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Abstract
We	 propose	 the	 Transmission	 of	 Virus	 in	 Carriages	 (TVC)	model,	 a	 computational	
model	which	simulates	the	potential	exposure	to	SARS-	CoV-	2	for	passengers	traveling	
in	a	subway	rail	system	train.	This	model	considers	exposure	through	three	different	
routes:	fomites	via	contact	with	contaminated	surfaces;	close-	range	exposure,	which	
accounts	for	aerosol	and	droplet	transmission	within	2	m	of	the	infectious	source;	and	
airborne	exposure	via	small	aerosols	which	does	not	rely	on	being	within	2	m	distance	
from	the	infectious	source.	Simulations	are	based	on	typical	subway	parameters	and	
the	aim	of	the	study	 is	to	consider	the	relative	effect	of	environmental	and	behav-
ioral	 factors	 including	prevalence	of	 the	virus	 in	 the	population,	number	of	people	
traveling,	ventilation	rate,	and	mask	wearing	as	well	as	the	effect	of	model	assump-
tions	such	as	emission	rates.	Results	simulate	generally	low	exposures	in	most	of	the	
scenarios	considered,	especially	under	low	virus	prevalence.	Social	distancing	through	
reduced	loading	and	high	mask-	wearing	adherence	is	predicted	to	have	a	noticeable	
effect	on	reducing	exposure	through	all	routes.	The	highest	predicted	doses	happen	
through	close-	range	exposure,	while	the	fomite	route	cannot	be	neglected;	exposure	
through	both	routes	relies	on	infrequent	events	involving	relatively	few	individuals.	
Simulated	 exposure	 through	 the	 airborne	 route	 is	more	 homogeneous	 across	 pas-
sengers,	but	is	generally	lower	due	to	the	typically	short	duration	of	the	trips,	mask	
wearing,	and	the	high	ventilation	rate	within	the	carriage.	The	infection	risk	resulting	
from	exposure	 is	challenging	to	estimate	as	 it	will	be	 influenced	by	factors	such	as	
virus variant and vaccination rates.

K E Y W O R D S
airborne,	close-	range,	fomite,	SARS-	CoV-	2	modeling,	subway,	subway	train	carriage

https://orcid.org/0000-0001-7010-476X
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:c.j.noakes@leeds.ac.uk


2 of 20  |     MILLER Et aL.

1  |  INTRODUC TION

The	COVID-	19	pandemic	has	caused	huge	economic	and	societal	im-
pacts	worldwide,	and	the	suppression	of	its	transmission	has	become	
a	globally	 sought	and	 increasingly	critical	goal	 as	many	healthcare	
systems	approach	capacity	and	capability	limits.	Understanding	the	
locations	where	 transmission	happens,	 the	 routes	of	 transmission,	
and	the	effectiveness	of	different	mitigation	measures	is	important	
for	enabling	safer	societal	interactions.	The	SARS-	CoV-	2	virus	is	re-
leased	in	droplets	and	aerosols	carrying	the	virus	during	respiratory	
activities	including	breathing,	talking,	and	coughing.	At	close-	range	
(<2	m)	exposure	to	the	full	size	distribution	of	aerosols	and	droplets	
through	inhalation	and	direct	deposition	onto	mucous	membranes	is	
likely.	Airborne	transmission	occurs	through	inhalation	of	small	aero-
sols	that	remain	suspended	in	the	air	over	distances	(>2	m).	Fomite	
transmission	 may	 also	 occur	 through	 contact	 with	 contaminated	
surfaces	and	subsequent	touching	of	mucous	membranes.	The	rela-
tive	contribution	of	these	different	routes	is	unknown,	however,	risk	
factors	that	have	been	identified	include	duration	of	time	spent	with	
infected	people,	close	proximity,	activities	that	may	generate	more	
aerosol,	and	enclosed	poorly	ventilated	environments.1

There	is	very	little	evidence	regarding	transmission	on	ground	
public	transport	or	for	conditions	that	pose	a	particular	risk.	In	ref.	
2	testing	and	contact	tracing	among	students	using	school	buses	in	
an	independent	school	in	Virginia	revealed	no	transmission	linked	
to	bus	transportation,	under	universal	masking	and	simple	ventila-
tion	techniques.	An	epidemiological	study	examining	long	distance	
rail	 journeys	 in	 China	 suggested	 transmission	 risk	 was	 greatest	
at	 close	 proximity,	 but	 this	may	 have	 been	 influenced	 by	 family	
groups traveling together.3	Two	outbreak	investigations	following	
long	duration	bus	journeys	in	China	concluded	that	aerosol	trans-
mission	was	a	likely	explanation,	although	acknowledged	that	fo-
mites	could	have	contributed	to	some	cases.4,5	Contemporaneous	
travel	by	family	groups	(and	so	effectively	extending	duration	and	
nature	of	within	household	mixing)	and	co-	workers	(effectively	in-
creasing	within	work	mixing)	may	cause	cross-	transmission	events	
where	 the	nature	of	 travel	 is	 incidental	 to	 the	event	 rather	 than	
causation.	 Such	events	 are	not	 explicitly	 considered	 in	our	work	
here.	Sampling	of	 surfaces	and	air	 in	buses	and	subway	 trains	 in	
Barcelona	found	small	 traces	of	SARS-	CoV-	2	RNA	(ie,	not	neces-
sarily	 the	 infectious	 virus)	 in	 30/82	 samples,	with	more	 positive	
samples	 from	 surfaces	 than	 the	 air	 and	 in	 buses	 compared	 to	
trains.6	However,	 studies	on	buses	 in	Abruzzo,	 Italy7,	 and	on	 the	
London	Underground8	 found	 no	 trace	 of	 viral	 RNA	 in	 the	 air	 or	
on	 surfaces.	 To	 date,	 there	 is	 no	 evidence	 that	 public	 transport	
is	a	major	driver	 for	 the	pandemic,	but	as	a	shared	enclosed	set-
ting	where	people	may	be	at	close	proximity	transmission	is	pos-
sible	 and	understanding	 the	 factors	 that	 influence	 the	 likelihood	
of	 transmission	 is	 important	 for	 introducing	and	managing	effec-
tive	mitigation	 strategies.	This	 is	particularly	 important	as	public	
transport	is	a	necessity	for	many	people,	and	it	can	be	an	environ-
ment	where	social	distancing	is	difficult	to	maintain,	particularly	in	
dense	urban	transport	systems.

Quantitative	Microbial	Risk	Assessment	(QMRA)	methodologies	
are	 one	 approach	 to	 being	 able	 to	 evaluate	 the	 potential	 factors	
that	 influence	 transmission.	 QMRA	 is	 a	 well-	established	method-
ology	 for	 assessing	 infection	 risks,	 using	 probabilistic	modeling	 to	
estimate	exposure	to	pathogens	through	particular	routes,	coupled	
with	 data	 on	 dose	 response	 to	 calculate	 risk.9	 Models	 are	 based	
upon	 the	physical	mechanisms	 for	 transmission	and	 therefore	can	
consider	 the	effect	of	environmental	and	behavioral	 interventions	
at	a	local	scale.	A	number	of	modeling	approaches	have	been	devel-
oped	recently	which	focus	on	airborne	transmission	for	SARS-	CoV-	
2.10-	14	Close-	range	 transmission	has	also	been	considered	 in	 some	
detail	 through	physics-	based	models,15-	17 although the application 
of	these	models	to	quantifying	transmission	risk	has	only	been	used	
in	a	small	number	of	cases.	The	transmission	potential	through	the	
fomite	 route	 has	 had	 less	 attention,	 but	 has	 been	 modeled	 for	 a	
number	of	pathogens	in	the	past,18-	21	and	these	methodologies	have	
been	 recently	 implemented	 for	 SARS-	CoV-	2.22	 However,	 few	 at-
tempts	have	been	made	to	account	for	all	transmission	routes	simul-
taneously	when	assessing	level	of	exposure	in	different	scenarios.23 
The	role	played	by	each	possible	transmission	route	is	likely	to	vary	
across	different	 environments,	 and	 few	QMRA	models	have	been	
developed	to	quantify	the	importance	of	the	different	transmission	
routes	in	these	different	settings.	One	SARS-	CoV-	2	example	is	the	
work	in	Azimi	et	al.24,	which	models	and	quantifies	COVID-	19	trans-
mission,	through	different	routes,	for	the	Diamond	Princess	cruise	
ship	outbreak	and	concludes	 that	aerosols	may	be	 responsible	 for	

PRACTICAL IMPLICATIONS

•	 The	prevalence	of	infection	in	the	passenger	community	
is	predicted	to	have	a	strong	impact	on	total	exposure	
for	 passengers;	 therefore,	 strategies	 to	 minimize	 the	
chance	 of	 infectious	 passengers	 traveling	 are	 likely	 to	
have	a	significant	impact	on	overall	infection	risk	for	the	
passenger population.

•	 The	relatively	large	importance	of	the	close-	range	route	
suggests	 that	 strategies	 to	 facilitate	 lower	 passenger	
density	 could	have	a	 significant	positive	 impact	on	 in-
fection	 risk	particularly	during	 times	when	community	
prevalence	of	disease	is	high.

•	 Mask-	wearing	 impacts	 on	 all	 transmission	 routes	 and	
therefore	strategies	to	enable	high	mask-	wearing	com-
pliance	are	predicted	to	have	a	noticeable	impact	on	the	
total	dose	received	by	passengers	during	their	trip.

•	 It	 is	 likely	 that	strategies	 to	 facilitate	hand	hygiene	for	
passengers	soon	after	touching	high-	touch	surfaces	will	
be	the	most	effective	approach	to	decreasing	exposure	
through	the	fomite	route.

