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Abstract 

Background:  It is known that geographic location plays a role in developing lung cancer. The objectives of this study 
were to examine spatio-temporal patterns of lung cancer incidence in Pennsylvania, to identify geographic clusters of 
high incidence, and to compare demographic characteristics and general physical and mental health characteristics 
in those areas.

Method:  We geocoded the residential addresses at the time of diagnosis for lung cancer cases in the Pennsylvania 
Cancer Registry diagnosed between 2010 and 2017. Relative risks over the expected case counts at the census tract 
level were estimated using a log-linear Poisson model that allowed for spatial and temporal effects. Spatio-temporal 
clusters with high incidence were identified using scan statistics. Demographics obtained from the 2011–2015 Ameri‑
can Community Survey and health variables obtained from 2020 CDC PLACES database were compared between 
census tracts that were part of clusters versus those that were not.

Results:  Overall, the age-adjusted incidence rates and the relative risk of lung cancer decreased from 2010 to 2017 
with no statistically significant space and time interaction. The analyses detected 5 statistically significant clusters over 
the 8-year study period. Cluster 1, the most likely cluster, was in southeastern PA including Delaware, Montgomery, 
and Philadelphia Counties from 2010 to 2013 (log likelihood ratio = 136.6); Cluster 2, the cluster with the largest area 
was in southwestern PA in the same period including Allegheny, Fayette, Greene, Washington, and Westmoreland 
Counties (log likelihood ratio = 78.6). Cluster 3 was in Mifflin County from 2014 to 2016 (log likelihood ratio = 25.3), 
Cluster 4 was in Luzerne County from 2013 to 2016 (log likelihood ratio = 18.1), and Cluster 5 was in Dauphin, Cum‑
berland, and York Counties limited to 2010 to 2012 (log likelihood ratio = 17.9). Census tracts that were part of the 
high incidence clusters tended to be densely populated, had higher percentages of African American and residents 
that live below poverty line, and had poorer mental health and physical health when compared to the non-clusters 
(all p < 0.001).

Conclusions:  These high incidence areas for lung cancer warrant further monitoring for other individual and envi‑
ronmental risk factors and screening efforts so lung cancer cases can be identified early and more efficiently.
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Introduction
Lung cancer is the most frequently diagnosed cancer 
worldwide, accounting for 1.74 million deaths annually 
and lung cancer cases are expected to increase by 38% to 
2.89 million by 2030 [1]. Lung cancer is also the leading 
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cause of cancer mortality in both men and women in the 
U.S. In 2021, Pennsylvania (PA) was ranked 32 out of 49 
states with an age-adjusted lung cancer incidence rate of 
63 per 100,000 population and a five-year survival rate 
of 25 percent [2]. An estimated 5,990 Pennsylvanians are 
expected to die from lung cancer in 2022 with approxi-
mately 11,170 new cases being reported [3]. People diag-
nosed at early stages of lung cancer are five times more 
likely to survive; however, in Pennsylvania only 16 per-
cent of lung cancer cases are diagnosed at early stages [2].

Documenting the extent of cancer incidence remains 
central to improving public health research and to devel-
oping population-based strategies for cancer prevention. 
The need to understand the incidence of lung cancer is 
influenced by potentially modifiable risk factors (e.g., 
tobacco use, alcohol drinking, unhealthy diet, radon 
exposure) and others that are not (e.g., inherited genetic 
mutations) [3]. Cancer outcomes are influenced also by 
socioeconomic status, access to care, supportive services, 
and rural–urban environmental factors, all of which con-
tribute to both the physical and mental health of cancer 
patients [4].

Mapping spatial patterns of lung cancer risk is an 
increasingly popular approach given the greater avail-
ability of geographically enabled cancer data and sophis-
ticated visualization methods [5]. Maps are useful for 
examining disease patterns in relation to local environ-
mental factors with the ability to examine disease causa-
tion through the identification of demographic patterns 
and trends [6, 7].

Spatial statistical methods like space–time models can 
also be used to quantify patterns and trends over space 
and time (i.e., spatio-temporal) and cancer clusters are 
frequently used by researchers to respond to public con-
cerns. The aims of this study were to examine spatio-tem-
poral patterns of lung cancer incidence in Pennsylvania 
over an 8-year period (2010–2017), identify high inci-
dence clusters, and compare the demographic and health 
characteristics of residents inside and outside of clusters.

