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ABSTRACT: Achieving synergism, often by combination therapy via
codelivery of chemotherapeutic agents, remains the mainstay of treating
multidrug-resistance cases in cancer and microbial strains. With a typical
core−shell architecture and surface functionalization to ensure facilitated
targeting of tissues, nanocarriers are emerging as a promising platform toward
gaining such synergism. Co-encapsulation of disparate theranostic agents in
nanocarriersfrom chemotherapeutic molecules to imaging or photothermal
modalitiescan not only address the issue of protecting the labile drug
payload from a hostile biochemical environment but may also ensure
optimized drug release as a mainstay of synergistic effect. However, the fate of
co-encapsulated molecules, influenced by temporospatial proximity, remains
unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement,
aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-
encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated
molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular
integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward
accomplishing such synergism through reciprocity.
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■ INTRODUCTION

Over the last few decades, the application of nanotechnology in
the field of medicine, including drug delivery, biomedical
imaging, and diagnostics, has received widespread attention.1

While the definition of nanoscale differs between the diverse
research disciplines, with the physical chemists mostly
supporting the notion that nanomaterials should have at least
one dimension <100 nm,2 pharmacists often tend to follow a
more inclusive definition, accepting a scale of <1 μm as an
adequate criterion.3With advancements in materials science and
emergence of novel materials, nanomaterials have also evolved
into a range of advanced prototypes with plenty of hype and
hope associated with them.4

One of the key hypotheses supporting nanomedicine research
is the ability of nanomaterials to access those sites in the human
body that are otherwise unreachable by larger (micro)particles.5

Adding to the enthusiasm is the current mastery over synthetic
protocols enabling preparation of well-characterized nanoma-
terials with tunable properties tailored to desirable attributes.
Moreover, due to a restricted 3D extent contributing to the
quantum confinement effect,6 nanomaterials demonstrate
unprecedented materialistic properties, including magnetism,
conductivity, and fluorescence.7 The research community has

engaged in exploring such uncommon behavior of nanomateri-
als to serve medicine.
Increasing sophistication in material synthesis, particularly in

polymer science,8 has enabled researchers to encapsulate a
diverse set of biomacromolecules for theranostic purposes.9 An
encapsulated nanoconstruct typically harbors a core−shell
architecture where a protective shell is layered surrounding a
core often composed of a condensed mass of drug molecules.10

However, especially in liposomal formulations, the spread of an
encapsulated agent may be more homogeneous,11 lacking a
core−shell partitioning. Such nanomaterials with unique
structures and chemistry provide a fertile ground for further
exploration in the field of encapsulation (Figure 1).
This discourse will define a co-encapsulated nanocarrier as a

chemical species where multiple biomacromolecules, from
simple molecules to larger peptides, are confined within a
nanocarrier, typically with a core−shell construct. Thus,
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molecular linkages related to the exterior of nanocarriers,
achieved through bioconjugation12 and surface adsorption13 of
therapeutic molecules, will be excluded. Porous nanocarriers,
such as mesoporous silica,14 where the pores can be loaded with
different therapeutic agents for drug delivery, will not be
discussed. Furthermore, this article will only review co-
encapsulated nanocarriers and will distance itself from other
means of codelivery, for example, using a mix of liposomes with
individual particles carrying separate molecules or nanocarriers

with a single encapsulated molecule while another one is
conjugated to the surface. The narrative will provide an
appreciation of the reasons for co-encapsulation, with its
widespread reporting in overcoming resistance under biological
settings, such as cancer chemotherapy15 and infectious
diseases,16 revisit some of the leading examples of co-
encapsulation from recent literature, and identify the associated
challenges before prioritizing some future perspectives as
guidance for upcoming research.

Figure 1. Scheme showing the various nanocarriers that have been employed in the encapsulation of theranostic agents for facilitated delivery
purposes.

Figure 2. (A) Tumor microenvironment is rich in various cells (e.g., cancer cells, cancer-associated fibroblasts, and immune cells); deposits of
proteoglycans, hyaluronic acid, collagen, and laminin as an extracellular matrix (ECM); and exhibits augmented angiogenesis. (B) Three salient
mechanisms of drug resistance exhibited by the tumor microenvironment: (i) presenting a diffusion barrier against the intratumoral spread of
anticancer agents; (ii) curtailing the supply of oxygen and nutrients to the cancer cells that switches on the cellular resistance pathways; and (iii)
alleviating the impact of radiotherapy and the immune trapping mechanism where the immune cells, albeit responding to the signaling mechanisms of
cancer cells, migrate along the ECM boundary and, thus, fail to permeate the tumor.
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■ MERITS OF CO-ENCAPSULATION IN
NANOCARRIERS

The reasons driving the co-encapsulation of more than one
theranostic molecule can be varied. Perhaps the most important
one is the emergence of resistance against conventional
therapeutics in cancer cells and microorganisms.17 While
multidrug resistance (MDR) is often orchestrated through
mechanisms such as eviction of drugs from cancer cells by efflux

pumps, i.e., P-glycoprotein (P-gp) and breast cancer resistance
protein;18 facilitated DNA repair;19 resistance against drug
uptake;20 inadequate cellular concentration of therapeutic
agents;21 altered drug targets and apoptotic pathways, e.g., due
to the expression of antiapoptotic proteins like B-cell
lymphoma-2;22 and sequestration of weakly alkaline chemo-
therapeutic agents into highly acidic lysosomes23 to cause
degradation, the current incidence of MDR in cancer cells

Figure 3. Scheme showing the genetic pathways of antibiotic resistance in microorganisms after internalization: degradation by enzymes, enzymatic
molecular alteration of the antibiotic rendering them ineffective, and expulsion from the cells with the help of efflux pumps.

Figure 4. Scheme showing a liposomal nanocarrier with co-encapsulated theranostic agents in its core and lipid bilayer. The four quadrants depict the
typical structures noted in conventional, therapeutic, stealth, and targeted liposomes along with a range of surface-conjugated ligands.
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(Figure 2) or microorganisms (Figure 3) poses a challenge in
healthcare with a significant toll of human suffering and financial
burden. A detailed discussion of the mechanisms of MDR in
cancer cells or infectious diseases is beyond the scope of this
account, although relevant literature is cited.24

The approach of a combination therapy of chemotherapeutic,
immunotherapeutic, and genetic agents25 has delivered positive
outcomes in clinical settings and is a standard line of
management in resistant cancer cases and microbial strains.
Co-encapsulation in nanocarriers envisages achieving a synergy
of multiple drugs as it offers an advantage over the conventional
method of coadministering a predefined regime of oncother-
apeutic or antimicrobial agents, often mixed in a syringe or vial
and administered intravenously, in the following ways:
(i) The nanocarrier provides a protective cloak around the

payload of drug molecules and alleviates the risks of
denaturation or disintegration under harsh physiological
conditions, such as an acidic gastric pH encountered in oral
delivery.26 Many popular cancer chemotherapeutic agents or
antimicrobial molecules are sensitive to subtle pH fluctuations
or are labile toward enzymatic digestion, and encapsulating these
molecules in a nanocarrier preserves molecular integrity.
(ii) Solubility remains a challenge with many chemo-

therapeutic agents, while emerging data suggest that more
than half of the developed molecules in current industrial
practices are discarded due to inadequate solubility.27 Hydro-
phobic molecules often require viscous organic dissolution
before intravenous administration with known untoward effects,
such as embolism, hypersensitivity, and pain at the injection
site.28 The drawbacks are further compounded when a regime of
drugs is administered instead of one, and co-encapsulation
within nanocarriers can offer a remedy to the issue. When
administered as a well-dispersed preparation, presumably via an
intravenous route, the hydrophobic drug molecules are shielded
by the nanocarrier from an aqueous and ion-rich hematic
exterior to prevent agglomeration, precipitation, or denatura-
tion.29

(iii) Targeting pathologic tissues for tunable and controlled
drug delivery is possible with nanocarriers with exciting
prospects for co-encapsulation.30 Delivering multiple drugs
simultaneously in a targeted manner alleviates the risk of
developing resistance (e.g., cancer tissues) and curtails the
systemic toxicity due to dose reduction.31 The craft of targeting
diseased sites with surface-engineered nanocarriers has
improved considerably over the last couple of decades. A
thorough discussion on such site-specific targeting falls beyond
the scope of this review, although relevant literature is cited.32