•	 High	air	change	rates	combined	with	short	journey	times	
and	 use	 of	 masks	 reduce	 the	 probability	 of	 exposure	
through	airborne	routes.
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50%	of	the	transmission.	The	work	in	ref.	25	follows	a	similar	multi-	
route	QMRA-	based	modeling	approach	when	studying	SARS-	CoV-	2	
transmission	mechanisms	in	a	healthcare	setting	and	suggests	inha-
lation	(close	range	and	far	field)	is	the	dominant	exposure	route.	A	
small	number	of	studies	have	also	applied	multi-	route	QMRA	models	
to	 other	 respiratory	 pathogens	 including26	who	 consider	 the	 rela-
tive	 importance	of	transmission	routes	for	 influenza,27	who	model	
influenza,	 norovirus,	 and	 SARS	 transmission	 on	 an	 aircraft,28	who	
consider	 long-	range	airborne	and	fomite	transmission	 in	a	hospital	
outbreak	of	SARS-	CoV-	1,	and29	who	models	a	hospital	outbreak	of	
MERS-	CoV	in	Korea.	The	later	two	models	all	focus	on	real	outbreak	
settings	and	demonstrate	the	potential	for	both	airborne	and	fomite	
transmission	to	be	important.

In	this	work,	our	interest	is	in	developing	a	QMRA-	based	method-
ology	to	evaluate	exposure	to	SARS-	CoV-	2	through	different	routes	
in	a	public	transport	scenario.	Although	our	results	here	focus	on	a	
subway	carriage,	our	methodology	is	partially	based	on	the	work	in	
ref.	27	which	was	designed	for	an	aircraft	cabin	and	is	general	enough	
to	be	adapted	to	other	public	transport	scenarios	such	as	a	bus	or	a	
train.	This	Transmission	of	Virus	in	Carriages	(TVC)	model	estimates	
exposure	 to	SARS-	CoV-	2	 for	passengers	 traveling	within	 a	 carriage	
over	a	 single	 journey	and	allows	one	 to	carry	out	a	comprehensive	
sensitivity	analysis	on	key	parameters.	The	main	aim	of	our	study	is	to	
consider	the	relative	importance	of	different	factors	which	the	trans-
port	company	controls	(ventilation,	passenger	density),	and	individual	
controls	 (mask	wearing	and	hand	hygiene),	and	national	policy	con-
trols	(prevalence).	In	particular,	we	evaluate	the	impact	of	infectious	
disease	prevalence	among	passengers,	 system	 loading	 levels,	mask-	
wearing	compliance,	and	ventilation	on	the	total	predicted	exposure	
for	passengers.	In	adapting	the	original	model	by	Lei	et	al.,27	we	have	
developed	a	number	of	new	aspects	including	an	approach	to	model	
the	transient	journeys	with	realistic	boarding	and	alighting	behavior	
seen	on	subway	systems,	the	attribution	of	proximal	passengers	ac-
cording	 to	 area	 available	 rather	 than	 fixed	 locations	 to	 account	 for	
standing	on	subway	services,	the	use	of	a	range	of	different	droplet	
models	and	the	application	of	SAR-	CoV-	2	specific	parameters.

In	Section	2,	we	present	the	main	assumptions	behind	the	TVC	
model,	 outlining	 the	 way	 in	 which	 we	 model	 the	 three	 different	
transmission	 routes	 (fomite,	close-	range,	and	 long-	range	airborne),	
and	 how	 the	 journeys	 of	 individual	 passengers	 are	 simulated.	 In	
Section	3,	we	carry	out	a	comprehensive	sensitivity	analysis	on	key	
parameters,	reporting	our	findings	on	the	contribution	of	each	trans-
mission	route,	and	the	impact	of	mitigation.	Finally,	a	discussion	fol-
lows	in	Section	4.

2  |  METHODOLOGY

The	TVC	model	is	based	on	the	stochastic	risk	model	of	Lei	et	al.,27 
which	was	originally	developed	to	quantify	the	infection	risk	(by	the	
three	 different	 transmission	 routes)	 for	 passengers	 in	 an	 aircraft	
cabin,	 for	 influenza	 A	 H1N1,	 SARS-	CoV-	1,	 and	 norovirus.	 In	 the	
TVC	model,	 the	exposure	of	passengers	to	SARS-	CoV-	2	 in	a	given	

carriage	within	an	underground	system	is	estimated	by	considering	
a	number	of	characteristics	of	this	carriage,	such	as	its	internal	vol-
ume,	surface	area,	and	air	change	rate.

Passengers	in	the	TVC	model	are	individual	entities	(agents)	that	
can	board	or	alight	the	carriage	at	any	station.	Their	boarding	and	
alighting	behaviors	are	based	upon	typical	traveling	patterns	derived	
from	 historical	 London	 Underground	 data,	 as	 briefly	 described	 in	
Subsection	2.1.	Exposure	to	SARS-	CoV-	2	for	susceptible	passengers	
occurs	due	 to	 infectious	passengers	 traveling	on	 the	 carriage,	 de-
pending	on	the	prevalence	parameter,	�,	which	is	the	percentage	of	
passengers	traveling	who	are	infectious.	Infectious	passengers	have	
a	fixed	viral	 load	�,	and	exhale	droplets/aerosols	of	different	sizes	
according	to	a	droplet	model.	A	number	of	existing	exhaled	droplet	
models	have	been	considered	in	the	TVC	model	and	are	explored	in	
our	results	in	Section	3:	the	BLO	model,30	the	Duguid	model,31 and 
the	Loudon	&	Roberts	(L&R)	model,32,33	accounting	for	different	re-
spiratory	behaviors	of	the	infectious	passenger	(breathing,	speaking,	
and	coughing);	see	the	Supplementary	Material	for	details.

The	TVC	model	accounts	 for	 three	 routes	of	 transmission:	 the	
fomite,	the	close-	range,	and	the	long-	range	airborne	routes.	Fomite	
transmission	can	occur	 through	contact	with	 (potentially	 contami-
nated)	surfaces	representative	of	those	easily	contactable	within	a	
subway	train	carriage	(primarily	handrails	and	seat	rests)	during	the	
boarding	and	alighting	process.	Once	in	the	carriage,	the	precise	po-
sition	of	 each	 individual	 is	 not	 explicitly	 tracked,	 to	 reduce	model	
complexity,	but	the	likely	distance	of	each	passenger	(within	1	m,	1	m	
to	2	m,	or	beyond	2	m)	to	an	infectious	passenger	(if	present)	is	esti-
mated	based	on	passenger	density	at	any	given	time;	specific	details	
about	this	can	be	found	in	the	Supplementary	Material.	Close-	range	
transmission	occurs	for	passengers	within	2	m	of	an	infectious	pas-
senger.27	On	the	other	hand,	contamination	of	the	air	by	small	aero-
sols	due	to	an	infectious	passenger	acting	as	a	source	is	assumed	to	
be	homogeneous	across	the	carriage	(well-	mixed	space),	except	for	
the	closest	area	to	an	infectious	passenger,	where	passengers	within	
1	m	receive	four	times	as	much	small	aerosol	exposure.27,34	The	TVC	
model	estimates	exposure	during	passengers’	trips	on	the	carriage	
itself,	and	not	elsewhere	(eg,	we	do	not	model	exposure	in	the	sta-
tion).	A	brief	summary	of	these	assumptions	is	given	in	Figure	1.

2.1  |  Carriages and traveling patterns

The	TVC	model	assumes	a	carriage	with	 internal	volume	53.2	m3 
and	 a	 height	 2.148	 m;	 a	 comprehensive	 list	 of	 parameter	 val-
ues	within	 the	TVC	model,	and	 their	 source,	can	be	 found	 in	 the	
Supplementary	Material.	The	passenger	boarding	and	alighting	be-
haviors	have	been	generated	by	using	an	existing	in-	house	agent-	
based	 computational	 model	 that	 simulates	 individuals’	 journeys	
between	stations.	Agents	traverse	the	1D	tunnel	network	by	fol-
lowing	directions	to	their	assigned	waypoints	in	sequence.	Agents	
will	board	and	alight	train	carriages,	assuming	there	is	space	avail-
able,	when	located	at	platforms	to	continue	their	journey.	As	well	
as	 station	entrances,	 agents	may	start	 and	end	 their	 journeys	on	
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adjoining	 line	 trains.	Waypoint	 input	data	 for	 the	model	 is	based	
on	agglomerated	historical	London	Underground	data	 from	2015	
for	 passenger	 boarding	 and	 alighting	behavior	 between	8am	and	
10am	on	 a	weekday.	This	 aims	 to	 represent	 realistic	 loading	pat-
terns	over	the	course	of	a	journey	rather	than	simulate	exact	travel	
patterns.	In	this	computational	model,	824	different	carriage	jour-
neys	were	generated	(NB	408,	SB	416)	which	traverse	the	entirety	
of	a	subway	line	that	passes	from	suburb	to	suburb	via	a	city	center.	
Variability	within	these	carriages	includes	variability	in	both	depar-
ture	time	and	the	carriage's	specific	location	within	the	train	(trains	

comprise	several	carriages	with	different	seating	and	floor	areas,	as	
well	as	location	within	the	train).

Instead	 of	 considering	 different	 carriage	 journeys	 as	 a	 stochas-
tic	element	in	the	TVC	model,	which	would	be	computationally	pro-
hibitive,	 a	 single	 carriage	was	 selected,	 to	 represent	 an	 average	 or	
representative	behavior,	 for	our	numerical	 results	 in	Section	3.	This	
representative	carriage,35	is	depicted	as	a	solid	black	line	in	Figure	2.	
We	plot	 in	Figure	2	the	visual	 inspection	of	 the	route	against	stops	
traveled,	highlighting	as	a	black	solid	line	the	selected	carriage	used	in	
the	model.	A	system	loading	percentage	parameter	�	is	varied	between	

F I G U R E  1 Overview	of	SARS-	CoV-	2	
exposure	routes	for	any	passenger	in	
the	TVC	model.	See	the	Supplementary	
Material	for	considerations	on	the	size	
and	evaporation	of	respiratory	droplets.	
Dose	via	small	aerosols	due	to	background	
contamination	levels	on	the	carriage	(i.e.,	
from	the	well-	mixed	single	zone	model,	
not	related	to	distance)	are	considered	
within	the	airborne	route,	while	the	
additional	contribution	in	small	aerosol	
dose	due	to	proximity	is	considered	
within	the	close-	range	route,	since	it	is	
dependent on distance