Methods
Data sources
Lung and bronchus cancer cases in PA between 2010 
and 2017 were obtained from the Pennsylvania Cancer 
Registry (PCR) [8] using International Statistical Clas-
sification of Diseases, 10th revision (ICD 10) diagnosis 
codes—C340 (main bronchus), C341 (upper lobe, bron-
chus or lung), C342 (middle lobe, bronchus or lung), 
C343 (lower lobe, bronchus or lung), C348 (overlapping 
sites of bronchus and lung), and C349 (unspecified part 
of bronchus or lung). PCR is an incidence-based reg-
istry and has earned Gold Certification from the North 
American Association of Central Cancer Registries 

(NAACCR), the highest level of data quality achieving at 
least 95% completeness, for all years under study [9]. The 
following three exclusion criteria were applied to exclude 
cases that were: (i) in situ and non-carcinoma histology, 
(ii) not uniquely matched with a census tract ID, and (iii) 
the age of diagnosis belonged to an age group with zero 
population size as estimated by US Census Bureau indi-
cating a possible error. This resulted in a total of 73,937 
cases from 3,197 census tracts. We used the census tract, 
the small and relatively permanent statistical subdivision 
defined by the US Census Bureau, as the unit of analy-
sis for the consistency in the data collected over the years 
and the validity when used in research studies [10]. We 
conducted the present analysis under a data use agree-
ment with the Pennsylvania Department of Health and 
with the approval of the University of Pennsylvania Insti-
tutional Review Board (IRB number 831671).

The reported street addresses at the time of diagnosis 
were geocoded using ArcGIS 10.6.1 software [11] and 
matched with the 2010 census tract ID. Lung cancer cases 
were grouped into 18 age groups (0–4, 5–9, 10–14,15–
19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 
55–59, 60–64, 65–74, 75–84, 85 and above). Annual pop-
ulation size for the same year by age groups for a census 
tract was obtained using the American Community Sur-
vey (ACS), a national survey conducted by the US Census 
Bureau that provides various individual demographic and 
household information on a yearly basis [12].

Demographic data at the census tract level were 
extracted from the 2011–2015 ACS including median 
age (years), percentage of males, distribution by race and 
ethnicity, per capita income, median household income 
(thousands of $), percent poverty, distribution by educa-
tional attainment, total population size, and population 
density (per square mile).

Poor mental health and poor physical health, defined 
as the percent of individuals ≥ 18 years who self-reported 
having 14 or more days during the past 30 days in which 
their mental or physical health was not good, were 
extracted from the Centers for Disease Control and Pre-
vention (CDC) PLACES 2020 database derived using 
the 2018 Behavioural Risk Factor Surveillance System 
(BRFSS). Both mental and physical health measures 
were based on self-assessment only without an objective 
health component [13].

Age‑adjusted Incidence rates and trends over time
The age-adjusted incidence rates (number of cases per 
100,000) for each census tract were calculated by adjust-
ing the crude incidence rate with respect to the 2000 U.S. 
Standard Million Population, a commonly used standard 
population for adjustment that assumes a total popula-
tion of 1,000,000 [14]. The adjustment used the 18 age 
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groups and population size estimates described above. A 
choropleth map for the age-adjusted incidence rate using 
the cumulative cases over 8 years was created to visual-
ize the spatial pattern. Temporal trends in the adjusted 
incidence rates were examined and modeled using linear 
quantile mixed models [15]. Such mixed models were uti-
lized to allow census tract level random effects of inter-
cept and slope for the calendar year to be estimated, 
while the use of the quantile regression provided a robust 
summary of the trends that were less sensitive to outlying 
values in the incidence rates, which are often observed in 
smaller census tracts. The estimated 50th (median), 75th, 
80th, and 90th quantiles were plotted, and the mean pro-
file was included as a reference.