Such targeted nanoformulations (Figure 4) mostly rely on
intelligent surface engineering, either by bioconjugation or
surface adsorption, with ligands that act as substrates for
overexpressed cellular receptors.33 These nanocarriers are often
grafted with hydrophilic molecules, such as polyethylene glycol
(PEG), to prepare stealth nanocarriers34 that evademacrophagic
filtration, resulting in rapid clearance from the bloodstream after
intravenous injection. A range of biochemical features in target
sites, such as an acidic pH and hypoxemia in the tumor
microenvironment (TME), is exploited to design such nano-
formulations.35 Significant progress achieved in polymeric
engineering has further catalyzed interest in the field. Inorganic
materials (e.g., silica) are also being prioritized.36

(iv) Co-delivery of multiple drugs (cocktail therapy) may
yield a synergistic effect (Figure 5) in MDR cases.37 Multiple
therapeutic agents acting in synergy exert maximum lethality

toward the population of target cells while reducing the
probability of cells escaping the wrath of chemotherapeutic
agents and act as seeds for future resurgence.38

(v) Encapsulation of drug molecules in nanocarriers leaves
enough room for improvisation and innovation. For example,
imaging agents may be included instead of drugmolecules, while
such a combined delivery demonstrates a step toward advanced
theranostic modalities.39 Furthermore, co-encapsulation can be
a way to coadminister trigger agents for stimuli-responsive
nanoformulations, including magnetosensitive,40 thermosensi-
tive,41 and sonosensitive42 ones.

■ CHALLENGES ASSOCIATED WITH
CO-ENCAPSULATION IN NANOCARRIERS

Despite an established therapeutic advantage exhibited by co-
encapsulated nanoformulations over monotherapy, the transla-
tional success with such formulations has been less than
encouraging. While the initial data look promising, most of these
co-encapsulated nanoformulations fail to withstand the rigor of
clinical trials and hardly progress beyond phase II. Except for
Vyxeos,43 a co-encapsulated liposomal formulation of daunor-
ubicin and cytarabine indicated in therapy- or myelodysplasia-
related acute myeloid leukemia, so far no other co-encapsulated
nanoformulation has gained approval. The reasons behind a
high attrition rate of nanoformulations lie either with the co-
encapsulated nanocarriers or the generic disadvantages of using
them as drug-delivery systems (DDSs).

Challenges Associated with Co-encapsulated Nano-
carriers. It remains a synthetic challenge to prepare colloidally
stable successive batches of co-encapsulated nanocarriers with
adequate reproducibility.44 It is tedious to exercise granular
control while preparing nanoscale materials. The challenge
increases further when the structural details of a nanocarrier
become more complex, for example, due to the addition of extra
layers, compartments, surface conjugation of biomolecules, and
co-encapsulation of multiple drugs.45 Many anticancer or
antimicrobial agents suffer from solubility issues and are not
easy to encapsulate.
It is not facile to achieve synergism while codelivering agents

via nanocarriers. Stoichiometric considerations with precise
dosimetry are important for synergism,46 and while such a

Figure 5. Isobole showing the various drug interactions in a polymeric
nanocarrier with co-encapsulated drugs “A” and “B” expressed as a
combination index (CI) and calculated from an equation bearing the
half-maximal inhibitor concentrations (IC50) of individual drugs. CI
values of <1, 1, and >1 represent synergism, additivity, and antagonism,
respectively.
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combination is easy to formulate in a vial, it is a difficult task
while co-encapsulating them in nanocarriers. As a process, co-
encapsulation has its own ratios that do not often align with the
ones required for synergism. Striking an optimal balance
between such dosimetric constraints is cumbersome, while
trial and error seem to be the only feasible option. Thus, co-
encapsulated nanoformulations often fail to repeat their
potential during clinical trials. Some modeling studies based
on Loewe additivity and Bliss independence to predict
synergism47 have provided crucial insights, although these
tools need refinement before predicting synergy in a co-
encapsulated nanocarrier.
Not all drug pairs exhibit synergy or demonstrate a preference

for co-encapsulation. While forming a core inside nanocarriers,
the drug molecules are confined within a constrained space, and
such spatial proximity is known to trigger a wide array of
interactions, including the formation of hydrogen bonds, van der
Waals forces, and hydrophobic interactions.48 With maturation,
these interactions alter the biochemical and molecular attributes
of encapsulated drugs, while it is almost impossible to track or
predict these changes. Fluctuations in the biochemistry of the
core in a nanocarrier, including localized aggregation,
precipitation, and disintegration,49 impact the release kinetics
or dosing often in an untoward way.
There is hardly any modeling data reported on the release of

co-encapsulated agents, unlike for the popular models for the
release of encapsulated single drug molecules, such as the
Higuchi,50 Ritger−Peppas,51 and Korsmeyer−Peppas52 models;
unfortunately, there is a void in the field of co-encapsulated
formulations. Some drug pairs, when codelivered, are known to
demonstrate enhanced toxicity with a narrow therapeutic
window.53 It can be particularly harmful in anticancer drugs
where systemic toxicity is high and a further increase in toxicity is
undesirable.
Such intra- or intermolecular interactions and rearrangements

may cause an ionic imbalance inside the nanocarrier, affecting
colloidal stability. Lyophilization of the formulations into
powder form can be a way to address the issue of compromised
stability, although it comes with the caveat of reconstituting into
an injectable form, which remains a challenge in the absence of
surfactants.54 The surfactants categorized as Generally Regarded
As Safe (GRAS) entities provide a limited choice for
pharmacists. Furthermore, working with surfactants changes
the composition of the formulation and may compromise
biocompatibility.55

Challenges Associated with Nanocarriers As DDSs.
The challenges of the current nano-DDSs, especially from a
translational perspective, have been reviewed thoroughly. In a
nutshell, the following points emerge:
(i) Synthesis of nanocarriers with an encapsulated drug is

known for irreproducibility and batchwise variation, including
alterations of surface charge and particle size, which are both
known to influence the behavior of nanocarriers at a biological
interface.56,57 The pharmacokinetic and pharmacodynamic
profiles of such nanoformulations, including release, are prone
to fluctuations, at times remarkably, and can be difficult to
contain.
(ii) Nanocarriers are quickly filtered out of the bloodstream

after parenteral administration by the reticuloendothelial system
(RES).58 The mechanism(s) that govern the triggering of RES
are not well-understood. Rapid adsorption of serum opsonins on
the nanocarriers59 promotes macrophagic phagocytosis, and a
fast sequestration of the injected dose into the liver, spleen, bone

marrow, and lungs ensues. Such filtration of nanocarriers from
blood reduces its bioavailability. Thus, the injected nano-
formulations fail to acquire a therapeutic concentration at the
target sites, resulting in an undermined efficacy. Moreover,
unrestrained phagocytosis by the macrophages may impair their
role as an immune defense mechanism, leaving the host in an
immunocompromised state.60 Surface grafting of hydrophilic
aliphatic polymers, such as PEG, impedes opsonization and
extends the plasma t1/2. However, PEGylation is not easy to
achieve and may require harsh reaction conditions that are
unsuitable for the nanocarriers.61 Moreover, it adds an extra
layer of structural complexity, is known to produce IgM
antibodies,62 induces macrophagic phagocytosis, and may
interfere with release. Alternatives to PEG as molecules of
choice for hydrophilic coating, such as poly(glycerols), poly-
(oxazolines), poly(hydroxypropyl methacrylate), poly(2-hy-
droxyethyl methacrylate), poly(N-(2-hydroxypropyl)-
methacrylamide), poly(vinylpyrrolidone), poly(N,N-dimethyl
acrylamide), and poly(N-acryloylmorpholine) are currently
under investigation.63

