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ABSTRACT Bedaquiline and clofazimine are increasingly used to treat infections
with Mycobacterium abscessus. We determined distributions of MICs by broth micro-
dilution for bedaquiline and clofazimine for 61 M. abscessus clinical isolates using dif-
ferent media and incubation times. We show that incubation time and growth media
critically influence the MIC. Our data will aid in defining future clinical breakpoints
for in vitro susceptibility testing for bedaquiline and clofazimine in M. abscessus.
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Increasing numbers of infections due to Mycobacterium abscessus are being reported,
presenting mostly as pulmonary disease in patients with cystic fibrosis (CF), bron-

chiectasis, or chronic obstructive pulmonary disease (COPD) and as skin and soft tissue
infections following trauma or surgery (1, 2). M. abscessus belongs to the rapidly grow-
ing mycobacteria and consists of the three subspecies M. abscessus subsp. abscessus,
M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii (3). M. abscessus natu-
rally exhibits extensive drug resistance (4), and treatment requires individual multidrug
regimens that are based on in vitro susceptibility testing and clinical expertise (5, 6).
Treatment options are limited especially for macrolide-resistant M. abscessus, which is
common due to expression of the inducible 23S rRNA methyltransferase Erm(41) (7).
Recently approved drugs for combination therapy of multidrug-resistant tuberculosis,
such as bedaquiline, a diarylquinoline antibiotic, and clofazimine, a key drug in therapy
for leprosy, have been increasingly used for the treatment of infections with nontuber-
culous mycobacteria, particularly for M. abscessus (8–10). Procedures for in vitro suscep-
tibility testing of these two drugs in M. abscessus have not yet been standardized.
Bedaquiline and clofazimine were not included in commercial microdilution panels
until recently, when Thermo Fisher Scientific (Waltham, MA) released the RAPMYCO2
Sensititre plate with clofazimine. Accordingly, no clinical breakpoints have been defined by
the Clinical and Laboratory Standards Institute (CLSI) or by the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) to separate bedaquiline and clofazimine sus-
ceptible from resistant M. abscessus strains. The frequency of M. abscessus strains catego-
rized as clofazimine resistant in different studies varies between 0% and 95%, with a pooled
rate of in vitro resistance of 16% (95% confidence interval, 4.0% to 16%) (11). Determination
of MIC distributions and epidemiological cutoff values (ECOFF) is a prerequisite for assign-
ment of clinical breakpoints (12).

In this study, we determined the MICs of bedaquiline and clofazimine for the type
strain M. abscessus ATCC 19977 and 61 M. abscessus nonduplicate (one isolate per
patient) clinical isolates from the years 2008 to 2013 that were isolated at or submitted
to our laboratory and for which antibiotic susceptibility testing was requested. Fifty-
one (84%) M. abscessus isolates were of respiratory origin, and six isolates (10%) were
of nonrespiratory origin. For four isolates (6%), the clinical origin was unknown. Thirty-
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one (51%) M. abscessus isolates were recovered from patients with CF, 19 (31%) M.
abscessus isolates were recovered from non-CF patients, and for 11 (18%) isolates, the
CF status of the patient was not known. The isolates were selected to comprise the
three M. abscessus subspecies and include M. abscessus subsp. abscessus (n = 32), M.
abscessus subsp. bolletii (n = 17), and M. abscessus subsp. massiliense (n = 12).
Subspecies assignment was done by combined 16S rRNA gene, rpoB, and erm(41)
sequence analysis (13). MIC determination was conducted by in-house broth microdilu-
tion according to CLSI guidelines, except for the incubation temperature, which was
set at 37°C (14). Bedaquiline (Adooq, Irvine, CA) and clofazimine (Sigma-Aldrich, St.
Louis, MO) were dissolved in 100% dimethyl sulfoxide (DMSO) and diluted in cation-
adjusted Mueller-Hinton broth (CAMHB) (Merck, Darmstadt, Germany) to final concentra-
tions of 0.025 mg/L to 6.4 mg/L for bedaquiline and 0.125 mg/L to 32 mg/L for clofazimine
(2-fold serial dilutions with a maximum final DMSO concentration of 6.25% [vol/vol]). MIC50