Spatio‑temporal disease risk and mapping
To understand the spatio-temporal disease risk, we mod-
eled the observed case counts through a log-linear Pois-
son regression with both spatial and temporal terms, as 
well as a space–time interaction term. Specifically, the 
mean case count for location i (in this case a census tract) 
and year j was modeled as the expected case counts for 
the same location and year combination (Eij) times the 
relative risk parameter, RRij, which is also indexed by 
location i and year j (i.e., relative risk specific to a loca-
tion and a time). The expected case counts Eij were deter-
mined based on the age distribution of the corresponding 
location i and year j such that Eij equals the crude inci-
dence rate in a particular age group in the study popula-
tion in year j times the population size in the same age 
group of the location i from the same year (i.e., internal 
standardization). Extending the model proposed by Law-
son et al. [16] for the spatial model, the log of the space–
time relative risk parameter RRij was modeled with four 
components: an intercept as the overall relative risk for 
the study region, location-specific random effects, a 
linear trend term in time j, and the interaction random 
effects between the location and time. The spatial ran-
dom effects were assumed to follow a normal distribution 
under the conditional autoregressive (CAR) setting based 
on Queen contiguity spatial weight matrix (i.e., two areas 
are considered neighbors if they share a common bound-
ary). The model was fit using the R-integrated nested 
Laplace approximation, R-INLA [17] under the Bayesian 
framework with a normal prior distribution. Temporal 
trends in the RR estimates from 20 randomly selected 
census tracts were plotted to examine the changes over 
time. The spatial pattern for the estimated RR for a given 
year was illustrated using a choropleth map. Further-
more, we calculated the standardized incidence ratio 
(SIR) for each census tract as the total number of cases 
observed divided by the total number of cases expected 
Eij across the 8  years combined. We then created a 

choropleth map of the SIR to examine this spatial pat-
tern empirically with SIR > 1 indicating an elevated risk 
such that the number of cases observed is higher than the 
expected number of cases.

Detection of high‑risk clusters
We used the SaTScan cluster detection method which 
employs Kulldorff scan statistics to detect high risk clus-
ters. This approach has been widely used in spatial statis-
tics to evaluate the risk of disease geographically to detect 
high risk clusters. This method generated circular spatial 
windows of various sizes and evaluated the observed over 
the expected number of cases by comparing inside ver-
sus outside the circles to identify statistically significant 
clusters [18]. To detect spatio-temporal clusters [19, 20], 
scan statistics covered the study area with many overlap-
ping “windows” now defined as cylinders with the base as 
the area and the height as the time period in the space–
time setting. As the window expanded to contain more 
areas and more cases, we used a log-linear ratio (LLR) to 
compare the number of cases inside the windows to the 
number of cases outside the window. The null hypoth-
esis was calculated under the probability that being a 
case is the same inside and outside the window relative to 
the age-adjusted expected number of cases. A LLR >  > 1 
indicated evidence that the current window forms a high 
incidence or high-risk cluster. In our analysis, the age-
adjusted expected case counts used were the same Eij that 
was used for the log-linear Poisson model in the previous 
section. The most likely cluster (i.e., the window with the 
maximum LLR) and secondary clusters (i.e., other statis-
tically significant windows at 0.05 significance level) were 
identified in the current analysis. The RR of each cluster 
was determined by the total number of cases observed 
over the total number of cases expected in the years 
when the cluster is present. The statistical significance of 
a cluster was determined through a Monte Carlo hypoth-
esis testing procedure [21]. The proposed analysis was 
performed using the R shiny application SpatialEpiApp, 
which allows estimation of spatio-temporal disease risk 
and detection of clusters [22].

Comparison of census tracts in high‑risk cluster versus not
The nonparametric Wilcoxon rank sum test with a con-
tinuity correction was used to compare demographic 
variables between census tracts in any high incidence 
cluster at any time during 2010 to 2017 versus those not 
in any clusters. Data on smoking, which is a known risk 
factor for lung cancer development, were not available 
at the census tract level and for the same time frame as 
the demographic variables used, thus comparison of the 
smoking prevalence between census tracts was not pos-
sible. A two-sided p < 0.01 was considered statistically 
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significant. We used a lower p-value threshold for statis-
tical significance to account for testing multiple variables.

Results
Age‑adjusted incidence rates and spatio‑temporal disease 
risk
The population density by census tract in Pennsylva-
nia using the 2011–2015 ACS is shown in Fig.  1A. The 
population was mainly concentrated in a small number of 
metropolitan areas including the southeast and western 

regions of Pennsylvania, specifically in Philadelphia and 
Pittsburgh areas, respectively. A map of age-adjusted 
incidence rate using the cumulative cases over 8  years 
is provided in Fig.  1B showing that higher age-adjusted 
incidence rates were mainly observed in the major cities 
located in southeastern (e.g., Philadelphia), northeastern 
(e.g., Allentown, Scranton), and western (e.g., Pittsburgh, 
Erie) Pennsylvania. The age-adjusted incidence rates 
decreased slightly over the study period with median 
incidence rates (25th-75th quantiles) of 51.7 per 100,000 
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Fig. 1  A population density based on the 2011–2015 5-year ACS, B age-adjusted incidence rate based on the cumulative cases over 8 years from 
2010 to 2017
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(25.2 to 83.3) for 2010, 49.1 per 100,000 (24.4 to 78.9) for 
2013, and 45.3 per 100,000 (22.0 to 72.3) for 2017, respec-
tively, approximately 0.8 per 100,000 per year, for all the 
quantiles and the mean values are shown in Fig. 2A.