(iii) Despite the theoretical potential, targeting cancer tissues
with nanocarriers, both in active and passive ways, has not
yielded encouraging results. Active targeting relies on engaging
various overexpressed receptors on target tissues, for example,
folate receptors in tumors.64 The strategy is to graft a ligand on
the nanocarrier to bind overexpressed receptors and induce
receptor-mediated cellular uptake.65 On the contrary, passive
targeting is due to leaky vasculature in tumors that facilitate
leaching out of the nanocarriers into the tumor parenchyma
causing an intratumoral accumulation, also described as the
enhanced permeability and retention (EPR) effect.66,67 Due to an
unrestricted growth, the demand for oxygen and nutrients in a
tumor tissue remains high, which, in turn, stimulates rapid
angiogenesis under the influence of a gamut of angiogenic
factors, such as the vascular endothelial growth factor. Such brisk
angiogenesis often results in defective vasculature with larger
fenestrations on their walls, which drives the EPR effect. One of
the major reasons behind disappointing outcomes with active
targeting is the masking of the nanocarrier surface groups,
carefully decorated with ligands, with a range of proteins and
other biomacromolecules present in blood by surface
adsorption.68 Thus, the surface chemistry and hydrodynamic
diameters of the nanocarriers keep evolving after mixing with the
blood. As a result, the targeting mechanism is either lost or
markedly reduced. Moreover, blood flows fast in the vascular
tree, more in larger vessels like the aorta than in venules and
capillaries, allowing little time or spatial proximity between the
ligands and receptors to interact.69 In passive targeting, EPR
remains controversial and, to an extent, a misunderstood topic.
There is no denying that the vascular walls inside tumors have
larger intracellular fenestrationsa hallmark of rapid angio-
genesis to cater an increased demand for oxygen and nutrients
by a tissue experiencing unchecked growththat provide
leeway for intravascular components, including particulates, to
exude into the extravascular space.70,71 Thus, the thesis
supporting a raised intratumoral concentration of injected
nanocarriers with an anticipated therapeutic advantage makes
sense. However, the EPR effect is more complex and
unpredictable,72 while the nature of tumor vasculature largely
controls it. Not all tumors exhibit EPR to the same degree: while
highly vascularized carcinomas demonstrate adequate EPR,
relatively less vascularized soft tissue sarcomas do not show
enough of it.73 Similarly, murine tumor models exhibit higher
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EPR than those in larger animals, with negligible impact noted in
humans.74,75 Moreover, often >90% of the injected nanocarriers
is filtered by the RES, leaving only a small fraction (<5%) to
reach the target sites, which, despite EPR, is insufficient for a
therapeutic impact.34

■ INTRODUCTION TO VYXEOS

Vyxeos (previously CPX-351; Jazz Pharmaceuticals, Ireland) is a
liposomal formulation (distearoylphosphatidylcholine, distear-
oylphosphatidylglycerol, and cholesterol at a 7:2:1 molar ratio)
of cytarabine and daunorubicin, two water-soluble anticancer
drugs, encapsulated at a molar ratio of 5:1.43 Other excipients
include copper gluconate, sucrose, and trolamine. The liposomal
particles are ∼100 nm in diameter with a zeta potential of −30
mV.76 Approved by the U.S. FDA in 2017 and EMA in 2018, it is
indicated in therapy- or myelodysplasia-related acute myeloid
leukemia. Each vial contains 44 mg of daunorubicin and 100 mg
of cytarabine as a lyophilized cake that, upon reconstitution in
0.9% saline, gives 2.2 mg of daunorubicin and 5mg of cytarabine
per mL of infusate. The recommended dosing for the first
induction is daunorubicin 44 mg/m2 body surface area (BSA)
and cytarabine 100 mg/m2 BSA on days 1, 3, and 5; for the
second induction, the dosing is daunorubicin 44 mg/m2 BSA
and cytarabine 100 mg/m2 BSA on days 1 and 3; and for the
consolidation, the dosing is daunorubicin 29 mg/m2 BSA and
cytarabine 65 mg/m2 BSA on days 1 and 3. Reconstituted vials
can be stored up to 4 h at 2−8 °C.
The commonly encountered (>10%) side-effects are

myelosuppression, hemorrhage, neutropenia, cardiotoxicity,
hypersensitivity, an overdose of copper, edema, rash, nausea,
diarrhea, colitis, abdominal discomfort, cough, headache,
bacteremia, and chills with a febrile condition; less common
side-effects are deafness, conjunctivitis, xerophthalmia, peri-
orbital edema, dyspepsia, hallucination, and pneumonitis.77

Vyxeos should not be used with other cardiotoxic (e.g.,
doxorubicin) or hepatotoxic agents, and a close monitoring of
cardiac, hepatic, and renal functions is required. In the case of
serious cardiotoxicity or hypersensitivity reactions, the infusion
may have to be suspended. It is contraindicated in pregnancy
based on animal experiments while human trial data are awaited.
A phase III, multicenter, randomized, open-labeled trial

(CLTR0310-301) with Vyxeos (daunorubicin 44 mg/m2 BSA
and cytarabine 100 mg/m2 BSA) infused over 90 min on days 1,
3, and 5 demonstrated a mean (coefficient of variation)
maximum plasma concentration of 26.0 μg/mL for daunor-
ubicin and 62.2 μg/mL for cytarabine, while the mean
(coefficient of variation) areas under the curve were 637 μg·h/
mL for daunorubicin and 1 900 μg·h/mL for cytarabine (day 5).
The volumes of distribution for daunorubicin and cytarabine
were 6.6 and 7.1 L, respectively.78

The plasma t1/2 of daunorubicin and cytarabine were 31.5 h
and 40.4 h, respectively. Upon intravenous administration,
>99% of the daunorubicin and cytarabine remained encapsu-
lated, while the liposomes rapidly accumulated in bone marrow
for internalization by leukemic cells. The renal clearances were
estimated to be 0.16 L/h and 0.13 L/h for daunorubicin and
cytarabine.79 Urinary excretion accounted for 9% of the
administered dose for daunorubicin and 71% for cytarabine
(along with its inactive metabolite 1-β-D-arabinofuranosylur-
acil).

■ NANOCARRIERS WITH CO-ENCAPSULATED
ANTICANCER DRUGS

Liposomes. Liposomes are spherical vesicles (100−200 nm)
surrounded by a lipid bilayer and have emerged as a successful
breed of lipid nanocarrier (LNC) for drug-delivery purpo-
ses.80,81 The bilayer is typically composed of phospholipids, such
as phosphatidylcholine (PhC), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phospho-
choline (DOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
(DSPE), 1,2-dioleoyl-3-trimethylammonium propane
(DOTAP), and cholesterol.82 As a nanoconstruct, liposomes
may encapsulate hydrophilic molecules at their core and
hydrophobic molecules (which includes most of the anticancer
drugs) into the bilayer, thus expanding the landscape of
encapsulable molecules.
Liposomal formulations have emerged as a popular platform

for drug delivery due to their superior bioavailability and
biocompatibility. The synthetic techniques include thin-film
hydration, solvent and reverse-phase evaporation, membrane
extrusion, probe ultrasonication, hot and high-pressure homog-
enization, spray-drying, and ether injection.83,84 With advance-
ments in synthetic techniques, better control over their size and
surface characteristics can be exercised nowwith the preparation
of trigger-release formulations.
Some liposomal formulations are surface-functionalized with

hydrophilic molecules (e.g., Doxil,85,86 a PEGylated liposomal
formulation of doxorubicin) to evade macrophagic phagocytosis
and extend the circulation time. Approved liposomal for-
mulations of anticancer drugs other than Doxil, such as
DaunoXome (daunorubicin) and DepoCyt (cytarabine), enjoy
a decent market share,87 while Vyxeosthe only approved co-
encapsulated nanoformulationis also liposomal. Liposomes
have been implicated in both active and passive targeting of
cancer tissues with an appreciable EPR effect.88

Co-encapsulation of multiple anticancer drugs, for example,
anthracycline derivatives (e.g., doxorubicin) and taxanes (e.g.,
paclitaxel and docetaxel), to achieve synergism is a common
practice.89 Other anticancer agents, such as verapamil, a P-gp
efflux pump inhibitor used to reverse MDR in cancer cells, and
platinum-bearing drugs (e.g., carboplatin and cisplatin) or
paclitaxel,90 are also co-encapsulated into liposomal formula-
tions.
Instead of multiple anticancer agents, a combination of

anticancer drugs and biomacromolecules can be chosen for co-
encapsulation into liposomes. For example, genetic materials,
such as DNA, small interfering RNA (siRNA), interleukins
(ILs), and plasmid DNA (pDNA), have been co-encapsulated
with anticancer agents.91 Typically, the peptides, proteins, or
genetic materials remain encapsulated within the hydrophilic
cores of the liposomes. It is worth noting here that cationic
liposomes were prioritized for the encapsulation of anionic
nucleotides. The cationic charge provides stability to the anionic
core via electrostatic interactions and prevents enzymatic
degradation.
Some encapsulated liposomal formulations were modified

with antiangiogenic molecules to target the overexpressed αvβ3
integrin receptors in the flourishing but defective neovasculature
in TME. For example, liposomes grafted with Arg-Gly-Asp
(RGD) peptides were used to target tumor cells via binding with
αvβ3 receptors.