F I G U R E  2 Plots	show	carriage	occupancy	against	station	for	system	loading	percentages	of	� ∈ {10% , 40% , 50% , 70% , 100%}.	Each	
line	represents	a	carriage	on	a	single	southbound	journey	between	stations	A	and	O	with	the	black	line	indicating	the	selected	carriage	
used	in	the	model.	Passenger	numbers	traveling	for	each	loading	percentage,	during	a	single	journey	of	the	representative	carriage,	are	28	
(10%),	77	(40%),	112	(50%),	132	(70%),	and	176	(100%).	Light	colors	indicate	trips	earlier	in	time.	We	observe	that	the	selected	carriage	is	
representative	of	the	SB	carriages	as	a	whole
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10%	and	100%,	where	100%	represents	2015	patronage	levels.	The	
total	number	of	simulated	passengers	per	model	run	is	included	in	the	
caption	for	Figure	2	for	each	system	loading	value.	This	total	number	
of	passengers	per	carriage	journey	is	not	equal	to	the	carriage	occu-
pancy	at	any	given	time	and	does	not	scale	directly	with	the	system	
loading	because	 carriage	 loading	patterns	 are	 influenced	by	 system	
effects	 and	 the	 selection	 of	 representative	 carriages.	 The	 process	
used	to	select	representative	carriage	boarding	and	alighting	patterns	
is	detailed	in	the	Supplementary	Material.	It	can	be	seen	that	the	rep-
resentative	values	fall	in	the	center	of	the	range	of	occupancy	values	
and	do	not	reach	maximum	carriage	capacity	values.	As	highlighted	in	
Figure	2,	peak	carriage	occupancy	for	some	carriages	can	be	double	
the	representative	carriage	occupancy	considered	in	the	model.	The	
loading	percentage	parameter	is	then	used	to	scale	down	the	number	
of	passengers	within	any	given	route	to	represent	a	reduction	in	public	
transport	usage	with	respect	to	pre-	pandemic	levels.	This	parameter	is	
varied	in	the	numerical	results	in	Section	3,	to	analyze	the	impact	that	
it	can	have	on	our	estimates	for	SARS-	CoV-	2	exposure.

2.2  |  Fomite route

The	fomite	route	consists	of	dose	contributions	due	to	hand-	surface	
and	hand-	mucosal	membranes	contacts.	Surfaces	considered	within	
the	 carriage	 are	 selected	 as	 those	 easily	 contactable	 by	 passen-
gers.35	 In	particular,	NT = 114	non-	porous	surfaces	are	considered	
which	account	for	grab	poles,	door	handles,	horizontal	railings,	and	
chair	hand	rests;	 see	Table	2	 in	 the	Supplementary	Material.	Each	
passenger	touches	a	fixed	number	of	randomly	selected	surfaces	per	
journey,	one	set	of	NHS	(number	of	hand	to	surface	touches)	surfaces	
on	boarding	and	another	set	of	NHS	surfaces	on	alighting.	The	prob-
ability	of	touching	each	surface	is	assumed	identical,	and	the	model	
does	not	allocate	surfaces	to	particular	areas	of	the	carriage,	to	re-
flect	that	passengers	have	a	large	degree	of	freedom	over	which	sur-
faces	they	touch	when	traversing	the	carriage.	Surfaces	are	assumed	
to	be	clean	(not	contaminated)	at	the	beginning	of	the	carriage	trip	
and	no	cleaning	during	the	trip	is	included	within	the	model.	Hands	of	
infectious	individuals	are	assumed	to	be	contaminated	when	board-
ing	 the	 carriage	 (see	 Table	 2	within	 the	 Supplementary	Material),	
while	susceptible	passengers	are	assumed	to	board	the	carriage	with	
clean	hands,	and	only	the	dominant	hand	for	each	passenger	is	mod-
eled	to	estimate	the	fomite	exposure.21,27,36

Every	 time	 a	 passenger	 touches	 a	 surface,	 the	 concentrations	
on	the	passenger's	hand,	CH	(measured	in	virus	plaque-	forming	units	
per	square	meter,	PFU ⋅m−2),	and	on	the	corresponding	surface,	CS 
[PFU ⋅m−2],	are	updated	as	follows18,19

where	CH0 and CS0	 refer	to	the	concentrations	 just	before	the	touch	
occurs. AHS [m2]	is	the	area	of	the	hand-	surface	contact,	AP [m2] is the 
area	of	the	palm,	�HS and �SH	[–	]	are	the	transfer	efficiencies	(from	hand	

to	surface	and	from	surface	to	hand,	respectively)	during	the	surface-	
hand	 contact,	 and	AS [m2]	 is	 the	 area	of	 the	 surface.	 The	equations	
above	assume	that	contamination	on	hands	and	surfaces	becomes	spa-
tially	homogeneously	distributed	immediately	after	each	contact.18,19 
During	each	simulation,	the	individual	concentrations	on	the	surfaces,	
and	passenger's	hand,	are	updated	after	each	hand-	surface	contact.

As	well	as	transfer	of	virus	via	passengers	touching	surfaces,	the	
concentration	on	hands	and	surfaces	is	modeled	to	change	through	
viral	inactivation	and	through	loading	due	to	the	respiratory	behav-
ior	 of	 infectious	 passengers	 (breathing,	 speaking,	 or	 coughing,	 as	
described	in	the	Supplementary	Material).	Loading	and	viral	inacti-
vation	on	surfaces	and	hands	occur	within	the	TVC	model	after	the	
set	of	hand-	surface	contacts	happen	at	any	station	during	passen-
gers	alighting	and	boarding,	and	 immediately	after	 the	 train	starts	
moving	to	the	next	station.	This	is	modeled	by	means	of	the	follow-
ing	differential	equation:

where	C	 is	 the	concentration	 (on	the	hand	or	surface)	 [PFU ⋅m−2],	Ω 
is the source strength [PFU ⋅m−2

⋅ s−1]	(which	depends	on	the	droplet	
model	considered,	as	described	 in	 the	Supplementary	Material),	and	
� is the loss through inactivation [s−1].	For	𝛿 > 0,	this	equation	has	the	
solution

for	a	given	initial	concentration	C0 = C (0).	The	surface	concentration	
source	term,	which	we	can	denote	by	ΩS,	is	given	by

where	Np	is	the	number	of	passengers	for	whom	the	surface	is	the	last	
one	touched	during	boarding	[-	],	Aproj	is	the	projected	area	of	the	sur-
face	[m2],	and	Adepo	 is	the	plane	of	the	horizontal	and	vertical	spread	
of	the	exhaled	droplets	0.5	m	from	the	infectious	passenger	[m2]. The 
specific	location	of	infectors	within	the	carriage	is	not	tracked.	Thus,	
we	assume	in	the	equation	above	that	the	last	surface	they	touch	is	
the	 one	 being	 contaminated	 by	 their	 respiratory	 behavior	 during	
that	 particular	 journey	 section,	 indicating	 that	 they	 stay	 in	 close	
proximity	 to	this	 last	surface.	 In	 the	equation	above,	we	sum	across	
all j = 1,…,M	droplet	sizes	of	the	 infectious	passenger’s	close-	range	
source	term	Ωj [PFU ⋅ s−1],	which	depends	on	the	considered	droplet	
model	and	their	assumed	respiratory	behavior,	as	described	in	detail	
in	 the	Supplementary	Material.	We	note	 that	 the	equation	above	 is	
based	on	the	assumption	that	virus	exhaled	by	infectors	are	uniformly	
distributed	on	the	plane	of	the	horizontal	and	vertical	spread	of	the	ex-
haled	droplets	0.5	m	from	the	infectious	passenger.	Similarly,	the	hand	
source	term	ΩH [PFU ⋅m−2

⋅ s−1]	is	given	by

CH = CH0 +
AHS

AP

(
�SH ⋅ CS0 − �HS ⋅ CH0

)
,CS = CS0 +

AHS

AS

(
�HS ⋅ CH0 − �SH ⋅ CS0

)
,

dC

dt
= Ω − �C,

C (t) =
Ω

�
+

(
C0 −

Ω

�

)
e−�t , t ≥ 0,

ΩS = Np ⋅

Aproj

Adepo

⋅

∑M

j=1
Ωj

AS

,

ΩH =

∑M

j=1
Ωj

AP

.
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In	each	simulation	of	the	model,	and	for	a	given	length	of	time,	
Δt [s],	 the	hand	and	surface	concentrations	are	therefore	adjusted	
according	to	the	expressions

where	�H and �S	are	the	hand	and	surface	viral	inactivation	rates,	re-
spectively.	While	 breathing	 and	 speaking	 respiratory	behaviors	may	
lead	 to	 contamination	both	on	hands	 and	 surfaces,	we	assume	 that	
infectious	 passengers	would	 cough	 onto	 their	 hands,	 and	 therefore	
consider ΩS = 0	for	coughing	in	our	numerical	results	in	Section	3.

Once	the	concentration	on	hands	has	been	quantified	for	pas-
sengers	during	their	journey,	we	can	estimate	their	fomite	dose.	In	
particular,	 we	 assume	 that	 passengers	 touch	 their	 mucosal	 mem-
branes	at	a	rate	�m [s−1].	For	a	fixed	number	NHM	of	hand	contacts	to	
the	mucosal	membranes,	the	dose	can	be	calculated	as

where	�HM	 [–	]	 is	 the	transfer	efficiency	from	hand	to	mucosal	mem-
brane,	AHM [m2]	 is	 the	 area	of	 the	hand-	mucosal	membrane	 contact	
area,	and	CH (j) [PFU ⋅m−2] represents the concentration on the hand 
after	 j	 touches.	We	note	 that	 the	concentration	on	 the	hands	after	
NHM	touches	is	governed	by	the	initial	concentration,	the	amount	trans-
ferred	 to	 the	membranes	 and	 the	 amount	 that	 has	 decayed	 on	 the	
hands,	which	is	governed	by	the	hand	viral	inactivation	rate	�H.	When	
estimating	the	fomite	dose,	we	assume	that	passengers	do	not	touch	
their	 mucosal	 membranes	 during	 their	 journeys,	 but	 that	 they	 will	
touch	them	after	alighting	for	an	amount	of	time	Ta [s].	This	assumption	
represents	social	pressure	expected	to	dissuade	face-	touching	during	
the	journey,	and	since	in	our	simulations	in	Section	3,	a	sub-	set	of	pas-
sengers	may	be	wearing	masks.	After	alighting,	it	is	likely	that	passen-
gers	will	remove	their	masks	if	allowed	and	be	able	to	touch	their	faces.	
The	time	available	for	transfer	via	hand-	mucosal	membranes	contacts	
would	depend	 in	practice	on	how	long	the	passenger	takes	to	clean	
their	hands,	which	relates	here	to	the	parameter	Ta.