The estimated relative risk (RR) from the log-linear 
Poisson regression model suggested no statistically sig-
nificant space and time interaction (p > 0.05) and revealed 
a steady decrease in lung cancer incidence from 2010 to 
2017. The median RR values (25th-75th quantiles) were 
1.07 (0.93 to 1.26) for 2010, 1.01 (0.88 to 1.19) for 2013, 
and 0.95 (0.82 to 1.12) for 2017, respectively. Figure  2B 
shows the estimated RR over time for 20 randomly 
selected census tracts and the median of RR estimates for 
a decile group created using the 2010 estimates. The par-
allel lines observed in Fig. 2A and B reflected that the fit-
ted models suggested no space and time interaction such 
that the decreasing trends in the age-adjusted incidence 
rates and RR values were consistent across the study 
region. Maps showing the estimated RR for 2013 and SIR 

are provided in Fig.  3A and B, respectively, indicating a 
similar pattern to the age-adjusted incidence rates as 
shown in Fig. 1B, such that higher values of RR and SIR 
were concentrated in the major cities located in south-
eastern (e.g., Philadelphia), northeastern (e.g., Allentown, 
Scranton) and western (e.g., Pittsburgh, Erie) Pennsyl-
vania while most of the central PA showed lower than 
expected case counts (RR < 1 and SIR < 1). Maps from 
other years also show a similar pattern (maps not shown).

Detection of high‑risk clusters
Five spatio-temporal clusters were identified based on 
lung cancer cases in Pennsylvania during the study period 
2010 to 2017, as shown in Fig. 4. Information for each of 
the clusters is provided in Table 1. The most likely clus-
ter (Cluster 1), which is the cluster with the largest LLR, 
was from 2010 to 2013 with a RR of 1.35. This cluster 
with an average population size of 1,276,868 was in the 
Philadelphia metropolitan area including the neighboring 
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Delaware and Montgomery Counties, part of the south-
eastern PA. Among the four secondary clusters, one clus-
ter (Cluster 2) from 2010 to 2013 with a RR of 1.22 was 
in southwestern PA: Allegheny County, Fayette County, 
Greene County, Washington County, and Westmoreland 
County. This cluster had the highest number of observed 
lung cancer cases reaching 4,601. Three other second-
ary clusters (Clusters 3 to 5) were identified for varying 
periods: Cluster 3 was in Mifflin County in the central PA 

from 2014 to 2016, associated with the smallest number 
of individuals 3,772 on average, and observed a total of 30 
cases while only 6 cases were expected; Cluster 4 was in 
Luzerne County from 2013 to 2016 near the Allentown-
Scranton region; lastly, Cluster 5 was in the southcentral 
PA region near the Harrisburg area from 2010 to 2015 
that included Dauphin, Cumberland, and York Counties. 
It is important to note that the size of the area covered 
by each cluster differed significantly, and the location and 
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the numbers of identified clusters also varied from one 
time period to another. For example, as shown in Fig. 5, 
there were three clusters (Clusters 1, 2, 5) from 2010 to 
2012; three clusters (Clusters 1, 2, 4) in 2013, and two 
clusters (Clusters 3 and 4) from 2014 to 2016. No clusters 
were identified in 2017, the final year of the study period.

The demographic and health characteristics for the 
identified five lung cancer clusters are provided in Table 2. 