92,93 Similarly, liposomes modified with an Asp-
Gly-Arg (NGR) motif could target the CD13/aminopeptidase
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N (APN) receptor isoforms that are overexpressed in the
TME.94 Furthermore, PEGylation on co-encapsulated lip-
osomes has also been reported.
Other than delivering anticancer drugs, liposomal formula-

tions were used to co-encapsulate therapeutic agents for
molecular targeting of cancer cells, for example, in nonsmall
cell lung cancer (NSCLC), where tyrosine kinase inhibitor
(TKI) molecules (e.g., alectinib, crizotinib, ceritinib, brigatinib,
and lorlatinib) have gained popularity.95 Gefitinib was the first
approved TKI to target epidermal growth factor receptor
(EGFR) and is used in NSCLC patients with EGFR
mutations.96 However, almost half of the treated patients
eventually develop resistance.
A liposomal formulation prepared by thin-film hydration with

co-encapsulated gefitinib and vorinostat,97 a histone deacetylase
inhibitor, at a ratio of 1 to 0.12 (w/w) reversed the resistance
demonstrated by the tumor-associated macrophages (TAMs)
against gefitinib by a combination of repolarization of the
protumor M2 macrophagic (Φ) phenotype to antitumor M1Φ
and degradation of the T790 M mutation of EGFR
(EGFRT790M). Another liposomal formulation (156 nm) of co-
encapsulated simvastatin and gefitinibmodified with anti-PD-L1
nanobody repolarized the M2Φ to M1Φ and reversed the
gefitinib resistance.98 Some examples of co-encapsulation of
anticancer drugs into liposomes are cited in Table 1.
Polymeric Nanocarriers. With advancements in polymer

engineering, many polymeric nanocarriers (PNCs) have been
developed as DDSs.99 While many of these PNCs are composed
of amphiphilic block copolymers, often with PEGylation to
impart stealth characteristics, natural and biodegradable
polymers like dextran,100 and chitosan101 are emerging fast. In
aqueous dispersions, the amphiphilic polymers, such as
PEGylated poly(lactic acid) (PEG−PLA), PEGylated poly-

(lactic-co-glycolic acid) or PEG−PLGA, and PEGylated DSPE
(PEG−DSPE), form a core−shell PNC with opportunities for
co-encapsulation.102

Preparing PNCs is relatively facile compared to the liposomes,
while the terminal groups present exciting opportunities for
bioconjugation, for example, to peptides,103 folic acid,104 or
trastuzumab,105 to target human epidermal growth factor
receptors for homing of the PNCs into the tumors. In addition,
the PNCs can be functionalized with pH-sensitive cleavable
linkages (e.g., hydrazone bond) that, upon sensing an acidic
environment inside the tumor parenchyma, will trigger
disintegration of the PNC and release the co-encapsulated
drugs.106 Furthermore, PNCs with different particle sizes and
surface chemistry can be prepared with subtle adjustments in
reaction conditions. Three categories of PNCs have been used
so far as DDSs.
(i) Polymeric micelles: These are prepared by aggregating

self-assembling amphiphilic copolymers in aqueous dispersions
at a higher concentration than the critical micellar concen-
tration.107 They enjoy a higher loading compared to liposomes,
while the core can be used for co-encapsulating theranostic
agents. The surfaces can be functionalized with various ligands
for targeted delivery. A PEGylated micellar formulation of
paclitaxel (Genexol PM; particle size 23.0 ± 4.5 nm, zeta
potential −8.1 ± 3.1 mV), indicated in breast cancer, NSCLC,
and ovarian cancer,108 received approval in South Korea in 2007.
The amphiphilic polymer used was a low molecular weight
diblock copolymer monomethoxy poly(ethylene glycol)-block-
poly(D,L-lactide).
(ii) Polymeric nanoparticles (PNPs): Amphiphilic copoly-

mers with relatively smaller hydrophilic and longer hydrophobic
blocks tend to form more solid particulate colloidal dispersions
in the form of PNPs.109 Here, the core is a dense matrix of

Table 1. Some Examples of Co-encapsulation of Anticancer Agents in Liposomesa

co-encapsulated anticancer agents composition of liposome size (nm)
surface

properties target tissue status ref

DOX, MLP HSPhC, mPEG2000-DSPhE, cholesterol,
MLP conjugate

110−130 PEG2000ylated breast cancer in vitro, in
vivo

115

DOX, RAN-IP DPPG, DOPE, cholesterol 139 ± 21 unconjugated breast cancer in vitro, in
vivo

116

cisplatin, mifepristone HSPhC, m-PEG2000-DSPhE, cholesterol 109 ± 5.4 PEG2000ylated cervical cancer in vitro, in
vivo

117

DOX, CUR cholesterol, egg lecithin 100−140 Tuftsin-
conjugated

cervical cancer in vitro, in
vivo

118

cisplatin, CUR DPPC 100 unconjugated breast cancer in vitro 119
DOX, itraconazole soy PhC, cholesterol 133 pluronic P123-

coated
breast cancer in vitro, in

vivo
120

DOX, MiR-101 (tumor suppressor
micro-RNA)

DOTAP, mPEG2000-DSPhE, PEG-
bisamine

160 unconjugated hepatocellular
carcinoma

in vitro, in
vivo

121

PTX, resveratrol PhC, mPEG2000-DSPhE 50 PEG2000ylated breast cancer in vitro, in
vivo

122

DOX, Bmi1 siRNA DOTAP, mPEG2000-DSPhE, PEG-
bisamine

130 folate-
conjugated

breast cancer in vitro, in
vivo

123

DOX, SATB1 shRNA cholesterol, DPPC, DC-Chol
(thermosensitive)

238.16 ± 20.6 unconjugated gastric cancer in vitro, in
vivo

124

DOX, irinotecan DSPC, cholesterol 100 unconjugated ovarian cancer in vitro, in
vivo

125

aAbbreviations: Ald, alendronate; CUR, curcumin; DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol; DOX, doxorubicin;
DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPE, 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine; DOPG, 1,2-dioleoyl-sn-glycero-3-
phospho-(19-rac-glycerol); DOTAP, 1,2-dioleoyl-3-trimethylammonium propane; DPPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DPPG,
1,2-dipalmitoyl-sn-glycerol-3-phosphate-rac-(1-glycerol); DSPC, distearoyl-sn-glycero-3-phosphocholine; HSPhC, hydrogenated soybean phospha-
tidylcholine; mPEG2000-DSPhE, methoxypolyethylene glycol2000-distearoylphosphatidylethanolamine; MLP, mitomycin-C lipidic prodrug; MPB-
PE, maleimide-headgroup lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; PEG, polyethylene glycol; PhC, phosphatidylcholine; PTX,
paclitaxel; RAN-IP, Ran-RCC1 inhibitory peptide; shRNA, small hairpin RNA; siRNA, small interfering RNA; TRAIL, tumor necrosis factor-
related apoptosis-inducing ligand.
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polymeric chains where encapsulable molecules remain
entangled, dissolved, or conjugated. The size, stability, and
physicochemical properties of the PNPs can be tuned by varying
the reaction conditions, including temperature, ionic strength,
and pH. Compared to the liposomes and polymeric micelles,
PNPs are more stable and offer higher loading.
(iii) Polymersomes: These are artificial vesicles (50 nm−5

μm) prepared by self-assembly of amphiphilic copolymers.110

Like liposomes, polymersomes are also surrounded by a bilayer,
although, unlike liposomes, the bilayer is polymeric. Moreover,
compared to liposomes, they are colloidally more stable, have
thicker shells, and are less immunogenic.111,112 The polymer-
some cores are often aqueous and may encapsulate a range of
biomacromolecules, including genetic materials, therapeutics,
enzymes, proteins, and peptides. The polymeric bilayer is more
flexible than liposomes and allows selective permeation of
hydrophilic and hydrophobic molecules with opportunities for
functionalization to achieve targeted delivery. Polymersomes
were also successfully coated with hydrophilic membranes to
prolong their circulation.113 They are also known to be less
immunogenic than liposomes.114

Both drug−drug and drug−genetic material combinations
were co-encapsulated in PNCs. An effective strategy toward
encapsulation in PNCs is to conjugate the drug(s) with the
polymer backbone. As a result, the drug molecules are retained
within the cores as the copolymeric chains fold during self-
assembly. A combination of hydrophilic doxorubicin and
hydrophobic paclitaxel is an example of co-encapsulable
anticancer agents for PNCs,126 while other anticancer drug
combinations (Table 2) are reported as well. Notable co-
encapsulated agents in PNCs include efflux pump inhibitors,127

siRNA,128 and microRNA.129 Combination therapy with co-

encapsulated anticancer agents in PNCs has overall produced
encouraging results with increased lethality toward cancer cells,
alleviated toxicity, and, in certain instances, reversal of MDR. A
broad range of co-encapsulated PNCs is currently going through
various phases of clinical trials.