and MIC90 values of 0.1 mg/L and 0.2 mg/L, respectively, for bedaquiline and of
#0.125 mg/L and 0.5 mg/L, respectively, for clofazimine were calculated when growth
was judged after 3 days of incubation in CAMHB in polystyrene plates (Greiner Bio-One,
Monroe, NC) (Fig. 1A). The exact definition of the MIC50 but not of the MIC90 value of clofa-
zimine was hampered by the limits of the test range. Tentative ECOFFs of 0.8 mg/L for
bedaquiline and of 2 mg/L for clofazimine were assigned by visual inspection of the histo-
grams (eyeball method) (15, 16). We did not observe significant differences between the
three M. abscessus subspecies. For M. abscessus subsp. abscessus, M. abscessus subsp. bolle-
tii, and M. abscessus subsp. massiliense, the MIC50 values for bedaquiline were 0.05 mg/L,
0.1 mg/L, and 0.1 mg/L, respectively, and the MIC90 values were 0.1 mg/L, 0.2 mg/L, and
0.4 mg/L. Clofazimine MIC50 values of #0.125 mg/L, #0.125 mg/L, and 0.25 mg/L were
found for M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus
subsp. massiliense. The clofazimine MIC90 value was 0.5 mg/L for all three subspecies. The
MIC of the type strain M. abscessus ATCC 19977 was determined at 0.1 mg/L for bedaqui-
line and at 0.25 mg/L for clofazimine. For a subset of 12 isolates (four each of M. abscessus
subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense), the MIC
of bedaquiline and clofazimine was also determined at 30°C. For bedaquiline, an MIC50 of
0.025 mg/L and an MIC90 of 0.05 mg/L was observed; for clofazimine, the MIC50 and MIC90

values were #0.125 mg/L and 0.5 mg/L, respectively. For the CLSI quality control strain
Mycobacterium peregrinum ATCC 700686, we determined the MIC of bedaquiline to be

FIG 1 MIC distributions of bedaquiline (BDQ) and clofazimine (CFZ) for M. abscessus complex isolates (n = 61) determined in CAMHB without (A) and with
(B) 10% OADC and read after 3 and 5 days of incubation at 37°C. MIC50 (continuous line), MIC90 (broken line), and tentative ECOFF values (arrow) are
indicated as well as MIC values of the type strain M. abscessus ATCC 19977 (*).
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0.0031 to 0.0125 mg/L (median, 0.0063 mg/L) and the MIC of clofazimine to be 0.0625 to
0.25 mg/L (median, 0.125 mg/L) for 10 replicates (incubation at 30°C). Incubation of M.
peregrinum ATCC 700686 at 37°C resulted in comparable MIC ranges (median MIC for
bedaquiline, 0.0125 mg/L, and for clofazimine, 0.125 mg/L). CLSI has not yet published
quality control concentration ranges for M. peregrinum ATCC 700686 for bedaquiline and
clofazimine (17).

Reported bedaquiline and clofazimine MIC distributions for M. abscessus vary
between laboratories and definition of uniform ECOFF values has not been possible so
far (Table 1). In particular, reported MIC50 and MIC90 values for clofazimine vary from
0.12 mg/L to 4 mg/L and from 0.25 mg/L to 32 mg/L, respectively. A recent study of
M. abscessus pulmonary disease demonstrated that clofazimine MICs of #1 mg/L were
most often associated with sputum conversion to negative in patients who were being
treated with a clofazimine-containing drug regimen. The effect was more pronounced
when MIC values were #0.25 mg/L, while no culture conversion was observed for MIC
values exceeding 2 mg/L (18). Of note, MIC determination in this study by Kwak et al.
was conducted in 7H9 broth supplemented with oleic acid, albumin, dextrose, and cat-
alase (OADC), which is not recommended by CLSI, and showed a bimodal distribution
of MICs (18). Most likely, for M. abscessus as for Mycobacterium tuberculosis, the beda-
quiline and clofazimine MIC values are affected by in vitro culture conditions, which
may account for the diverging MIC results obtained in different studies (19, 20).

We observed an influence of incubation time on MIC. Prolonged incubation of
5 days resulted in slightly increased MIC50 values of 0.2 mg/L for bedaquiline and of
0.25 mg/L for clofazimine (Wilcoxon signed-rank test, bedaquiline [Z = 25.1594, P =

TABLE 1 In vitroMIC studies for bedaquiline and clofazimine forM. abscessus complex

Studya No. of isolates Method Mediumb MIC range (mg/L) MIC50 (mg/L) MIC90 (mg/L)
Bedaquiline
This study 61 Broth microdilution CAMHB #0.025 to 0.8 0.1 0.2
This study 61 Broth microdilution CAMHB OADC 0.05 to 1.6 0.4 0.8
Asami et al., 2021 (24) 70 Broth microdilution CAMHB 0.06 to 0.25 0.13 0.25
Chew et al., 2021 (25) 211 Broth microdilution CAMHB 0.008 to 0.25 0.06 0.12
Gumbo et al., 2020 (26) 20 Broth microdilution NA 0.25 to 1 1 1
Sarathy et al., 2020 (27) 12 Broth microdilution 7H9 ADC 0.08 to 0.42c 0.28c 0.36c

Sorayah et al., 2019 (28) 17 Broth microdilution 7H9 ADC 0.02 to 0.38c 0.06c 0.21c

Viljoen et al., 2019 (29) 18 Broth microdilution CAMHB 0.032 to 0.128 0.064 0.128
Kim et al., 2019 (30) 132 Broth microdilution CAMHB #0.016 to 0.5 0.062 0.125
Brown-Elliott and Wallace, 2019 (31) 104 Broth microdilution CAMHB 0.003 to 0.5 0.06 0.12
Li et al., 2018 (32) 197 Broth microdilution CAMHB 0.007 to 1 0.062 0.125
Dupont et al., 2018 (33) 30 Broth microdilution CAMHB 0.031 to 0.125 0.062 0.125
Vesenbeckh et al., 2017 (21) 20 Agar dilution 7H10 OADC 0.12 to 1 0.5 1
Pang et al., 2017 (34) 381 Broth microdilution CAMHB 0.016 to.16 0.13 .16