Significant differences were observed in median age, per-
cent male, percent African American, per capita income, 
percent poverty, percent high school graduate or higher, 
population density, poor mental health, and poor physi-
cal health (all p < 0.001) between the clustered and non-
clustered census tracts. In our analysis, census tracts that 
were part of the high incidence clusters tended to have 
residents of lower median age, had a higher percentage of 

Fig. 4  Five spatio-temporal clusters in PA and the associated RRs and p-values. Cluster 3 shows Mifflin County; Cluster 1 Delaware, Montgomery, 
and Philadelphia Counties; Cluster 2 Allegheny, Fayette, Greene, Washington, and Westmoreland Counties; Cluster 4 Luzerne County; and Cluster 5 
Dauphin, Cumberland, and York Counties

Table 1  Results of cluster analysis of lung cancer cases in Pennsylvania developed between 2010 and 2017

Cluster Averaged 
population 
size

Years Detected County Observed cases Expected cases RR LLR

1 1,276,868 2010–2013 Delaware, Montgomery and Philadelphia 3,557 2,676 1.4 136.6

2 1,260,363 2010–2013 Allegheny, Fayette, Greene, Washington 
and Westmoreland

4,601 3,823 1.2 78.6

3 3,772 2014–2016 Mifflin 30 6 5.2 25.3

4 108,756 2013–2016 Luzerne 448 333 1.4 18.1

5 184,572 2010–2012 Dauphin, Cumberland and York 454 338 1.3 17.9
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African Americans, residents below the poverty line, be 
densely populated, and had poorer mental and physical 
health compared to residents, not in the clusters.

The demographic and health characteristics for each 
cluster are presented in Table  3. The cluster located in 
the southeast area of Pennsylvania, Cluster 1, had the 
highest percent African American (median = 45.4%, 
IQR = 73.2) and population density (median = 17,785.9, 
IQR = 15,192.9). Cluster 3 in Mifflin County showed the 
lowest per capita income (median = 16.5%), the highest 
percent poverty (median = 29.3%), and poor mental and 
physical health (median = 19.3% and 17%, respectively).

Discussion
In this study, we aimed to identify spatio-temporal clus-
ters of high lung cancer incidence in Pennsylvania over 
an 8-year period (2010–2017). Overall, the age-adjusted 

incidence rates and the RR of lung cancer decreased from 
2010 to 2017 with no statistically significant space and 
time interaction, as shown by the parallel of RR estimates 
over time. Using census tract as the unit, the analyses 
identified five statistically significant clusters. The most 
likely cluster was in the southeastern region of Pennsyl-
vania from 2010 to 2013: Delaware, Montgomery, and 
Philadelphia Counties, and was the most populated; the 
second cluster concurrently was in southwestern Penn-
sylvania and overlapped the largest number of counties: 
Allegheny, Fayette, Greene, Washington, and Westmo-
reland. Two other clusters, one in Mifflin County (2014–
2016) and another in Luzerne County (2013–2016) were 
limited to years toward the middle of the study period. A 
final cluster from 2010 to 2012 included Dauphin, Cum-
berland, and York Counties. in the south-central part 
of Pennsylvania. The RR ranged from 1.22 for Cluster 2 

Fig. 5   The locations  of the spatio-temporal clusters identified in PA for 2010 – 2012, 2013, and 2014 – 2016, respectively

Table 2  Summary statistics of demographic and health characteristics for the whole of PA, clusters, and non-clusters

Variable Whole PA In a cluster Not in a cluster
Median (IQR) Median (IQR) Median (IQR)

Median Age 41.9 (9) 38.1 (10.9) 42.8 (7.8)

Percent Male 48.9 (4.1) 48 (4.9) 49.1 (3.8)

Percent African American 2.8 (10.2) 11 (47.6) 1.9 (6.0)

Percent Asian 0.9 (3.3) 1.3 (4.8) 0.9 (3.0)

Percent Hispanic 2.4 (4.6) 2.4 (2.5) 2.4 (4.7)

Per Capita Income (per 1000 USD) 26.6 (12.3) 24.4 (14.8) 27.4 (11.8)

Median Household Income (per 1000 USD) 51.7 (26.8) 41.9 (26.4) 54.3 (26.6)

Percent Poverty 10.9 (13.0) 18.3 (21.7) 9.5 (9.9)

Percent High School Graduate or less 50.3 (22.9) 50.4 (23.1) 50.3 (22.9)

Percent High School Graduate or higher 90.4 (8.1) 89.7 (10.6) 90.6 (7.5)

Percent Bachelor’s Degree or higher 22.5 (22.1) 21.1 (24.3) 23.1 (21.4)

Percent Graduate Degree 7.7 (9.8) 6.9 (10.7) 7.9 (9.3)

Total Population 3790 (2358) 3269 (2158) 3978 (2368)