In	practice,	and	for	a	given	rate	�m [s−1]	of	membrane	touches,	the	
fomite	dose	above	is	computed	by	updating	the	hand	and	mucosal	
membrane	 concentrations	 after	 each	 touch	 of	 the	mucosal	mem-
branes	by	means	of	sequentially	implementing	the	following	steps:

and	where	the	total	number	NHM	of	mucosal	touches	after	alighting	is	
estimated	by	multiplying	the	time	after	alighting	parameter	Ta	by	the	
touches	per	second	parameter	�m	and	rounding	down.	We	note	that	�−1m  
[s]	represents	the	average	time	between	membrane	touches.

2.3  |  Long- range airborne route

Passengers	 sharing	 the	 carriage	 with	 an	 infected	 person	 are	 as-
sumed	to	be	exposed	to	virus	through	a	long-	range	airborne	route	
due	to	aerosols	less	than	5	μm	(dried)	in	diameter;	the	initial	diameter	
is	assumed	to	be	up	to	20	μm	with	evaporation	to	25%	based	on.33 
This	 is	modeled	here	 through	a	state-	space	 implementation37	of	a	
single	zone	model,	assuming	the	air	in	the	carriage	is	fully	mixed.	The	
concentration	of	virus	in	the	air	within	the	carriage	volume	V	at	time	
t + Δt	is	given	by	[Parker	et	al.37,	Eq.	(20)]

where	u [PFU ⋅ s−1]	 is	 a	 source	of	 virus	 (from	 infectious	passengers),	
CLR (t)	 is	 the	 airborne	 concentration	 in	 the	 carriage	 at	 time	 t and 
R =

rv

V
+ ri + rd [s−1]	is	the	combination	of	all	removal	rates:	ventilation	

(rv),	viral	inactivation	(ri),	and	deposition	(rd),	where	rv	is	the	fresh	flow	
rate and V	is	the	volume.	The	long-	range	airborne	exposure	during	the	
time	period	Δt,	ELR (t, t + Δt) [PFU ⋅m−3

⋅ s],	 is	 then	modeled	as	 [Ref.	
37,	Eq.	(23)]

We	 note	 that,	 once	 an	 exposure	 is	 calculated	 for	 any	 time	
t,	 the	 corresponding	 inhaled	 dose	 up	 to	 time	 t	 is	 given	 by	
DLR (t) = ELR (0, t) ⋅ BR ⋅ RF,	where	BR [m3

⋅ s−1]	is	the	breathing	rate	of	
the passenger and RF	[–	]	is	the	retained	fraction	of	virus	that	deposits	
in	the	respiratory	tract	and	assumed	to	be	different	between	small	
aerosols	 and	 large	 droplets.	 The	 airborne	dose	 for	 each	passenger	
is	 calculated	upon	 arrival	 at	 every	 station,	 and	before	 the	 carriage	
viral	airborne	concentration	is	updated	for	the	next	segment	of	the	
carriage	journey.	The	source	term	u	is	calculated	by	summing	up	the	
individual	 sources	 corresponding	 to	 each	 infectious	 passenger	 on	
that	segment	of	the	trip.	We	note	that	the	dose	obtained	by	direct	
deposition	of	small	aerosols	onto	mucosal	membranes	 is	also	com-
puted,	by	multiplying	the	exposure	by	the	deposition	rate,	 the	car-
riage	volume,	and	by	the	ratio	between	the	mucosal	membranes	area	
with	respect	to	the	total	available	deposition	area.	However,	as	the	
area	of	each	passengers,	mucosal	membranes	are	relatively	small	to	
the	total	surface	area	within	the	carriage,	and	the	deposition	rate	is	
also	small,	the	dose	by	direct	small	aerosol	deposition	ends	up	being	

<0.1%	of	the	total	small	droplet	dose,	where	most	of	the	contribution	
is	from	inhalation.

2.4  |  Close- range route

In	 order	 to	 estimate	 the	 close-	range	 (<2	m)	 dose	 that	 passengers	
receive	by	being	 in	close	proximity	 to	an	 infectious	passenger,	we	

CH =
ΩH

�H
+

(
CH0 −

ΩH

�H

)
e−�H ⋅Δt , CS =

ΩS

�S
+

(
CS0 −

ΩS

�S

)
e−�S ⋅Δt ,

D
(
NHM

)
=

NHM−1∑
j=0

AHM ⋅ �HM ⋅ CH (j) ,

CH ← CH ⋅ e
−

�H

�m }viral decay on hands between hand - mucosal membranes contacts

CM←CM+CH ⋅�HM ⋅

AHM

AM

CH←CH

�
1−�HM ⋅

AHM

AP

�
⎫⎪⎬⎪⎭
viral transfer during hand - mucosa contacts

CLR (t + Δt) = CLR (t) e
−R⋅Δt +

(
1 − e−R⋅Δt

) u

V ⋅ R
,

ELR (t, t + Δt) =

(
1 − e−R⋅Δt

) (
V ⋅ CLR (t) −

u

R

)
+ Δt ⋅ u

V ⋅ R
.
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follow	here	the	approach	in	Lei	et	al.27	In	particular,	this	dose	is	de-
composed	into:

(i)	 A	factor	4	increase	(with	respect	to	that	predicted	in	Subsection	
2.3)	 in	 the	 exposure	 the	 passenger	 receives	 due	 to	 inhalation	
of	 small	 aerosols	 (for	 passengers	 within	 1	m	 only),	 see	 ref.	 27,	
Eq.	 (1)]	 and	 Figure	 1.	 The	 assumption	 is	 that	 the	 number	 of	
small	droplets	per	unit	volume	is	approximately	uniform	outside	
of	 1	 m	 ,	 but	 increases	 linearly	 inside	 of	 1	 m	 with	 decreas-
ing	 distance	 to	 the	 infectious	 passenger.	 In	 our	 computations,	
passengers	 within	 1	 m	 are	 assumed	 to	 be	 at	 a	 representative	
distance	 of	 0.5	 m	 away	 from	 the	 infectious	 passenger.

(ii)	 Dose	 received	as	 a	 result	of	direct	deposition	of	 large	droplets	
directly	onto	mucosal	membranes.

(iii)	Exposure	 to	 an	 additional	 airborne	 concentration	via	 inhalation	
occurring	from	 large	aerosols	 initial	diameter	>20 μm	that	 typi-
cally	deposit	by	2	m	from	the	source.

The	dose	contribution	in	(i)	above	can	be	directly	computed	by	
scaling	 the	 long-	range	airborne	dose	 computed	 in	Subsection	2.3,	
just	 for	 passengers	 within	 1	 m	 of	 an	 infectious	 passenger	 at	 any	
given	time	during	their	trips.	For	the	additional	dose	related	to	large	
droplets	 (contributions	 (ii)	 and	 (iii)),	 and	 for	 each	 droplet	 size	 (see	
the	Supplementary	Material),	the	TVC	model	calculates	the	related	
airborne	 concentration	 around	 each	 infectious	 passenger	 as	 the	
train	 moves	 through	 the	 journey	 using	 the	 state-	space	 approach	
in	 Subsection	2.3,	 but	 using	 the	 vertical	 cylindrical	 volume	within	
2	m	 of	 the	 infectious	 passenger	 as	 the	 zone	 volume.	 In	 addition,	
for	 a	 given	 droplet	 size	 j = 1,…,M,	kd ⋅

(
d

2

)2

 [s−1] is its deposition 
rate	 (d	 being	 the	dried	droplet	diameter	 [m] and kd	 the	 coefficient	
of	particle	deposition	[s−1 ⋅m−2])	and	the	source	term	is	specific	to	
the	large	droplet	diameter,	following	the	approach	in	ref.	27.	Then,	
for	a	given	exposure	Ed (t) [PFU ⋅m−3

⋅ s]	due	to	deposition	of	 large	
droplets	 of	 diameter	 d,	 the	 corresponding	 dose	 is	 calculated	 as	
Ed (t) ⋅ kd ⋅

(
d

2

)2

⋅ V2m ⋅

AM

A2m

.	Here,	V2m	 is	 the	volume	of	 the	carriage	
within	2	m	of	the	infectious	passenger,	and	A2m	 is	the	surface	area	
within	 2	 m	 of	 the	 infectious	 passenger;	 see	 the	 Supplementary	
Material	for	further	information.

2.5  |  Default parameter values and assumptions

Table	1	shows	a	list	of	default	key	parameter	values	used	within	all	
current	simulations	unless	otherwise	specified	in	figure	captions.	A	
comprehensive	list	of	all	the	parameter	values	considered	within	the	
TVC	model	is	provided	in	Table	2	within	the	Supplementary	Material.	
All	passengers	and	trips	are	considered	within	the	results,	including	
those	where	 no	 infectious	 passenger	was	 present	 in	 the	 carriage.	
Dose	values	are	given	in	number	of	virus	plaque-	forming	units	(PFU)	
for	a	specific	 infectious	viral	 load	 (� = 3.61 × 1012PFU ⋅m−3 in res-
piratory	fluid	refs.	38,39),	and	we	also	 include	all	 fractional	values	
since	these	would	correspond	to	multiple	viruses	for	a	higher	viral	
load.	As	we	describe	in	Subsection	3.5,	the	source	droplet	model	has	 TA
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a	significant	effect	on	the	absolute	dose	received,	where	Duguid31 
and	Loudon	&	Roberts	 (L&R)32,33	models	typically	predict	a	higher	
value	than	the	BLO	model.30	Hence,	when	interpreting	these	results	
we	focus	on	qualitative	trends	and	relative	behaviors	rather	than	re-
ferring	to	specific	absolute	numbers	of	virions.	As	a	dose-	response	
curve	 for	SARS-	CoV-	2	 is	not	available	 for	 inoculation	via	different	
means,	we	will	focus	on	analyzing	received	doses	rather	than	infec-
tion	 probabilities.	 However,	 we	 do	 discuss	 in	 Section	 4	 how	 one	
could	 estimate	 risk	of	 infection	using	 a	dose-	response	 curve	 such	
as	that	for	HCoV-	229E,40	if	doses	from	the	fomite,	close-	range,	and	
long-	range	 airborne	 routes	 could	 be	 simply	 summed	when	 imple-
menting	the	dose-	response	function.