Dendrimers. These are monodisperse, symmetrical, and
artificial macromolecules that can be synthesized with high
precision and predefined geometry, size, molecular weight, and
surface properties.130,131 Dendrimers are <100 nm in size and
typically demonstrate arboreal branching patterns stacked as
layers that determine their generation, denoted as G.132 A high
surface charge density in dendrimers favors bioconjugation to
therapeutic molecules that make them conducive for target-
ing.133 The cores of lower generation (G1−G3) dendrimers are
more accessible and can be used for co-encapsulation of
hydrophobic drugs.
The cationic G5 polyamidoamine (PAMAM) dendrimers

have emerged as popular DDSs for co-encapsulation and have
demonstrated an appreciable EPR effect in tumors.134,135

Moreover, the cationic charge facilitates cellular uptake,136

with PEGylation as a viable option.137 Hydrophobic and
electrostatic interactions usually govern drug loading in
dendrimers. An example of co-encapsulation in dendrimers is
the combination of paclitaxel and alendronate (Ald), a
bisphosphonate indicated in osteoporosis and metastatic bone
tumors.138 Other such combinations are also known (Table 3).

■ CO-ENCAPSULATED NANOCARRIERS FOR
PHOTOTHERMAL THERAPY

Inducing localized hyperthermia (46−60 °C) to scorch the
cancer cells is an emerging field in nanomedicine.149 A raised
temperature eliminates the cancer cells and improves the

Table 2. Some Examples of Co-encapsulation of Anticancer Agents in PNCs

co-encapsulated anticancer agents composition of PNC size (nm) surface properties target tissue status ref

DOX, epoxomicin PLGA 162.1−179.6 unconjugated breast cancer in vitro 139
PTX, lapatinib PLA−PEG 100 (filomicelles), 20

(spherical micelles)
PEG5000ylated breast cancer in vitro 140

gefitinib, vorinostat hyaluronan, PBLG 30 unconjugated lung cancer in vitro, in
vivo

141

DOX, anti-BCL-2 siRNA PEG−PLL−PAsp(DIP)
(pH-sensitive)

60 PEGylated hepatic carcinoma in vitro, in
vivo

142

DOX, DTX mPEG−PCL (redox-
sensitive)

223.7 mPEG2000ylated breast cancer in vitro 143

DOX, IFN-γ PLGA, Pluronic F127 100 PEO-conjugated melanoma in vitro, in
vivo

144

DOX, recombinant human IL-2 trimethyl chitosan (pH-
sensitive)

200 folate-conjugated hepatic carcinoma in vitro, in
vivo

145

DOX, miRNA-34a (tumor
suppressor micro-RNA)

PEG2000-CLV (MMP2-
sensitive)

15 PEG2000ylated fibrosarcoma in vitro 146

DOX, P-gp siRNA FA/m-PEG-b-P(LG-Hyd)-
b-PDMAPMA

196.8 folate-conjugated breast cancer in vitro 147

TMX, quercetin PLGA 185.3 ± 1.20 unconjugated breast cancer, colon
cancer

in vitro, in
vivo

148

Table 3. Some Examples of Co-encapsulation of Anticancer Agents in Dendrimersa

co-encapsulated anticancer
agents

composition of
dendrimer size (nm) surface properties target tissue status ref

DOX, siMDR-1 (siRNA) PAMAM 219 PEG2000-DOPE conjugated ovarian cancer, breast cancer in vitro 163
PTX, siRNA PAMAM 145.6 PEG4000ylated melanoma fibrosarcoma in vitro, in vivo 164
PTX, Ald dendritic PEG 200 PEGylated bone cancer in vitro, in vivo 138
DOX, siRNA polylysine 55−128 PEG2000-RGD conjugated glioblastoma multiforme in vitro 165

aAbbreviations: Ald, alendronate; DOX, doxorubicin; PAMAM, polyamidoamine; PEG, polyethylene glycol; PTX, paclitaxel; siRNA, small
interfering RNA.
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permeability of nanocarriers in tumors, resulting in a stimulated
uptake of larger nanocarriers (>400 nm) with higher loading.150

Co-delivery of chemotherapy with hyperthermia therefore
augments the lethality toward cancer cells. A wide range of
metallic NPs (e.g., iron oxide, gold, cobalt, nickel, and
manganese) and fullerenes (e.g., carbon nanotubes) have been
used for such cancer tissue ablation.151,152 Iron (FeNPs) and
gold (GNPs) NPs are prioritized over other metallic particles
due to their superior biocompatibility.153 Indocyanine dyes
(e.g., IR825) that absorb near-infrared light have also been used
for photothermal therapy (PTT).154 Other PTT agents under
investigation are diketopyrrolopyrrole-based polymer155 and
polydopamine.156 These agents radiate heat when exposed to
energy-bearing stimuli, including ultrasonic waves, radiowaves,
near-infrared light, laser, and microwaves. However, solubility
and stability remain an issue with metallic NPs, including
FeNPs, and require further surface passivation with hydrophilic
molecules, such as polymers, dendrimers, and lipids.157,158

Liposomes and polymeric micelles currently lead the
repertoire of nanocarriers that have been used to co-encapsulate
chemotherapeutic and PTT agents. Intriguingly, some metallic
NPs, such as superparamagnetic iron oxide NPs (SPIONs), are
excellent contrast agents for magnetic resonance imaging.159,160

Thus, a codelivery of these NPs with chemotherapeutic agents
adds an extra modality of tumor imaging with MRI to
chemotherapy, and PTT. Thermosensitive liposomes are
particularly exciting from this perspective as a subtle increase
in temperature (39−42 °C) also increases their permeability and
facilitates the release of an encapsulated drug payload. In the
case of thermosensitive PNCs, polymers like poly(N-isopropy-
lacrylamide) (PNIPAAm) are popular choices.161,162 A range of
anticancer drugs, such as doxorubicin and paclitaxel, have been
co-encapsulated with PTT agents in nanocarriers (Table 4).
Many such co-encapsulated nanocarriers were surface-function-
alized with PEG to impart stealth attributes or ligands to target
overexpressed receptors at tumor sites.