Population Density (per sq. mile) 2303.3 (5435.2) 6496.1 (13,005.7) 1430.9 (3571.4)

Percent of poor mental health 14.8 (3.8) 15.8 (5.3) 14.5 (3.5)

Percent of poor physical health 13.0 (4.0) 13.6 (5.6) 12.9 (3.7)
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(2010–2013) to 5.21 for Cluster 3 (2014 to 2016). One 
of the secondary clusters in the Mifflin County revealed 
the highest risk ratio of lung cancer compared to the 
other four clusters, associated with the lowest per capita 
income (median = 16.51%) and the highest percent pov-
erty (29.3% below poverty line), and the poorest physi-
cal and mental health (17% and 19.3%, respectively). 
The primary economic activities in this area in the past, 
included the manufacturing of steel [23], machinery [24], 
and textiles [25], which are often accompanied by adverse 
environmental impacts and may have contributed to the 
increased risk of lung cancer. Radon, a known risk fac-
tor for lung cancer [26], is also shown to have higher lev-
els in the Mifflin County For example, zip codes in the 
Mifflin County area were discovered to have high radon 
levels in homes in the past (e.g., the average radon con-
centrations were 5.2 pCi/L (first floor) and 11.2 pCi/L 
(basement) in 17,044, 16.7 pCi/L (first floor), and 20.4 
pCi/L (basement) in 17,084). These measurements are 
much higher than the PA average indoor concentrations 
of 3.6 and 7.1 pCi/L (first floor and basement, respec-
tively) and above the US EPA standard of 4 pCi/L [27]. 
Our analyses of socioeconomic and health characteristics 
suggested that the census tracts with the following char-
acteristics were more likely found in a lung cancer clus-
ter: higher percent African American, lower per capita 
income, higher percent poverty, and higher population 
density. Differences in these demographic characteristics 

reflect that disadvantaged communities are more likely 
to be exposed to environmental pollutants known to be 
lung cancer risk factors due to, for example, proximity to 
manufacturing facilities or hazardous waste sites, traffic, 
or living in houses with high radon values.

Similar spatio-temporal analyses of lung cancer cases 
performed by others for the U.S. states of Kentucky [28] 
and Maine [29] also found results like our findings. For 
example, the reports by Christian and colleagues that 
analyzed the spatial and temporal distributions of lung 
cancer histological types in Kentucky using Scan statis-
tics also found that high risk clusters were near the major 
metropolitan area and/or overlapped with areas of high 
poverty. Although our analysis did not distinguish histol-
ogy types, the locations and characteristics of the clusters 
found in the current and other studies have further dem-
onstrated the importance of environmental and socioec-
onomics factors for lung cancer.

Limitations and future work
One factor that may affect the results is the size and 
shape of the study area, known as zoning effect [30]. This 
is a relevant effect on the results of spatial analysis that 
may change depending on the unit of the analysis. The 
zoning effect arises when the number of the spatial units 
of measure remains the same but changes in their relative 
structure (unit boundaries and shape) generate different 
analytical results. The scaling parameters in SaTScan may 

Table 3  Summary statistics of demographic and health characteristics for the five clusters

Note that Cluster 3 only has 1 census tract so no IQR can be calculated that is the measurement of difference between the third and the first quartiles

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

No. of census tracts 326 410 1 38 47

Variable Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Median Age 33.4 (7.28) 41.5 (9.3) 33.7 ( -) 41.6 (9.1) 39.1 (6.2)

Percent Male 47.5 (6.3) 48.3 (4.5) 51.4 ( -) 47.9 (2.3) 48.1 (4.8)

Percent African American 45.4 (73.2) 4.7 (16.3) 1.5 ( -) 4.4 (8.9) 14.6 (35.2)

Percent Asian 3.3 (8) 0.5 (2.1) 0.5 ( -) 1.2 (1.9) 1.4 (4.6)

Percent Hispanic 4.8 (6.4) 1.3 (2) 3.2 ( -) 4.5 (8.9) 7.6 (8.4)

Per Capita Income (per 1000 USD) 18.8 (14.5) 26.3 (12.4) 16.5 ( -) 21.7 (6.8) 26.4 (11.0)

Median Household Income (per 1000 USD) 35.0 (27.9) 45.8 (24.7) 32.1 ( -) 38.7 (17.0) 50.6 (21.8)

Percent Poverty 28 (24.8) 14.2 (16.6) 29.3 ( -) 20.6 (14.2) 11.7 (16.3)