3  |  RESULTS

Our	results	first	look	at	overall	exposure	predictions	based	on	default	
parameter	values	listed	in	Table	1,	and	then,	we	look	at	the	effect	of	
changing	particular	 parameter	 values	on	 these	predictions.	 For	 all	
boxplots	presented	in	this	Section,	the	central	line	shows	the	median	
value	while	 the	box	 represents	 the	 interquartile	 range	 and	whisk-
ers	show	1.5x	interquartile	range,	while	points	show	outliers	either	
side	of	this	value.	Triangles	show	mean	values.	Doses	equal	to	zero	
are set to 10– 16	for	the	purpose	of	constructing	the	boxplots,	falling	
below	the	limits	of	the	vertical	scale.	Figure	3	represents	the	total	
dose	received	by	passengers	split	by	route	of	inoculation	(airborne,	
close-	range,	and	fomite)	in	the	form	of	boxplots	(Figure	3A)	as	well	as	
a	heatmap	(Figure	3B)	of	time	on-	board	vs	dose	received,	based	on	
default	parameter	settings	(1%	prevalence,	75%	mask	wearing,	50%	
loading,	127	ACh−1	and	using	the	BLO	coughing	model).	The	default	
air	change	rate	 is	based	on	an	assumed	supply	 rate	of	10	L/s/per-
son	for	theoretical	crush	capacity	within	the	carriages.35	Figure	3A	

shows	that	when	considering	the	mean	dose,	close-	range	exposure	
dominates,	 followed	 by	 fomite	 and	 long-	range	 airborne	 routes,	
which	 are	 one	 and	 three	 orders	 of	magnitude	 lower,	 respectively.	
However,	 the	median	values	 reflect	a	different	picture,	where	air-
borne	dose	is	higher	than	both	the	close-	range	and	the	fomite	doses	
(3.5	x	10–	8	vs.	0).	Time	on-	board	is	seen	to	be	an	important	factor	for	
both	airborne	and	close-	range	routes,	while	the	fomite	route	is	less	
dependent	(see	Figure	3B).	At	the	1%	prevalence	level,	the	number	
of	0-	doses	dominates	the	median	values	suggesting	that	the	mean	
values	 are	 heavily	 affected	 by	 infrequent	 or	 opportunistic	 events,	
represented	by	the	outliers,	particularly	for	the	close-	range	and	the	
fomite	 routes.	 These	 opportunistic	 events	 are	 directly	 related	 to	
specific	individuals	being	at	close	proximity	to	infectious	passengers	
during	their	trip	 (contributing	to	their	close-	range	exposure),	or	by	
chance	touching	particularly	contaminated	surfaces	during	boarding	
or	alighting	(contributing	to	their	fomite	exposure).

In	the	following	Subsections,	we	use	boxplots	to	explore	the	sen-
sitivity	of	our	exposure	predictions	to	the	key	parameters	in	Table	1,	
while	keeping	all	other	parameters	fixed.	These	boxplots	show	the	
distribution	of	doses	over	all	model	runs.	However,	some	interpre-
tations	and	insights	from	these	numerical	results	arise	from	looking	
at	particular	model	runs,	which	are	depicted	by	“waffle”	plots.	These	
waffle	plots	represent	the	computed	dose	for	all	passengers	within	a	
single	simulation/trip	while	depicting	the	traveling	patterns	for	each	
passenger	(ie,	origin,	destination,	and	sub-	set	of	the	trip	shared	with	
an	infectious	passenger).	The	journeys	shown	in	these	waffle	plots	
have	been	chosen	at	random	and	can	be	seen	as	illustrative.	In	these	
plots,	 infectious	 passengers	 are	 shown	 colored	 in	 orange,	 while	 a	
white-	to-	green	gradient	 is	 used	 to	 represent	 level	 of	 exposure	 for	
each	non-	infectious	individual.	Orange	lines	represent	the	duration	
of	where	an	infectious	passenger	was	on-	board.	Note	that	the	sta-
tions	A-	O	are	presented	in	chronological	order	based	on	Figure	2.

F I G U R E  3 Dose	inoculated	to	susceptible	passengers	split	by	route	of	transmission	for	the	BLO	droplet	model,	50%	loading,	1%	
prevalence,	127	ACh−1	and	75%	mask	compliance

(A)

(B)
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3.1  |  Effect of percentage of infectious passengers 
(prevalence)

Figure	4A	shows	how	the	distribution	of	total	doses	changes	with	re-
spect	to	 infection	prevalence	among	the	passengers.	The	 impact	of	
the	prevalence	parameter	on	the	total	dose	is	significant,	and	higher	
prevalence	values	 lead	 to	an	 increase	 in	 the	dose	 received,	both	 in	
terms	of	the	mean	and	median	values.	The	mean	dose	shows	a	linear	
relationship	with	prevalence	(see	Table	2),	but	the	increase	in	the	me-
dian	value	of	the	dose	is	not	linear,	showing	an	approximately	order	
of	magnitude	 increase	when	 prevalence	 increases	 from	 1%	 to	 2%.	
The	summary	statistics	of	doses	for	passengers	in	these	simulations	
in	Table	2	show	the	median	dose	is	four	to	five	orders	of	magnitude	
lower	than	the	mean	dose.	These	results	suggest	that	most	passengers	
receive	a	zero	dose	and	a	small	number	of	passengers	receive	a	much	
higher	dose.	The	high	mean	relative	to	the	median	values	suggests	that	
relatively	higher	doses	for	a	small	number	of	passengers	significantly	
affect	 the	 exposure	 distribution.	 These	 outliers	 can	 be	 interpreted	
as	specific	individuals	involved	in	opportunistic events	 in	these	simu-
lations,	 corresponding	 to	 passengers	who	might	 have	 shared	 some	
of	the	trip	at	close	proximity	to	an	infectious	individual,	or	touched	
particularly	contaminated	surfaces	during	their	trip.	Reductions	in	the	
value	of	the	prevalence	below	1%	allow	for	the	removal	of	some	outli-
ers	in	the	exposure	distribution,	significantly	reducing	the	mean	dose	
across	the	population	of	non-	infectious	passengers.

Examining	a	specific	model	run	with	different	prevalence	values	
allows	one	to	better	understand	these	behaviors.	Figure	4B,C	show	
total	dose	received	by	non-	infectious	passengers	in	a	single	trip	simu-
lation	for	the	lowest	and	highest	prevalence	values.	In	this	particular	
simulation,	for	the	lowest	prevalence	value	there	were	no	infectious	
passengers	on	board,	leading	to	zero	exposure.	Increasing	prevalence	
up	to	2%	increases	the	number	of	infectious	passengers	to	4	in	this	
simulation.	 This	 would	 directly	 increase	 the	 number	 of	 passengers	
being	 at	 close	 proximity	 of	 an	 infectious	 passenger	 at	 some	 time	
during	their	trip,	and	the	amount	of	surfaces	becoming	contaminated.

3.2  |  Effect of passenger loading with respect to 
pre- COVID- 19 values

In	Figure	5A	and	Table	3,	we	investigate	what	the	impact	of	varying	
the	system	loading	percentage	is	on	the	total	dose	exposure.	Loading	
has	an	important	effect	on	the	distribution	and	median	values	of	the	

total	dose	received,	with	larger	values	for	higher	loading,	while	mean	
values	are	less	strongly	affected	by	loading.	The	higher	mean	relative	
to	the	median	suggests	that	high	doses	for	a	small	number	of	passen-
gers	are	important,	exemplifying	that	to	all	effects	these	correspond	
to	relatively	rare	events.	It	is	also	worth	noting	that	it	is	difficult	to	
remove	these	outliers	by	decreasing	the	loading,	where	even	at	10%	
loading	 some	 of	 these	 can	 still	 be	 observed	where	 19%	 of	 doses	
were	 above	 the	 upper	whisker.	 This	 suggests	 that	 in	 order	 to	 de-
crease	the	number	of	those	“higher	risk”	events,	joint	approaches	are	
needed	(ie,	in	these	simulations,	there	is	an	interplay	between	load-
ing,	prevalence,	and	other	mitigation	strategies	such	as	mask	wear-
ing).	We	also	note	 that	 the	 impact	of	 these	outliers	on	 the	whole	
distribution	effectively	decreases	as	loading	increases	because	more	
passengers	are	closer	to	infectious	passengers	or	come	into	contact	
with	contaminated	surfaces,	 leading	to	higher	doses	for	more	pas-
sengers	 rather	 than	 just	 a	 few.	Rising	 from	70%	 to	100%	 loading,	
the	median	dose	increases	60%	where	we	note	that	the	close-	range	
and	fomite	routes	contribute	to	the	majority	of	passengers’	exposure	
(highlighted	in	Figure	5A).	Waffle	plots	are	then	used	to	exemplify	a	
typical	passenger	journey,	where	a	substantial	increase	in	doses	for	
passengers	is	seen	with	destinations	in	the	latter	two-	thirds	of	the	
route,	and	when	loading	increases	(Figure	5B	vs	Figure	5C).