■ CO-ENCAPSULATED NANOCARRIERS FOR
PHOTODYNAMIC THERAPY

The principles of photodynamic therapy (PDT) rely on
photosensitizers, such as chorins, porphyrins, phthalocyanines,
bacteriochlorines, fullerenes, semiconductor materials and
polyelectrolytes, and dyes that absorb near-infrared light, such
as indocyanine green.171,172 These photosensitizers emit
reactive oxygen species (ROS) upon exposure to light of a
specific wavelength. The generation of oxygen radicals is
endorsed by energy transfer from the illuminated light to the

photosensitizer molecules. A major advantage of PDT is the
localized production of ROS exerting lethal action to cancer cells
in the vicinity,173 while it is employed in managing gastric,174

lungs,175 and cervical176 cancers. Such toxic impact of ROS on
cancer cells is mediated by a plethora of mechanisms, including
apoptosis.177 However, nonspecific accumulation of photo-
sensitizers remains an issue, while inactivation by the endothelial
cells and erythrocytes curtails the efficacy of PDT.178

Nanocarriers with co-encapsulated anticancer agents and
photosensitizers have been reported. The aim of preparing such
formulations is tomaximize therapeutic advantage by combining
chemotherapy with PDT. In one such polymeric nanocarrier,
cisplatin was conjugated to zinc and formed the core, while
pyrolipid (photosensitizer) was intercalated into the shell.179

The nanoformulation showed superior performance in regress-
ing tumor volume by promoting apoptosis and necrosis with
longer circulation times, and higher tumor accumulation in a
human head and neck cancer SQ20B xenograft murine model.
Similarly, polymeric micelles (<50 nm) with co-encapsulated

docetaxel and IR820 dye were prepared and surface-grafted with
a tumor homing peptide called Lyp-1.180 A poly(ethylene imine)
derivative of the block copolymer was used to obviate the short
in vivo lifespan (t1/2 = 185 min) of IR820. When illuminated
with a laser (λex = 808 nm, power 2.5 W/cm2), the formulation
inhibited growth and metastasis in a mice breast tumor model.
In a similar core−shell nanocarrier, gold nanorods formed the
cores while the anticancer drug camptothecin was conjugated to
the metal−organic framework shell.181 These nanocarriers
showed adequate drug loading and release while acting as a
combined platform for PTT and PDT with demonstrable
therapeutic benefit in a female BALB/c mice tumor model.

■ NANOCARRIERS WITH CO-ENCAPSULATED
ANTIMICROBIAL AGENTS

A gamut of nanocarriers have been utilized for co-encapsulating
antimicrobials agents, and the primary purpose of designing
such nanocarriers is to achieve codelivery and, subsequently,
synergism. Furthermore, it aims to address the current
challenges, including poor bioavailability, lack of patient
compliance, and systemic toxicity, as well as to inhibit the
MDR strains.182,183 The popular nanocarriers for co-encapsu-
lation of antimicrobials are either lipid-based or polymeric.184

The LNCs typically include liposomes, solid-lipid nanocarriers
(SLNs), nanostructured lipid carriers (NLCs), and niosomes.185

Such LNCs are biocompatible and can be used to encapsulate
both hydrophilic and hydrophobic molecules.186

Table 4. Some Examples of Co-encapsulation of Anticancer and PTT Agents in Nanocarriersa

co-encapsulated anticancer
agents composition of NC

size
(nm)

surface
properties target tissue status ref

DOX, gold-coated iron oxide
NP

PSMA 206 unconjugated colon cancer in vitro, in
vivo

166

CPT, PTT molybdenum oxide hollow
nanosphere

142 PEG4000ylated cervical cancer, breast cancer, pancreatic
cancer

in vitro, in
vivo

167

artemisinin, Prussian blue core−shell dual metal−organic
framework

190 unconjugated cervical cancer in vitro, in
vivo

168

DOX, ICG, manganese polydopamine 129 PEG5000ylated breast cancer in vitro, in
vivo

169

DOX, PFTTQ PLL-g-PEG 80 PEG2000ylated breast cancer in vitro 170
aAbbreviations: DOX, doxorubicin; ICG, indocyanine green; NP, nanoparticle; PEG, polyethylene glycol; PFTTQ, poly[9,9-bis(4-(2-
ethylhexyl)phenyl)fluorene-alt-co-6,7-bis(4-(hexyloxy)phenyl)-4,9-di(thiophen-2-yl)thiadiazolo quinoxaline]; PLL, polylysine; PSMA, poly-
(styrene-alt-maleic acid).
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Table 5. Some Examples of Co-encapsulation of Antimicrobial Agents in Nanocarriersa

co-encapsulated agents composition of nanocarrier size (nm)
surface

properties target microorganism status ref

Antibacterial agents
ciprofloxacin, betamethasone DPPC, PG, PhC, wheat germ agglutinin,

cyclodextrin
100 unconjugated Aggregatibacter

actinomycetemcomitans
in vitro 219

amikacin, moxifloxacin alginate-entrapped PLGA 312−365 unconjugated Mycobacterium
tuberculosis

in vitro 220

isoniazid, N-dodecanoyl
isonicotinohydrazide

phospholipid 130 unconjugated Mycobacterium
tuberculosis

in vitro 221

ciprofloxacin,
chlortetracycline, gentamicin

chitosan 14−24 unconjugated Staphylococcus aureus,
Escherichia coli

in vitro 222

clotrimazole, silver Compritol 888 ATO 124.1 ± 2.5 unconjugated Staphylococcus aureus in vitro 223
Antiviral agents
tenofovir, alafenamide,
elvitegravir

PLGA, PVA, pluronic F127 190.2 ± 2.3 unconjugated HIV in vivo 224

lopinavir, ritonavir, tenofovir DSPC, mPEG−DSPE 69.0 ± 8.3 unconjugated HIV in vivo 225
lopinavir, ritonavir oleic acid, TPGS, aeroperl 300 158 unconjugated HIV in vivo 226
nevirapine, saquinavir egg PhC, DSPE−PEG, cholesterol 173 ± 7 anti-CD4

conjugated
HIV in vitro 204

Antiparasitic agents
quinine, curcumin poly(ε-caprolactone), caprylic triglyceride,

Tween 80, lipoid S45
200 unconjugated Plasmodium falciparum in vitro, in

vivo
227

artemether, lumefantrine glyceryl dilaurate, oleic acid, capmul MCM,
Tween 80, solutol HS 15

64.4 ± 8.6 unconjugated Plasmodium berghei in vitro, in
vivo

228

artemether, clindamycin,
lumefantrine

glyceryl dilaurate, oleic acid, capmul MCM,
Tween 80, solutol HS 15

45 ± 10,
64.4 ± 8.6

unconjugated Plasmodium berghei in vitro, in
vivo

229

aAbbreviations: DPPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPC, distearoyl-sn-glycero-3-phosphocholine; DSPE−PEG, PEGylated 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine; mPEG2000−DSPE, methoxy polyethylene glycol2000-distearoyl phosphatidylethanolamine; PhC,
phosphatidylcholine; PEG, polyethylene glycol; PG, phosphoglycerol; PLGA, poly(lactic-co-glycolic acid); PVA, poly(vinyl alcohol); TPGS, D-α-
tocopheryl polyethylene glycol succinate.

Figure 6. Scheme showing the various stages (1−9) of the HIV lifecycle that the ARVs co-encapsulated in nanocarriers inhibit while aiming to achieve
synergism. Abbreviations: CCR5, C−C chemokine receptor type 5; CD4, cluster of differentiation 4; INSTI, integrase strand transfer inhibitor;
NNRTI, non-nucleoside reverse transcriptase inhibitor; and NRTI, nucleoside reverse transcriptase inhibitor.
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The SLNs are composed of biocompatible lipids (e.g., stearic
acid, palmitic acid, oleic acid, glycerol monostearate, and
soybean oil) and are suitable to deliver lipophilic drugs.187,188

Although excellent nanocarriers with decent encapsulation
prowess, SLNs lack stability and are known for leakage. On
the contrary, the NLCs, a modified version of SLNs with cores
composed of solid and liquid lipids, exhibit higher stability,
longer shelf life, and lesser leakage.189 The SLNs and NLCs are
prepared by various techniques, such as probe sonication,
solvent evaporation, hot and high-pressure homogenization,
ultrasonic emulsion evaporation, and spray-drying. Niosomes
are spherical lipid vesicles composed of biocompatible nonionic
surfactants (e.g., Tween 20, 60, and 80 and Span-20, 40, 60, and
80) and cholesterol while prepared by reverse-phase evapo-
ration, lipid-film hydration, microfluidics, and ether injection.190

The PNCs, on the other hand, exhibit superior stability and
less leakage and offer finer tuning of particulate size, surface
chemistry, polydispersity, and loading by altering the length of
the polymer chains, organic solvents, and surfactants.191 For
amphiphilic copolymers, co-encapsulation of both hydrophilic
and hydrophobic molecules can be achieved by conjugation to
the polymer blocks. Furthermore, with greater control over
surface chemistry, PNCs offer opportunities for coating, for
example, with bioadhesive lectin192 or bioconjugation.
Nanocarriers with Co-encapsulated Antibacterial

Agents. A significant fraction of such co-encapsulated nano-
carriers was developed to target bacterial strains known for drug
resistance,193,194 such as Staphylococcus aureus, Mycobacterium
tuberculosis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella
pneumoniae, and Chlamydia trachomatis (Table 5). Especially in
Mycobacterium tuberculosis, co-encapsulation of up to four
antitubercular drugs, viz., isoniazid, rifampicin, pyrazinamide,
and streptomycin, was achieved using liposomes.195 Co-
encapsulation of isoniazid, rifampicin, and pyrazinamide has
also been possible with PNCs.196 Interestingly, ethambutola
popular first-line drug in tuberculosiswas excluded from co-
encapsulation because it destabilized the nanocarriers due to its
hygroscopic nature,197 further emphasizing the importance of
molecular chemistry in co-encapsulation.