Percent High School Graduate or less 54.8 (28.5) 47.3 (21.5) 64.4 ( -) 55 (10.6) 47 (18.9)

Percent High School Graduate or higher 84 (6.1) 92.0 (7.2) 86.7 ( -) 89 (6.5) 89.9 (7.4)

Percent Bachelor’s Degree or higher 17.7 (31.3) 24.4 (22.7) 9.5 ( -) 17.8 (7.0) 22.3 (17.3)

Percent Graduate Degree 5.8 (14.5) 8 (9.9) 3.6 ( -) 6 (4.1) 6.9 (7.6)

Total Population 3745 (2067) 2814 (1998) 3616 ( -) 2500 (1504) 3833 (1836)

Population Density (per sq. mile) 17,785.9 (15,192.9) 3690.4 (5030.7) 4417.3 ( -) 4867.6 (4365.2) 3141.0 (4998.5)

Percent of poor mental health 18.1 (6.7) 14.8 (3.8) 19.3 16.9 (3.1) 15.4 (2.9)

Percent of poor physical health 14.2 (7.5) 13.2 (4.3) 15.4 2.8 (2.8) 12.7 (3.2)
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also produce different results depending on scan window 
sizes, so multiple scans can be performed at various cir-
cle sizes [31]. Known as the aggregation effect, the choice 
of unit for analysis (census tract) may result in the loss of 
statistical power to detect clusters, and different results 
may be obtained if other units such as census block 
groups were selected [32]. Another methodological limi-
tation is the adjustment for age for the clustering analy-
sis which was done using an internal standardization 
method such that age distribution for the study area was 
used as the reference population rather than an external 
standard population (e.g., standard million population). 
Additionally, lung cancer cases were combined from dif-
ferent stages, histological subtypes and were not stratified 
by sex. Data on other risk factors such as smoking, occu-
pational and residential history were also not available on 
the census tract level to allow comparisons between clus-
ters and non-clusters in the current analysis. Smoking is 
the single highest risk factor for lung cancer. If the smok-
ing data were available, we would have hypothesized that 
the census tracts in the clusters will have a higher smok-
ing prevalence than the census tracts outside the clusters. 
This hypothesis was supported indirectly by the results in 
Table  2 showing the census tracts that were part of the 
clusters tended to have more residents living below the 
poverty line, lower-income, and less educated, and posi-
tive associations are known to exist between these vari-
ables and smoking [33–36]. Furthermore, mental and 
physical health variables were self-reported and thus sub-
ject to error.

Individuals living in high lung cancer incidence clus-
ters may be more vulnerable to multiple risk factors, e.g., 
smoking history, which is indicative of the health dispar-
ity in the state of Pennsylvania. Educational interven-
tions in counties with a higher incidence of lung cancer 
are important for promoting public health and other risk 
mitigation practices. These geographic areas warrant fur-
ther investigation to potentially identify additional risk 
factors or unique patterns of cancer stage and histology 
at the diagnosis, to further address environmental expo-
sures and lung cancer risk in those specific counties. 
Geographic surveillance may help to identify disparities 
in disease burden among different regions or commu-
nities with high-risk populations that could be targeted 
for public health interventions. Incorporating spatio-
temporal statistical methods, such as cluster detection, 
into existing disease surveillance activities can provide 
information about potential cancer clusters. For instance, 
Cluster 5, which included the counties of Cumberland, 
Dauphin, and York, had the largest U.S. Amish popula-
tion. Health among the Amish is characterized by higher 
incidences of many genetic disorders [37, 38], so these 

communities could be more susceptible to lung cancer. 
With more vigilant surveillance, early detection of lung 
cancer may improve overall survival.

Conclusions
Spatio-temporal analysis of lung cancer incidence in 
Pennsylvania has led us to the identification of areas 
with higher risk of developing the disease. Although 
the age-adjusted incidence rates and RR of lung cancer 
decreased over time, five statistically significant clusters 
were identified over the study period from 2010 to 2017. 
Our analysis also demonstrated significant differences 
in demographic characteristics including percent Afri-
can American, percent poverty, and population density 
between those census tracts that were part of the iden-
tified clusters versus those that were not. Poorer mental 
and physical health were also associated with clustered 
areas. These geographic areas with increased cancer risk 
factors require further environmental monitoring and 
screening efforts to reduce exposures and detect lung 
cancer at an earlier stage.
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