3.3  |  Effect of mask- wearing compliance

The	 effect	 of	 the	 proportion	 of	 passengers	 wearing	 masks	 was	
evaluated	visually	 in	 terms	of	 the	dose	 received	by	non-	infectious	
passengers	in	Figure	6.	The	main	assumptions	about	the	efficacy	of	
masks	in	the	TVC	model	can	be	found	in	the	Supplementary	Material.	
Table	4	shows	quantitative	statistics	of	the	mean	and	median	doses	
received	by	non-	infectious	passengers	depending	on	the	percentage	
of	passengers	wearing	a	mask	(including	those	who	might	have	been	
infectious).	Mask	wearing	has	a	modest	effect	on	the	median	dose,	
where	an	approximately	4.7x	decrease	is	observed	between	0%	and	
100%	adherence.	This	is	close	to	what	would	be	expected	from	the	
combined	 effect	 of	 50%	 reduction	 on	 production	 and	 inhalation	
of	 small	 aerosol.	 Increasing	 the	 proportion	 of	 passengers	wearing	
masks	above	75%	has	little	effect	on	the	doses	below	the	75th	per-
centile	of	total	dose	received.	However,	the	mean	dose	received	is	
strongly	dependent	on	the	proportion	wearing	a	mask,	and	the	im-
pact	of	mask	wearing	on	the	outliers	can	be	clearly	observed.	This	
is	likely	to	be	due	to	a	combination	of	reduction	in	source	of	virus	as	

Prevalence percentage 
[0– 100] 0.02% 0.1% 1% 2%

Median	dose 0 0 1.46E−07 8.98E−07

Mean	dose 3.20E−05 1.73E−04 1.23E−03 2.32E−03

Total	non-	infectious	
passengers

55	988 55	929 55	408 54	844

Total	non-	zero	doses 1133 5752 32	867 44	501

%	non-	zero	doses 2 10 59 81

TA B L E  2 Total	dose	[PFU]	received	by	
non-	infectious	passengers	depending	on	
the prevalence percentage
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well	as	reduction	in	inhalation	(large	droplets	and	small	aerosol)	and	
deposition	onto	mucosal	membranes,	which	significantly	decreases	
the	doses	 related	 to	 the	opportunistic	events,	 specially	 for	adher-
ence	levels	near	100%.	We	note	that	in	reality,	some	of	those	outli-
ers	 representing	higher	doses	might	be	 the	ones	 leading	 to	actual	
infections	and	the	corresponding	generation	of	transmission	chains	
at	the	community	level.

Figure	6	shows	the	break-	down	of	the	doses	received	by	unin-
fected	passengers	split	by	route	of	exposure.	The	close-	range	dose	
shows	a	scattered	pattern	among	passengers	(see	Figure	6C),	where	

the	pattern	results	from	the	randomization	of	proximity.	These	are	
typically	the	highest	doses	compared	to	those	from	the	fomite	and	
airborne	routes.	Comparing	0%	and	100%	mask-	wearing	compliance	
shows	over	5	orders	of	magnitude	reduction	in	the	close-	range	dose	
received.	This	 is	a	 result	of	 the	assumption	 that	100%	 large	drop-
lets	are	captured	for	individuals	wearing	masks,	so	that	the	residual	
close-	range	dose	with	masking	is	due	to	exposure	to	small	aerosol	
at	 close	 range.	 The	 airborne	 doses	 in	 Figure	 6B	 show	 a	 different	
pattern,	 with	 a	 more	 uniform	 distribution	 over	 passengers.	 The	
mean	values	are	substantially	 lower	 than	 the	close-	range	doses	at	

F I G U R E  4 Boxplots	and	waffle	plots	comparing	the	effect	of	disease	prevalence	�,	for	the	BLO	model.	For	the	boxplots	in	(A),	default	
parameters	are	chosen:	127	ACh– 1	,	50%	loading,	1%	prevalence,	and	75%	mask-	wearing	compliance.	For	the	waffle	plots	in	(B)	and	(C),	and	
for	illustrative	purposes,	we	select	127	ACh– 1	,	100%	loading,	0%	mask	wearing	and	vary	the	prevalence	parameter.	Orange	lines	represent	
part	of	the	journey	where	an	infectious	passenger	is	on	board

(B) (C)

(A)
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F I G U R E  5 (A)	Boxplots	of	total	dose	received	for	the	BLO	model	and	default	parameter	values	in	Table	2.	(B,	C)	Waffle	plots	comparing	
the	effect	of	different	passenger	loading	(�)	levels	with	respect	to	pre-	COVID-	19	numbers.	For	the	waffle	plots,	and	for	illustrative	purposes,	
we	select	127	ACh– 1	,	2%	prevalence,	and	0%	mask-	wearing	compliance

(B) (C)

(A)

Loading percentage 
[0– 100] 10% 40% 50% 70% 100%

Median	dose 0 0 1.46e−07 2.96e−07 7.40e−07

Mean	dose 3.53e−04 9.12e−04 1.23e−03 1.55e−03 1.74e−03

Total	non-	infectious	
passengers

13	854 38	094 55	408 65	307 87	082

Total	non-	zero	doses 2618 17 137 32	867 42 003 64 317

%	non-	zero	doses 19 45 59 64 74

TA B L E  3 Total	dose	received	by	non-	
infectious	passengers	depending	on	the	
loading percentage
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3–	5	orders	of	magnitude	less.	Fomite	doses	(see	Figure	6D)	are	also	
generally	 scattered	 in	 their	 pattern	 among	 passengers	 due	 to	 the	
stochastic	nature	of	 surface	 touching,	with	a	wide	 range	of	doses	
received.

3.4  |  Effect of fresh- flow ventilation rate

The	effect	of	the	fresh-	flow	ventilation	rate	is	investigated	in	both	
airborne	and	close-	range	exposure	routes	 (see	Figure	7).	Although	

F I G U R E  6 Top	rows:	Boxplots	showing	the	effect	of	varying	mask-	wearing	compliance	on	(A)	the	total	dose,	and	the	dose	for	each	
particular	route	of	exposure:	(B)	airborne,	(C)	close-	range,	and	(D)	fomite	using	default	50%	passenger	loading,	1%	prevalence	and	127	
ACh– 1	.	Bottom	row:	waffle	plots	showing	a	single	train	journey	at	(E)	0%	and	(F)	100%	mask	compliance	respectively.	For	the	waffle	plots,	
we	select	127	ACh– 1	,	100%	passenger	loading	and	2%	prevalence	for	illustrative	purposes

(A)

(C) (D)

(E) (F)

(B)
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we	explore	 the	 impact	of	 reducing	 the	highest	 ventilation	 rate	on	
exposure	to	obtain	a	qualitative	understanding	of	the	correspond-
ing	 dynamics,	we	 note	 that	 the	 results	 for	 lower	 ventilation	 rates	
should	be	interpreted	with	caution,	since	the	well-	mixed	assumption	
in	Subsection	2.3	might	not	be	appropriate	for	poorly	ventilated	sce-
narios.	In	those	situations,	specific	areas	of	the	carriage	might	have	
significantly	higher	concentrations	than	the	rest.

Generally	speaking,	an	increase	in	ventilation	rate	leads	to	a	de-
crease	in	the	airborne	dose	received,	both	in	terms	of	the	mean	and	
median	values	(see	Table	5).	However,	the	reduction	does	not	scale	
with	the	inverse	of	the	ventilation	rate	alone.	There	are	other	fac-
tors	determining	the	scaling	of	the	dose,	for	example,	additional	loss	
terms	representing	viral	decay	or	deposition	become	more	import-
ant	at	lower	air	change	rates	as	do	the	short	occupancy	times.	The	

Mask- wearing percentage 0% 75% 90% 100%

Median	dose 4.79e– 07 1.46e−07 1.22e−07 1.05e−07

Mean	dose 1.04e−02 1.23e−03 4.01e−04 2.30e−05

Total	non-	infectious	
passengers

55	408 55	408 55	408 55	408

Total	non-	zero	doses 32	867 32	867 32	867 32	867

%	non-	zero	doses 59 59 59 59

TA B L E  4 Total	dose	received	by	non-	
infectious	passengers	depending	on	the	
proportion	of	passengers	wearing	masks

F I G U R E  7 Boxplots	showing	the	effect	of	varying	air	change	rate	on	(A)	total	dose,	(B)	airborne	dose,	(C)	close-	range	dose,	and	(D)	fomite	
dose.	Distributions	of	dose	received	by	non-	infectious	passengers	for	five	different	air	change	rates

(A) (B)

(C) (D)
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analysis	of	the	total	dose	shows	just	a	minor	effect	with	increase	in	
ventilation	rate.	This	is	expected	because	the	close-	range	and	fomite	
routes	have	a	greater	contribution	to	the	total	dose	than	the	long-	
range	airborne	 route	 for	 this	 scenario.	Concentrations	 take	 longer	
to	build	up	at	lower	air	change	rates	relative	to	the	short	occupancy	
times	for	this	scenario.	Finally,	we	note	in	Figure	7B	that	mean	values	
corresponding	to	the	long-	range	airborne	dose	are	closer	to	median	
values	than	when	comparing	to	the	other	transmission	routes	(close-	
range	and	fomite).	This	seems	to	indicate	that	the	long-	range	expo-
sure	by	small	aerosols	would	be	more	homogeneously	spread	across	
individuals	in	the	carriage	(sharing	the	trip	with	an	infectious	passen-
ger)	 than	 the	exposure	 through	 the	close-	range	and	 fomite	 routes	
(which	are	more	stochastic	and	heavily	depend	on	a	non-	infectious	
individual	randomly	getting	close	enough	to	an	infectious	passenger,	
or	touching	particularly	contaminated	surfaces).

3.5  |  Effect of source droplet model

The	effect	of	the	source	model	is	shown	in	Figure	8	where	we	use	
default	settings	for	prevalence,	loading,	air	change	rate,	and	mask-	
wearing	proportion	 (1%,	 50%,	127	ACh−1,	 75%).	 It	 is	 important	 to	
note	that	 there	 is	a	 large	difference	between	the	doses	estimated	
by	 the	 different	 source	 models	 rendering	 the	 close-	range	 doses	
the	most	 variable	 between	models.	 To	 illustrate	 this,	 we	 plot	 the	
predicted	 close-	range	 doses	 corresponding	 to	 the	 unmasked	 sce-
nario	 in	Figure	9	 showing	 the	effect	of	using	Duguid31	 or	 Loudon	
&	Roberts32,33	vs	the	default	BLO	coughing	model.30	Historical	ex-
perimental	 results31-	33	 correspond	 to	nearly	 two	orders	 of	magni-
tude	 increase	over	data	 from	 the	 fitted	BLO	models30 included in 
the	plots	above.