Nanocarriers with Co-encapsulated Antiviral Agents.
Viral diseases, including human immunodeficiency virus (HIV),
hepatitis virus, human papillomavirus (HPV), herpes virus, and
influenza virus, continue to cause suffering on a global scale.198

Perhaps the latest relevant example is SARS-CoV-2, which has
caused a pandemic and disrupted the fabric of society. Mutated
strains continue to emerge, necessitating research on establish-
ing new delivery platforms with improved efficacy and spectrum
coverage.
Co-encapsulated nanocarriers have provided fresh oppor-

tunities for improved drug delivery in antiviral therapy, although
the published research tends to gravitate toward anti-HIV
therapy (Table 5). Such co-encapsulated nanocarriers typically
contain multiple antiretrovirals (ARVs) to achieve a system for
combination antiretroviral therapy199 or highly active antire-
troviral therapy.200 Themotive behind co-encapsulating ARVs is
to inhibit the reproductive cycle of HIV at various stages201 and
achieve synergism (Figure 6). Other desirable goals are to
improve bioavailability and penetration into tissues while
addressing toxicity, untoward drug interactions, and emergence
of resistance.202

Both liposomes and SLNs have been used to co-encapsulate
ARVs, while a range of lipids, such as DSPC, methoxy-
PEGylated DSPC (mPEG-DSPC), and methoxy-PEGylated
DSPE (mPEG-DSPE), were used in preparing them with
poloxamer 188 and Tween 80 as surfactants.203 A broad
spectrum of ARVs, including the nucleoside reverse-tran-
scriptase inhibitors (e.g., lamivudine and zidovudine), nucleo-
tide reverse-transcriptase inhibitors (e.g., tenofovir), non-
nucleoside reverse-transcriptase inhibitors (e.g., nevirapine
and efavirenz), and protease inhibitors (e.g., lopinavir, ritonavir,
and saquinavir), have been co-encapsulated with an encapsula-
tion efficiency of ∼90%. Some of these co-encapsulated LNCs
have demonstrated favorable pharmacokinetics in vivo,
including prolonged circulation and sustained release. Surface
functionalization with targeting ligands, such as an anti-CD4
antibody, has also been reported.204

PLGA has emerged as a popular material for co-encapsulating
various ARVs in PNCs,205 with an encapsulation efficiency of
>80%. Investigations on peripheral blood mononuclear cells and

Figure 7. (A) Scheme showing the conventional surface-functionalized monophasic particle with a more homogeneous structural fabric in comparison
to abiphasic Janus particle that elicits demarcation between its two phases, including physicochemical attributes and surface conjugation. (B) Janus
particles prepared with varied shapes (e.g., snowman, mushroom, raspberry, ellipsoid, and disc) where the two distinct phases are oriented differently
to each other.
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monocyte-derived macrophages have confirmed adequate
cellular uptake of the PNCs in cells with release detected over
a prolonged duration.206 A sustained-release thermosensitive gel
of pluronic F127/F68 with impregnated co-encapsulated PLGA
nanocarriers containing raltegravir and efavirenz was developed
for intravaginal delivery for prophylaxis against HIV.207 Other
than PLGA, polymers like PLA and polycaprolactone have also
been used for co-encapsulating ARVs.
Nanocarriers with Co-encapsulated Antiparasitic

Agents. Co-encapsulated nanocarriers have been used to
deliver antimalarial agents against Plasmodium falciparum and
Plasmodium berghei. Such nano-DDSs deserve attention due to
the global impact of malaria and the mortality, morbidity, and
financial burden it causes. Unfortunately, considerable resist-
ance has emerged against multiple antimalarials, such as
artemisinin.208 Moreover, antimalarial drugs continue to suffer
from poor solubility and bioavailability in addition to systemic
toxicity.209 A combination therapy via co-encapsulated nano-
carriers may address these challenges. A range of LNCs (e.g.,
liposomes and NLCs) and PNCs have been employed to co-
encapsulate multiple antimalarial agents, including artemisinin,
curcumin, primaquine, artemether, quinine, and lumefantrine
(Table 5).

■ JANUS NANOPARTICLES
The Janus nanoparticles (JNPs) are an exciting breed of
particulate DDSs that can codeliver drugs with multiple drug
molecules encapsulated within the same particle.210 Prepared
first as Janus beads in 1989,211 they were named Janus particles
by Pierre-Gilles de Gennes (Nobel Laureate in Physics, 1991)
due to their structural similarity to the Greek god Janus with two
faces looking at opposite directions.212 Like the Greek God
Janus, the JNPs harbor two or more dissimilar segments within
the same particle (Figure 7A). Hence, unlike the conventional
nano-DDSs, JNPs are anisotropic. Over the last two decades, the
synthesis and definition of JNPs have evolved into new domains
where, at times, more than two segments are contained by the
same particle.213 The varied segments in the JNPs differ by their
physicochemical properties, including hydrophilicity, magnet-
ism, and optoelectronic behavior.214

The existence of varied compartments within the same
particle enables co-encapsulation of different drugs with
controlled engineering to regulate drug release in synchrony
or a phasic manner. Further opportunities for surface
modification can add ligand-based targeting ability to pathologic
sites as well. Currently, JNPs of multiple shapes (e.g., disc,
snowman, dumbbell, rod, raspberry, irregular, and mushroom;
Figure 7B) and compositions (polymeric, inorganic, and a
combination of polymeric−inorganic) are being prepared
through a diverse range of synthetic routes, including
immobilization, phase separation, self-assembly, microfluidics,
surface-controlled nucleation and growth, and emulsion
polymerization.215 Apart from drug delivery, JNPs are currently
used for catalysis,216 biomedical imaging,217 and biosensing218

purposes, although such uses will not be included in this
account.
One of the key advantages of JNPs over conventional

isotropic nano-DDSs like liposomes is their ability to co-
encapsulate therapeutic molecules of diverse characteristics,
such as hydrophilic doxorubicin and hydrophobic paclitaxel, in
the same particle.230 With finer tuning of the segments of the
JNPs, including surface functionalization,231 release properties
of the co-encapsulated drugs, often with disparate properties,

can be controlled. In addition, such co-encapsulated JNPs can be
rendered to be trigger-sensitive DDSs where release is facilitated
due to pH,232 temperature,233 or a combination of both.234

These attributes highlight the suitability of JNPs in codelivering
multiple therapeutic molecules in cancer tissues.
JNPs prepared by fluidic nanoprecipitation with two segments

composed of different PLGA polymers were used to co-
encapsulate paclitaxel and doxorubicin in the same particle. The
paclitaxel demonstrated a burst release, although doxorubicin
showed similar release kinetics to monophasic NPs with
encapsulated doxorubicin.230 Polymeric dumbbell or snow-
man-shaped JNPs prepared by distillation precipitation
polymerization and seeded emulsion polymerization were
used to co-encapsulate doxorubicin and the anti-inflammatory
drug ibuprofen in its two hemispheres composed of poly(2-
hydroxyethyl methacrylate) (PHEMA) and poly(2-dimethyla-
minoethyl methacrylate) (PDAMEMA), respectively.235 It is
worth noting here that, while PHEMA is a thermosensitive
polymer,236 PDAMEMA is pH-sensitive.237 Thus, a dual-
release-modality particle with two co-encapsulated drugs of
distinct chemical properties could be prepared. Release studies
elicited a higher release of doxorubicin than ibuprofen at pH
values of 5.3 and 7.4, while the cumulative release for ibuprofen
surpassed doxorubicin at pH 7.4. Polymer−lipid JNPs loaded
with doxorubicin and curcumin showed synergistic toxicity in
vitro and beneficial effects in an orthotopic murine model in
vivo.238

