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ABSTRACT: We demonstrate the dynamic operation of CO2
electrolyzer cells, with a power input mimicking the output of a
solar photovoltaic power plant. The zero-gap design ensured
efficient intermittent operation for a week, while avoiding
significant performance loss.

In the future electrical energy grid, an increasing fluctuation
of the power load is expected because of the growing
amount of intermittent renewable energy in the electricity

mix.1 Beyond the challenges this poses for the electricity
infrastructure, it also results in a massive fluctuation in
electricity prices. Electrochemical power-to-gas and power-to-
liquid technologies are promising chemical energy conversion
approaches to be coupled with intermittent renewable energy
sources to balance the grid while utilizing cheap excess energy
at peak times.2 Electrochemical hydrogen generation methods
(such as proton exchange membrane (PEM) water electro-
lyzers) are well known for their dynamic response to external
electrical power load; therefore, they can be directly coupled to
different renewable energy sources, such as windmills or solar
photovoltaic (PV) power plants.
Direct CO2 electrolyzers operating at industrially relevant

current densities3−5 can, in principle, offer similar oppor-
tunities, although no experimental evidence has been
demonstrated on this matter yet. Such verification would be
very important, considering the notable differences compared
to water electrolyzers (e.g., CO2 gas feed at the cathode, the
use of soft cathode gas diffusion electrode (GDE), etc.).
Specifically, fluctuations in the local pressure, due to the rapid
increase/decrease in the reaction rate, might cause flooding in
the cathode GDE, which can be detrimental for the stability of
the electrolyzer cell. A few studies targeted dynamic operation,
but they were limited to on/off switching cycles in short
measurements and some simple variation of the potential/
current to regenerate the Cu catalyst and/or avoid precipitate
formation in the electrolyzer cells.6−10 Low-temperature CO2

electrolyzers are particularly promising for dynamic operation,
while high-temperature systems are challenged by their thermal
management (especially large-scale systems).11 In this Energy
Express, we compare the dynamic operation of two low-
temperature CO2 electrolyzer cells: a membrane-less micro-
fluidic and a zero-gap cell, to provide the f irst experimental
demonstration of an electrolyzer cell absorbing a power load
mimicking a PV power plant, generating CO for a whole week.
First, we have developed an environment (Figure S1) for the

autonomous testing of CO2 electrolyzer cells (Figure S2) in
the CO2-to-CO conversion process (Figure S3). As the first
step, we defined a dynamic current control protocol to test the
response of zero-gap electrolyzer cells in terms of cell voltage
and CO/H2 partial current densities (jCO and jH2

). The process
consisted of alternating 8 h periods of constant current and
dynamically changing current operation (see Figure S4). We
decided to control the current density of the cell because
proper power electronics are available for both DC/AC/DC
and DC/DC conversions, as demonstrated on the example of
PEM water electrolyzers.12 Comparison with constant current
operation (Figure S5) shows that the stability (i.e., cell voltage
and product distribution) is not affected by the dynamically
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changing current pattern. In fact, one may even consider some
possible beneficial effect of the current fluctuation, such as the
release of entrapped gas bubbles.
Subsequently, we applied a protocol which mimics the

power output of a solar PV power plant in Germany, where
data was available with 1 min resolution.13 Total current
densities were linearly scaled with the PV power output, with a
maximum of 437.5 mA cm−2. The cell power load profile
slightly differs from the PV power output (due to the varying
cell voltage), and our current control protocol enhances the
fluctuations in the power (see the comparison in Figure S6).
As shown in Figure 1B−D, jCO follows the shape of the total
current curve (FEH2

remains below 15%). The cell voltage
curve also resembles that of the power input (Figure 1B),
although with a ca. 2.15 V threshold value, the onset voltage of
CO2 electrolysis in the presented cell. Clearly, the electrolyzer
performance follows the dynamic power load with no
detectable delay (Figure 1C), and a total FE of 92−95% was
detected (Figure S7). To assess the long-term stability of the
cell under these conditions, we ran the electrolyzer for a week.
As seen in Figure 1D, the CO partial current density closely
follows the input power pattern, indicating no significant
degradation issue.
To check whether this capability is a unique feature of zero-

gap cells or can be stretched to microfluidic devices, we
extended our studies to this latter group. Figure S8 illustrates

stable operation at fixed current density, but the cell gradually
gets flooded once the current density is varied. The rapidly
changing gas evolution rate (O2, CO, and H2) can induce rapid
fluctuation in the local pressure. As the gas/solution can
penetrate into the carbon paper even at low differential
pressures,14,15 it is not surprising that the GDE gets flooded.
Overall, we demonstrated that the studied zero-gap cell can

properly function under intermittent operational conditions,
while its microfluidic counterpart suffers from rapid flooding
under such circumstances. Further efforts are ongoing to
elucidate the effect of dynamic power load on multicell stacks
and multistack systems (together with uncovering failure
mechanisms), because these insights are very important in
designing electrochemical cell configurations and energy
conversion systems to scale-up this promising technology.
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Figure 1. (A) Cell voltage and product distribution during electrolysis according to the current protocol shown in Figure S4. The asterisks
mark partial current density values obtained at j = 375 mA cm−2 total current density, while the analysis at 90 and 140 h was performed at
437.5 and 312.5 mA cm−2, respectively. Cell voltage and (partial) current density during electrolysis at a continuously changing current
density, following the power profile of a solar PV plant (B−D) for different time periods.
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