It	 is	 also	 important	 to	 note	 that	while	 a	 single	 point	 value	 for	
the	viral	load	of	� = 3.61 ⋅ 10

12
PFU ⋅m

−3	has	been	used	as	input	for	
these	simulations,	heterogeneity	in	this	value	is	expected	across	dif-
ferent	infectious	individuals,	and	that	considering	a	different	value	
would	 lead	 to	 different	 estimates	 in	 terms	 of	 absolute	 number	 of	
virions	for	the	predicted	doses.	As	a	result,	our	interpretation	of	re-
sults	above	is	based	on	exploring	relative	behaviors	and	the	impact	
of	key	parameters	or	mitigation	strategies,	rather	than	commenting	
on	particular	absolute	numbers	of	virions.	 Importantly,	when	look-
ing	 at	 the	 interaction	 between	 the	 variation	 in	 key	 parameters	 in	
the	previous	Subsections,	and	the	effect	of	the	droplet	model,	we	
find	that	regardless	of	the	droplet	model	used,	the	same	trends	as	

discussed	in	the	previous	sections	are	borne	out.	Thus,	our	conclu-
sions	on	the	relative	impact	of	key	parameters	on	exposure	are	not	
affected	 by	 the	 particular	 droplet	 model	 under	 consideration,	 or	
the	particular	viral	load	considered;	see	Figures	4	and	5	within	the	
Supplementary	Material.

4  |  DISCUSSION

We	have	presented	the	TVC	model,	which	predicts	SARS-	CoV-	2	ex-
posure	through	three	routes	(close-	range,	long-	range	airborne,	and	
fomite)	 in	a	subway	train	carriage	under	a	variety	of	conditions.	 In	
particular,	 we	 have	 explored	 different	 infection	 prevalence	 levels	
in	 the	 traveling	 population,	 percentage	 passenger	 loading,	 mask-	
wearing	compliance,	and	ventilation	rates.

Results suggest that higher disease prevalence levels lead to an 
increase	in	the	dose	received	through	all	routes	both	in	terms	of	the	
mean	and	median	values,	due	 to	 the	higher	probability	 that	an	 in-
fectious	passenger	is	traveling.	The	increase	in	the	median	value	of	
the	dose	is	not	 linear	with	prevalence,	showing	approximately	one	
order	of	magnitude	increase	when	prevalence	increases	from	1%	to	
2%.	It	is	also	observed	how	reductions	in	the	value	of	the	prevalence	
below	1%	 seem	 to	 allow	 for	 the	 removal	 of	 some	outliers	 (higher	
risk	opportunistic	events)	in	the	exposure	distribution,	significantly	
reducing	the	mean	dose	across	the	population	of	non-	infectious	pas-
sengers.	Our	results	suggest	an	interplay	between	loading	levels	and	
prevalence	values,	where	the	actual	absolute	number	of	infectious	
passengers	 traveling	 jointly	 depends	 on	 both	 parameters.	 Higher	
values	of	prevalence	and	loading	would	lead	to	the	riskiest	scenarios.

Comparison	 of	mean	 doses	 indicates	 fomite	 doses	 tend	 to	 be	
an	 order	 of	magnitude	 lower	 than	 their	 close-	range	 counterparts,	
and	 that	 the	 long-	range	 airborne	dose	 is	 several	 orders	 of	magni-
tude	lower.	This	large	difference	can	be	explained	in	part	by	the	high	
air	change	rate	and	the	relatively	short	duration	of	shared	trips	be-
tween	non-	infectious	and	infectious	passengers	in	this	scenario.	We	
note	that	the	single	zone	well-	mixed	assumption	might	be	particu-
larly	well-	suited	for	higher	ventilation	rates	such	as	those	represen-
tative	of	some	London	Underground	Lines.	Smaller	air	change	rates	
or	larger	carriages	could	require	more	complex	computational	fluid	
dynamics,	eddy-	diffusion41,	or	zonal	airflow	approaches	in	order	to	
obtain	higher	resolution	airborne	exposure	estimates;	we	acknowl-
edge	that	the	TVC	model	may	result	in	an	underestimate	of	airborne	
doses	for	some	passengers	at	the	lowest	ventilation	rates.	We	also	

Fresh- flow air changes 
per hour [ACh−1] 1 4 13 40 127

Median	dose 1.17e−06 1.08e−06 7.33e−07 3.73e−07 1.46e−07

Mean	dose 2.46e−03 2.35e−03 2.12e−03 1.72e−03 1.23e−03

Total	non-	infectious	
passengers

55	408 55	408 55	408 55	408 55	408

Total	non-	zero	doses 32	867 32	867 32	867 32	867 32	867

%	non-	zero	doses 59 59 59 59 59

TA B L E  5 Total	dose	received	by	
non-	infectious	passengers	depending	on	
ventilation rate
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acknowledge	that	under	low	ventilation	rates,	or	in	alternative	public	
transport	settings,	the	additional	ventilation	provided	by	the	doors	
opening	during	stops	could	have	an	effect	and	could	potentially	be	
incorporated	into	the	model.	Similarly,	we	assume	the	source	is	iso-
tropic	(under	the	well-	mixed	hypothesis)	in	that	orientation	of	the	in-
fectious	passengers	can	be	ignored	such	as	in	the	case	laid	out	by.27

Consideration	 of	 the	 distribution	 of	 doses	 is	 also	 important.	
Both	 fomite	 and	 close-	range	 doses	 have	 a	 median	 value	 that	 is	
much	lower	than	the	mean,	suggesting	that	both	significantly	de-
pend	on	infrequent	events—	traveling	at	close	proximity	of	an	infec-
tious	passenger,	or	touching	a	heavily	contaminated	surface	during	
boarding	or	alighting.	On	the	other	hand,	the	predicted	long-	range	
airborne	dose	is	significantly	more	homogeneous	across	the	pop-
ulation	of	passengers	with	mean	and	median	values	closer	to	each	
other	and	less	outliers.	Although	the	airborne	and	total	exposure	is	

low	in	our	underground	train	carriage	scenario,	there	may	be	other	
indoor	scenarios	(eg,	infectious	individual	with	a	significantly	higher	
than	usual	viral	load	sharing	a	poorly	ventilated	space	with	a	large	
number	of	individuals	for	a	significant	amount	of	time)	where	this	
homogeneous	distribution	of	doses	leads	to	a	high	enough	median	
dose	to	result	in	many	infections.	On	the	other	hand,	a	particularly	
high	 viral	 load	 would	 only	 significantly	 increase	 some	 individual	
exposures	 through	 opportunistic	 events	 for	 the	 close-	range	 and	
fomite	routes,	and	hence,	the	number	of	infections	caused	would	
be	more	limited.

We	also	note	that	the	scenario	considered	here	has	certain	fea-
tures	that	could	favor	close-	range	and	fomite	exposures,	relative	to	
longer-	range	exposure,	as	our	results	suggest.	Passengers	generally	
travel	 for	short	periods	of	 time	 in	a	highly	ventilated	setting,	with	
reasonable	 chances	 of	 coming	 into	 close	 proximity	 of	 each	 other	

F I G U R E  8 Boxplots	showing	the	effect	of	the	five	droplet	models	using	default	settings	for	prevalence	(1%),	loading	(50%),	air	change	
rate	(127	ACh– 1	),	and	mask-	wearing	proportion	(75%):	on	(A)	airborne	dose,	(B)	close-	range	dose,	and	(C)	fomite	dose

(C)(B)

(A)
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and	touching	a	small	sub-	set	of	surfaces	contacted	by	a	significant	
amount	of	people.	Our	 results	 then	suggest	 that	 in	a	scenario	 like	
this	one,	 the	close-	range	 route	might	be	 the	most	 significant	one,	
and	 that	 exposure	 through	 the	 fomite	 route	 cannot	be	neglected.	
The	fomite	dose	heavily	relies	on	opportunistic	events,	yet	this	can	
be	 relatively	easily	mitigated	 through	 facilitating	hand	hygiene	 for	
passengers	 during	 and	 after	 their	 trip	 and	by	passengers	 avoiding	
touching	their	face	during	a	trip.	We	note	that	in	the	TVC	model,	fre-
quently	touched	or	easily	contactable	surfaces	within	the	carriage	
are	treated	identically,	and	have	an	equal	probability	of	contact	for	
each	passenger	during	boarding	and	alighting.	Although	the	model	
may	as	a	result	not	capture	the	importance	of	specific	very	high	touch	
surfaces,	 this	 assumption	 is	 sensible	 to	 represent	 that	 passengers	

can	move	relatively	freely	across	the	carriage	in	an	underground	rail	
system.	However,	this	approach	might	not	be	well-	suited	for	other	
public	transport	settings	such	as	buses,	long-	range	trains,	or	planes,	
and	a	more	complex	representation	of	hand-	surface	contact	behav-
iors	may	be	required	in	those	alternative	scenarios.

The	relatively	large	importance	of	the	close-	range	route	suggests	
that	 strategies	 to	 facilitate	 social	distancing	can	have	a	 significant	
impact	on	infection	risk.	This	would	directly	depend	on	prevalence	
and	controlling	 loading	 levels	accordingly.	Close-	range	exposure	 is	
also	predicted	to	be	significantly	reduced	through	increased	mask-	
wearing	adherence.	The	prevalence	of	 infection	 in	the	passengers’	
community	 is	 predicted	 to	 have	 a	 strong	 impact	 on	 total	 expo-
sure	and	while	the	prevalence	at	the	population	level	is	difficult	to	

F I G U R E  9 Waffle	plots	highlighting	close-	range	dose	received	under	0%	masking,	2%	prevalence,	100%	loading,	and	127	ACh– 1  air 
change	rate,	for	the	(A)	BLO	coughing,	(B)	Duguid,	and	(C)	Loudon	and	Roberts	models

(A)

(B) (C)



    |  17 of 20MILLER Et aL.

control,	our	results	suggest	that	any	strategies	to	prevent	infectious	
people	from	traveling	could	be	one	of	the	most	effective	strategies	
to	decrease	overall	 infection	 risk	 for	 the	 traveling	population.	We	
note	here	that	the	prevalence	parameter	(defined	as	the	percentage	
of	passengers	who	are	infectious)	needs	to	be	interpreted	cautiously,	
since	the	prevalence	of	the	disease	within	the	passengers	population	
might	well	differ	from	the	prevalence	of	infection	in	the	community.