Clofazimine
This study 61 Broth microdilution CAMHB #0.125 to 2 #0.125 0.5
This study 61 Broth microdilution CAMHB OADC 0.25 to 16 2 4
Asami et al., 2021 (24) 70 Broth microdilution CAMHB 0.25 to 1 0.5 1
Chew et al., 2021 (25) 211 Broth microdilution CAMHB 0.008 to 1 0.12 0.25
Kwak et al., 2021 (18) 40 Broth microdilution 7H9 OADC 0.031 to 16 4 8
Luo et al., 2018 (35) 40 Broth microdilution CAMHB 0.031 to.8 4 .8
Shen et al., 2018 (36) 20 Broth microdilution CAMHB 0.25 to 128 NA 32
Schwartz et al., 2018 (37) 17 Broth microdilution CAMHB 0.38 to 3 1.5 3
Kim et al., 2015 (38) 57 Broth microdilution CAMHB #1 to$4 NA #1
Singh et al., 2014 (39) 67 Broth microdilution CAMHB 2 to 8 2 8
van Ingen et al., 2012 (40) 390 Broth microdilution CAMHB NA #0.5 1
Shen et al., 2012 (41) 117 Broth microdilution CAMHB 0.03125 to 2 0.25 0.5

aSelected studies based on PubMed search including the keywords “Mycobacterium,” “abscessus” and “bedaquiline” or “clofazimine.” Studies that analyzed.10M. abscessus
complex isolates are shown.

b7H9 ADC, Middlebrook 7H9 broth 0.2% glycerol, 0.05% Tween 80, 10% ADC (albumin-dextrose-catalase); 7H9/7H10 OADC, Middlebrook 7H9 broth/7H10 agar 10% OADC
(oleic acid albumin dextrose catalase); CAMHB, cation-adjusted Mueller-Hinton broth without/with 10% OADC; NA, not available.

cMIC calculated in milligrams per liter from original data inmM (molecular weight of bedaquiline, 555.5 g/mol).
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,0.00001] and clofazimine [Z = 23.2911, P = 0.001]) (Fig. 1A). All isolates showed suffi-
cient growth to be read at days 3 and 5. We next investigated a putative influence of
media composition by including 10% OADC (Becton, Dickinson, Franklin Lakes, NJ).
OADC is a growth supplement that contains oleic acid, albumin, dextrose, and catalase
and is used in combination with Middlebrook 7H9 broth or CAMHB for standard drug
susceptibility testing of M. tuberculosis and slowly growing nontuberculous mycobac-
teria (14). Media containing OADC were also used for resistance testing of rapidly
growing nontuberculous mycobacteria (18, 21), although this is not recommended by
CLSI (17). Addition of 10% OADC to CAMHB increased the MIC50 of bedaquiline from
0.1 mg/L to 0.4 mg/L (Z = 26.6573, P = ,0.00001) and the MIC50 of clofazimine from
#0.125 mg/L to 2 mg/L (Z = 26.8463, P = ,0.00001) when the MIC results were deter-
mined at day three of incubation (Fig. 1B). M. abscessus ECOFFs shifted from 0.8 mg/L
to 1.6 mg/L for bedaquiline and from 2 mg/L to 16 mg/L for clofazimine in the pres-
ence of OADC. These findings suggest that including OADC to the growth medium
increases the MICs for bedaquiline and clofazimine in isolates of M. abscessus.
Bedaquiline and clofazimine show high plasma protein binding capacities of .99%,
and consequently, the protein content of the culture medium is likely to affect the MIC
results as has been previously discussed for M. tuberculosis and MICs to bedaquiline
(20). Drug instability during prolonged incubation has been shown to affect MIC values
for mycobacteria, particularly the MIC of beta-lactam antibiotics (22). Bedaquiline
and clofazimine are, however, stable over time as has been demonstrated for in vitro
susceptibility testing of M. tuberculosis (20, 23). For M. abscessus, the increased MIC
values observed at 5 days versus 3 days of incubation are most probably the result
of increased visible growth due to bacteriostatic rather than bactericidal effects
around MIC.

In summary, we show that incubation time and composition of the growth medium
critically influence the MICs of bedaquiline and clofazimine in M. abscessus while tem-
perature (37°C versus 30°C) has little effect. With the increased use of bedaquiline and
clofazimine for treatment of M. abscessus infections, there is a need for standardized
MIC testing and interpretation guidelines. In the meantime, it is important that labora-
tory testing conditions of bedaquiline and clofazimine are precisely documented.
Uniform testing conditions are a prerequisite for data comparison and the definition of
ECOFF and clinical breakpoints. Beyond that, clinical trials are needed to establish the
correlation between in vitro MIC results and clinical response.
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