---|---|---|---|---|---|---|
Cutoff (nm) | Algorithm | WL1 | WL2 | WL3 | Ordered | Disordered | Global |
175 | SVM–RBF | 182 | 194 | 209 | 0 | 0 | 0 |
Discr-quadratic | 179 | 214 | 225 | 0.8 | 0 | 0.7 | |
Tree-medium | 192 | 220 | 228 | 0.8 | 0 | 0.7 | |
180 | KNN-fine | 184 | 197 | 208 | 0.7 | 0 | 0.6 |
Discr-quadratic | 197 | 216 | 221 | 1.3 | 0 | 1.1 | |
SVM–RBF | 195 | 217 | 227 | 2 | 0 | 1.7 | |
Tree-simple | 185 | 192 | 211 | 2 | 0 | 1.7 | |
185 | Tree-medium | 191 | 201 | 250 | 1.3 | 2.7 | 1.6 |
SVM–RBF | 195 | 217 | 227 | 2 | 2.4 | 2.1 | |
Discr-quadratic | 199 | 213 | 234 | 2 | 2.4 | 2.1 | |
190 | Tree-medium | 191 | 201 | 250 | 1.9 | 5.6 | 2.8 |
SVM–RBF | 196 | 216 | 229 | 2.4 | 5.1 | 3.1 | |
Discr-quadratic | 199 | 213 | 234 | 3.5 | 1.7 | 3.1 | |
195 | Discr-quadratic | 199 | 213 | 234 | 3.5 | 2.9 | 3.3 |
SVM-linear | 196 | 212 | 235 | 4.1 | 1.5 | 3.4 | |
KNN-cosine | 197 | 206 | 233 | 4.7 | 1.5 | 3.8 | |
SVM–RBF | 196 | 216 | 223 | 3.5 | 4.4 | 3.8 | |
Discr-linear | 195 | 219 | 237 | 3.5 | 4.5 | 3.8 | |
200 | KNN-cosine | 212 | 217 | 225 | 4.7 | 1.5 | 3.8 |
SVM-linear | 202 | 205 | 231 | 7.2 | 2.5 | 5.7 | |
SVM–RBF | 206 | 212 | 229 | 5 | 7.5 | 5.7 | |
Discr-quadratic | 201 | 211 | 215 | 6.6 | 3.8 | 5.7 | |
KNN-fine | 212 | 215 | 227 | 3.9 | 10 | 5.7 | |
205 | KNN-cosine | 212 | 217 | 225 | 3.3 | 7.4 | 4.6 |
SVM–RBF | 206 | 212 | 229 | 5 | 7.4 | 5.7 | |
KNN-fine | 212 | 215 | 227 | 3.9 | 9.9 | 5.7 |
Algorithms showing the least errors using three wavelengths (WL1, WL2, WL3) for classification as a function of the cutoff wavelength are presented. For training dataset, for a given wavelength triplet, all proteins’ spectra that covered those wavelengths were used.