As	 with	 all	 models,	 there	 are	 a	 number	 of	 limitations	 and	 as-
sumptions	that	may	influence	the	model	outcomes.	Due	to	the	large	
number	of	parameters	involved	in	the	TVC	model,	many	of	the	pa-
rameters	have	been	fixed	to	specific	values.	While	reliable	estimates	
for	some	parameters	are	available,	as	described	in	Table	2	within	the	
Supplementary	Material,	there	are	some	which	have	been	assumed	
according	to	the	existing	knowledge	at	the	moment,	and	which	could	
be	adjusted	once	more	information	becomes	available.	In	particular,	
precisely	estimating	behavior-	related	parameters	such	as	the	num-
ber	of	surfaces	touched	by	passengers	during	boarding	or	alighting,	
or	 the	 time	 for	 passengers	 to	 sanitize	 their	 hands	 after	 alighting,	
would	require	detailed	CCTV	or	similar	data	for	a	particular	public	
transport	setting.	This	has	been	successfully	implemented	for	QMRA	
approaches	in	other	environments.42	The	results	in	Section	3.5	have	
highlighted	the	dependence	on	the	data	used	for	the	droplet	source	
model	and	the	respiratory	activity.	There	is	a	clear	need	for	better	
data	on	respiratory	source	terms	across	all	droplet	sizes	as	well	as	
behavioral	information	on	respiratory	activity	in	public	spaces.	The	
model	is	run	for	a	representative	viral	load	based	on38	and	assumes	
a	 relationship	 between	 RNA	 copies	 and	 PFU,39 and that virus is 
distributed	evenly	by	volume	in	respiratory	particles.	A	small	num-
ber	of	people	may	have	a	viral	load	that	is	2–	3	orders	of	magnitude	
higher,38	which	would	proportionally	 increase	the	doses	predicted	
by	all	routes	in	the	model.	Similarly,	if	the	relationship	between	RNA	
and	 infectious	 virus	 varies	 by	 particle	 size	 or	 transmission	 route,	
this	would	also	alter	the	predicted	exposure.	At	this	time,	these	and	

other	 viral	 emission	 parameters	 remain	 unknown,	 and	 hence,	 our	
model	is	based	on	the	best	evidence	at	the	time.

A	dose-	response	curve	for	SARS-	CoV-	2	is	not	yet	available,	and	
furthermore,	the	contribution	of	each	dose	(ie,	each	route	of	expo-
sure)	to	individual	infection	risk	may	still	be	unclear	even	if	and	when	
it	is	obtained.24,27	Consequently,	we	have	analyzed	the	results	from	
the	TVC	model	based	on	relative	exposures	and	qualitative	trends	
to	try	and	understand	the	effect	of	key	parameters	and	mitigation	
strategies.	In	this	model,	we	do	not	split	the	upper	and	lower	respi-
ratory	tract	dose	contributions,27	and	direct	computation	of	 infec-
tion	risk,	which	could	allow	for	comparisons	with	other	multi-	route	
models	such	as	the	one	in	ref.	24	for	the	outbreak	on	the	Diamond	
Princess	cruise	ship,	 is	complex.	 If	one	were	 to	assume	 in	a	hypo-
thetical	 situation	 that	 the	 fomite,	 close-	range,	 and	 airborne	doses	
could	be	considered	comparable	and	cumulative,	one	could	use	the	
HCoV-	229E	exponential	dose-	response	curve	as	a	way	of	estimating	
infection	 risk	 in	 the	worst-	case	 scenario	 for	 a	 comparative	patho-
gen.40	Under	these	hypotheses,	risk	can	then	be	calculated	for	dif-
ferent	scenarios.

In	 Figure	 10,	 three	 scenarios	 in	 terms	 of	 key	 parameter	 val-
ues	 are	 considered	 for	 illustrative	 purposes:	 Baseline	 =	 (1%	
prevalence,	 50%	 loading,	 127	 ACh−1,	 75%	 mask	 wearing),	 Case	
A =	 (2%	prevalence,	 100%	 loading,	 1	ACh−1,	 0%	mask	wearing),	
and	Case	B	=	 (0.02%	prevalence,	100%	loading,	127	ACh−1,	90%	
mask	wearing).	 In	 general,	 the	mean	 infection	 risk	 probability	 is	
significantly	 higher	 than	 the	 upper	 quartile,	 alluding	 to	 the	 hy-
pothesis	 that	 a	 few	 passengers	may	 become	 infected	 related	 to	
opportunistic	or	 rare	events	under	 these	circumstances.	Using	a	
Bernoulli	distribution	with	either	a	1	or	a	0	response,	representing	
an	infection	or	not	from	each	one	of	the	predicted	exposure	doses	
and	 corresponding	 individual	 infection	 risk	 probabilities,	we	 can	
predict	 the	 number	 of	 passengers	 infected	 per	 1000	 passenger	
journeys.	 From	 the	 individual	 risks	 predicted	under	 the	baseline	

F I G U R E  1 0 Boxplot	showing	(A)	Dose	received	and	(B)	Infection	risk	(ie,	individual	probability	of	infection	for	each	predicted	dose)	in	
three	different	scenarios,	using	the	HCoV-	229E	exponential	dose-	response	curve40

(A) (B)
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assumptions	of	1%	prevalence,	50%	loading,	127	ACh−1	and	75%	
mask	wearing,	we	see	that	1	person	 is	 likely	to	become	 infected	
with	 another	 1	 possible	 based	 on	 the	mean	 and	 standard	 devi-
ations	obtained	 from	1000	Bernoulli	 simulation	 runs.	Under	 the	
worst	case	scenario	(Case	A)	which	could	be	roughly	 interpreted	
as	 a	 situation	 with	 very	 high	 prevalence	 among	 passengers,	 no	
mitigation	 in	place	and	very	 low	ventilation,	 this	mean	 increases	
to	5	per	1000	with	a	standard	deviation	of	10	infections.	Case	B	
represents	a	potentially	realistic	return to normality	scenario	with	
0.02%	prevalence,	100%	loading,	127	ACh−1	and	90%	mask	wear-
ing.	In	this	situation,	and	using	the	current	viral	emission	rate,	the	
mean	infection	rate	per	1000	passengers	would	be	0	with	a	stan-
dard	deviation	of	0.	However,	 if	only	75%	of	people	wore	masks	
this	would	increase	to	1	likely	infection	(and	1	possible)	per	1000.	
Under	a	ventilation	failure	(1	ACh−1),	the	mean	value	would	likely	
remain	at	1	but	the	standard	deviation	rises	to	2.

The	results	in	Figure	10B	are	illustrative	to	demonstrate	the	po-
tential	 variability	 in	 infection	 risk	 that	 could	 result	 from	exposures	
on	 a	 public	 transport	 system,	 but	 it	 is	 important	 to	 recognize	 that	
analysis	of	infection	risk	also	needs	to	be	interpreted	in	the	context	
of	the	current	status	of	the	pandemic	within	a	particular	country	or	
region.	Emergence	of	more	transmissible	variants	is	already	changing	
the	exposure-	risk	relationships,	and	it	is	likely	that	dose	response	will	
be	specific	to	a	particular	variant.43	The	risk	of	infection	will	also	be	
substantially	impacted	by	the	vaccination	status	within	a	community.	
At	the	time	of	writing,	45	million	people	had	received	the	first	vaccine	
dose	and	34	million	the	second	dose	in	the	UK,	which	will	substan-
tially	reduce	the	likelihood	of	infection	further	than	those	illustrated	
here.

5  |  CONCLUSIONS

The	TVC	model	presented	here	 is	a	feasible	approach	for	estimat-
ing	the	relative	risks	posed	by	different	transmission	routes	and	the	
influence	of	mitigation	measures	on	public	transport.	The	model	is	
applied	to	a	realistic	subway	train	scenario	to	explore	the	influence	
of	key	parameters	on	the	likely	exposure	to	SARS-	CoV-	2	virus.	For	
the	 parameters	 considered,	 the	 risk	 of	 exposure	 to	 the	 virus	was	
predicted	to	be	low	through	all	routes	of	transmission.	The	highest	
modeled	doses	were	to	a	small	proportion	of	people	in	close	proxim-
ity	to	an	infected	person,	which	is	through	a	combination	of	aerosol	
inhalation	and	direct	droplet	deposition.	Simulations	predict	that	a	
small	 proportion	of	 people	may	 also	 receive	 a	high	 fomite	dose	 if	
they	 touch	highly	contaminated	surfaces.	Long-	range	airborne	ex-
posure	was	generally	predicted	to	be	 lower	due	to	 the	short	 jour-
ney	times	and	high	ventilation	rate,	but	was	more	homogeneous	and	
dominates	the	median	dose.	This	illustrates	how	a	small	aerosol	can	
more	readily	reach	multiple	people,	while	close-	range	and	fomite	ex-
posures	depend	on	chance	encounters.	The	simulations	suggested	
that	 prevalence	 of	 the	 virus	within	 those	 traveling	 had	 the	 great-
est	influence	on	risk	of	transmission,	and	that	social	distancing	(via	

loading)	and	mask	wearing	were	both	effective	at	reducing	the	aver-
age	dose	and	 the	outliers.	Ventilation	 influenced	 the	median	dose	
but	had	 less	effect	on	outliers	which	are	dominated	by	 the	close-	
range	and	fomite	exposure.

We	 have	 shown	 the	 potential	 of	 QMRA-	based	 approaches	 to	
estimate	exposure	through	different	routes	in	public	transport	set-
tings.	 The	 approach	 can	 be	 generalized	 to	 other	 public	 transport	
scenarios	 through	 appropriate	 information	 on	 vehicle	 geometries,	
ventilation,	passenger	loading,	and	touch	surfaces.	We	have	demon-
strated	how	the	model	can	be	applied	with	a	dose-	response	function	
in	order	to	translate	exposure	to	infection	risk;	however,	further	data	
are	needed	on	the	dose	response	for	the	SARS-	CoV-	2	virus	before	
this	can	be	done	with	confidence.	It	will	also	be	important	to	include	
the	effects	of	vaccination	in	the	future	models	such	as	this,	consid-
ering	 the	effects	of	 the	vaccine	on	 the	 likelihood	of	 an	 infectious	
traveler,	the	viral	load	in	the	event	that	the	infectious	person	is	vac-
cinated,	and	the	dose	response	in	the	susceptible	population.
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