■ PERSPECTIVES
The encapsulation process is thermodynamically challenging
because it forces molecules to be enclosed into a smaller core
wrapped within a shell. The challenge increases further while
encapsulating within nanocarriers due to their minuscule sizes.
The tiny cores of nanocarriers induce cohabitation of the drug
molecules with temporospatial proximity. Such narrow separa-
tion frequently gives rise to undue and unpredictable intra- and
intermolecular interactions resulting in localized denaturation,
aggregation, ionic exchange, quenching, rearrangements, and
ripening (e.g., Ostwald ripening) with a deleterious impact for
stability, release kinetics, and, above all, therapeutic im-
pact.239,240 Moreover, it converts each nanocarrier into a de
facto nanoreactor,241 where the co-encapsulated molecules
interact with the shell as part of such an interactive milieu.
The 3D nanoscale confinement further adds to the reactivity,
unpredictable stability, and poor control over burst release
noted in many co-encapsulated nanocarriers. Hence, not every
set of molecules can be co-encapsulated, and a prior assessment
of co-encapsulability is warranted.
A thorough characterization of the molecules, both as a solo

entity and while in proximity to other therapeutic molecules, is
of utmost importance. It is essential to evaluate the type of
reactions a set of molecules may trigger when in propinquity to
various therapeutically relevant molecules. The compatibility of
the co-encapsulable molecules needs to be high with little or no
compromise of therapeutic effects. A systematic choice of in
vitro, ex vivo, and in vivo protocols must be made to gather data
before making choices for co-encapsulation or narrowing down
the options upon screening a large set of molecules. Such pre-
encapsulation data are vital to discard incompatible molecular
combinations and select only those with the potential for a
fruitful co-encapsulation and, hopefully, translation.
Aiming for synergism adds a further layer of complexity as co-

encapsulation is not only an art of bringing molecules together
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but also a craft of achieving synergism through reciprocity. The
term reciprocity in the case of co-encapsulated molecules depicts
a cohabitation within nanocarriers that is not endangered with
molecular interactions, at least not the ones that negatively affect
their therapeutic impact or give rise to any cross-resistance,
while maintaining adequate molecular integrity followed by a
synchronized release with an opportunity for synergism. In other
words, the aim of co-encapsulation is not only to achieving
codelivery but rather to deliver at the right place, right dose, and
right time. This is exactly where the major challenge lies.
Modeling systems are now available to predict synergism

within a drug or other molecular combinations.242−244 Such in
silico tools are evolving fast and are recommended for screening
purposes. Understanding the physicochemical attributes of
encapsulable molecules based on molecular descriptors245−247

can be a facile way to estimate the encapsulability, solubility,
stability, and intermolecular interactions. Some online tools to
calculate molecular descriptors, such as the Swiss ADME,248 are
freely available. Such platforms should be used more before
making choices.
Unfortunately, literature on co-encapsulated nanocarriers

often lacks enough rigor when it comes to characterization, both
before and after encapsulation, despite its paramount
importance. Quite often, co-encapsulation is reported with
meager data on stability, especially on a long-term basis, while
the type of molecular interactions that co-encapsulation might
trigger is omitted despite the relevance of such information.
Merely succeeding in enforcing multiple molecules to condense
within a nanoscale core is not enough for a fruitful co-
encapsulation drive, and more needs to be achieved in terms of
stability, reproducibility, desired release kinetics, and synergism.
Except for Vyxeos, none of the FDA-approved nano-

formulations is co-encapsulated, eliciting the challenge that co-
encapsulation presents. Another interesting fact is that, except
for Doxil, none of these nanoformulations, including Vyxeos, is
PEGylated. It indicates that perhaps it is time to embrace
structurally simple nanocarriers for encapsulation due to the
simplicity of their syntheses. Otherwise, it is difficult, if not
impossible, to keep track of so many challenges or to control the
synthesis, and that too on a large-scale production chain
necessary for translation. Although they appear promising in
theory, preparing complex nanocarriers with fancy attributes,
including compartmentalization and surface functionalization,
has failed repeatedly in clinical trials,249,250 and elicited the
precarious nature of such an approach.
The field of nanomedicine, especially from a drug-delivery

perspective, is undergoing a reality check with some
inconvenient realizations made over the recent years. Bank-
ruptcies filed by some prominent nanomedicine pharma
ventures has added further to the woes.251 Perhaps it is time
to accept that, when it comes to translation, all nano-
formulations, including the co-encapsulated ones, ultimately
narrow down to facts and figures rather than hype and rhetoric.
The insufficient and, at times, unreliable in vitro and in vivo
models, lack of in vitro−in vivo correlation, irreproducibility of
data, and disturbing batchwise variation continue to frustrate
and hold back the progress in nanomedicine research.252 To
solve a problem, it needs to be acknowledged first.
Unfortunately, such self-reflection is often lacking. The onus is
now on the research community to decide whether to have a
huge collection of failed nanoformulations or rather to prioritize
a few assorted ones that work and get translated from the
benchtop to the bedside.
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■ ABBREVIATIONS AND SYMBOLS USED
Ald Alendronate
APN Aminopeptidase N
ARV Antiretroviral
BSA Body surface area
CCR C−C chemokine receptor
CD Cluster of differentiation
CI Combination index
DDS Drug-delivery system
DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine
DOTAP 1,2-Dioleoyl-3-trimethylammonium propane
DOX Doxorubicin
DPPC 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
DSPC 1,2-Distearoyl-sn-glycero-3-phosphocholine
DSPE 1,2-Distearoyl-sn-glycero-3-phosphoethanol-

amine
DTX Docetaxel
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
EMA European Medicines Agency
EPR Enhanced permeability and retention
FDA U. S. Food and Drug Administration
FeNP Iron nanoparticle
GNP Gold nanoparticle
GRAS Generally regarded as safe
HIV Human immunodeficiency virus
HSPhC Hydrogenated soybean phosphatidylcholine
IC50 Half-maximal inhibitory concentration
ICG Indocyanine green
IFN-γ Interferon γ
IL Interleukin
INSTI Integrase strand transfer inhibitor
IR Infrared
JNP Janus nanoparticle
LNC Lipid nanocarrier
MDR Multidrug resistance
MMP2 Matrix metalloproteinase 2
mPEG−DSPC Methoxy-PEGylated DSPC
mPEG−DSPE Methoxy-PEGylated DSPE
MRI Magnetic resonance imaging
mV Millivolt
NGR Asp-Gly-Arg
NLC Nanostructured lipid carrier
NNRTI Non-nucleoside reverse transcriptase inhibitor
NRTI Nucleoside reverse transcriptase inhibitor
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NP Nanoparticle
NSCLC Nonsmall cell lung cancer
PAMAM Polyamidoamine
PBLG Poly(γ-benzyl-L-glutamate)
PDAMEMA Poly(2-dimethylaminoethyl methacrylate)
pDNA Plasmid DNA
PDT Photodynamic therapy
PEG Polyethylene glycol
PEO Poly(ethylene oxide)
PFTTQ Poly[9,9-bis(4-(2-ethylhexyl)phenyl)fluorene-

alt-co-6,7-bis(4-(hexyloxy)phenyl)-4,9-di-
(thiophen-2-yl)-thiadiazolo quinoxaline]

PG Phosphoglycerol
P-gp P-glycoprotein
PhC Phosphatidylcholine
PHEMA Poly(2-hydroxyethyl methacrylate)
PLGA Poly(lactic-co-glycolic acid)
PLL Polylysine
PNC Polymeric nanocarrier
PNP Polymeric nanoparticle
PSMA Poly(styrene-alt-maleic acid)
PTT Photothermal therapy
PTX Paclitaxel
PVA Poly(vinyl alcohol)
RES Reticuloendothelial system
RGD Arg-Gly-Asp
ROS Reactive oxygen species
shRNA Small hairpin RNA
siRNA Small interfering RNA
SLN Solid-lipid nanocarrier
SPION Superparamagnetic iron oxide nanoparticle
t1/2 Half-life
TAM Tumor-associated macrophage
TKI Tyrosine kinase inhibitor
TME Tumor microenvironment
TMX Tamoxifen
TPGS D-α-tocopheryl polyethylene glycol succinate
TRAIL Tumor necrosis factor-related apoptosis-induc-

ing ligand
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