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ABSTRACT The DNA-binding protein from starved cells, Dps, is a universally conserved
prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been
identified in the vast majority of bacterial species and several archaea. Dps also may
play a role in the global regulation of gene expression, likely through chromatin reor-
ganization. Dps has been shown to use both its ferritin and DNA-binding functions to
respond to a variety of environmental pressures, including oxidative stress. One mecha-
nism that allows Dps to achieve this is through a global nucleoid restructuring event
during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex
called the biocrystal that occludes damaging agents from DNA. Due to its small size, hol-
low spherical structure, and high stability, Dps is being developed for applications in
biotechnology.

KEYWORDS DNA-binding protein, Dps, ferritin, nucleoid-associated protein, stationary
phase

During typical bacterial growth and survival in the laboratory, a bacterial population
that initially exists at low cell density transitions into a phase of rapid growth and cell

division known as logarithmic (log) or exponential phase. As the population approaches
high cell density, growth slows, and the population density levels out as cells enter station-
ary phase. The transition from log phase to stationary phase includes a series of environ-
mental and cellular changes that must be managed, including lower nutrient availability,
increased concentrations of metabolic waste products, nucleoid remodeling, and managing
intracellular concentrations of important cofactors, including iron. To adapt to the changing
environment and stresses of stationary phase, cells modify their gene expression patterns
and protein levels. Curious about this phenomenon, Almirón and colleagues performed an
SDS-PAGE experiment in which newly synthesized proteins in batch Escherichia coli cultures
were labeled with radioactive methionine at several time points during log phase and sta-
tionary phase (1). One of the most highly labeled proteins as cells transitioned into station-
ary phase was Dps.

The DNA-binding protein from starved cells, Dps, is conserved across bacterial spe-
cies (1–5) (Table 1). To date, a UniProt search of genes annotated as “dps” returns
93,962 prokaryotic proteins. Only one bacterial phylum, Thermomicrobia, is not repre-
sented in this list; of note, all gammaproteobacterial orders are represented. Most bacterial
genomes contain one dps gene, but some contain as many as five (5–7). Additionally, some
archaeal species have dodecameric, Dps-like ferritin proteins (8, 9).

In most species, Dps functions as a ferritin, which is an iron-detoxifying and iron
storage protein with ferroxidase activity. However, in some species, Dps is also a dou-
ble-stranded DNA (dsDNA)-binding protein (Table 1). The DNA-binding and ferroxidase
activities of Dps, in species with both functions, are biochemically discrete but function
jointly to protect DNA and mediate stress tolerance (10–13).

Dps binding requires a minimum length of ;90 bp of dsDNA in species in which it
binds DNA, but otherwise, it has no well-defined DNA sequence-binding motifs or
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structural specificity (1, 14–18). In many organisms in which Dps functions as a dsDNA-
binding protein, Dps becomes the major nucleoid-associated protein (NAP) during sta-
tionary phase (19–22). Like other NAPs, Dps modulates nucleoid shape and compac-
tion (23).

During stationary phase, Dps and DNA form a tightly packed nucleoprotein com-
plex called the biocrystal (1, 2, 24–27). Biocrystal formation is stationary-phase specific,
requires Dps (11, 20, 22, 24, 25, 28–31), and, in E. coli, occurs gradually, beginning in
early stationary phase and continuing until late stationary phase, at which point the
nucleoid is organized into a hexacrystalline array (22, 25).

The ferritin properties of Dps are 3-fold. First, it is proposed that Dps stores iron and
releases Fe(II) when needed (32–40). Second, Dps detoxifies excess iron in the cell using its
ferroxidase activity to oxidize soluble Fe(II) to insoluble Fe(III), which is unavailable to partici-
pate in potentially damaging redox chemistry (see below). Third, as a ferroxidase, Dps uses
H2O2 to oxidize ferrous iron to the ferric form, making it unique among ferritins (4, 8, 9, 26,
34–38, 41–44). Because using H2O2 as the oxidizing agent for iron results in its breakdown,
Dps helps prevent the synthesis of reactive oxidative species (ROS), through the Fenton
reaction, capable of damaging nucleic acids, proteins, and lipids (34).

Monomer structure. Dps was originally discovered in E. coli as a DNA-binding pro-
tein (1). When the X-ray crystal structure was determined, it became apparent that the
Dps monomer, comprised primarily of a 4-helix bundle, shows striking similarity to the
ferritin monomer despite a lack of sequence homology (Fig. 1) (18, 32). Ferritins are
iron-sequestering proteins and are conserved throughout all three domains of life. Like
ferritin, the E. coli Dps (Ec-Dps) monomer’s A and B helices are connected by a short
loop; its C and D helices are similarly connected (18). The AB and CD helix pairs are
connected by a longer loop, also akin to ferritins (18).

There are some notable differences between Dps and ferritin monomers. The Ec-
Dps monomer has an additional, smaller N-terminal helix (Fig. 1) (18). This helix is flexi-
ble, making it difficult to characterize using typical X-ray crystallography techniques.
Ferritins lack this N-terminal helix, but they have an additional C-terminal helix (Fig. 1),
which is postulated to contribute to the 24-mer organization in ferritins, compared to
the Dps dodecamer (36).

Dodecamer structure. Dps monomers with a molecular weight of ;19 kDa come
together to form a dodecamer (1). This dodecamer, like the monomer, is structurally
similar to ferritin oligomers (18). Both Dps and ferritins oligomerize into a hollow
sphere, although ferritins contain 24 subunits, compared to 12 for Dps (2, 18, 27, 36,
45, 46). The Dps sphere, smaller than that formed by ferritins, is approximately 90 Å in
diameter, with a 45-Å hollow core (9, 18, 27, 36, 45). Ferritins assemble into 120-Å-di-
ameter spheres with 80-Å hollow cores (Fig. 2) (46). Symmetry also differs for the Dps

FIG 1 The Dps monomer structure displays homology to ferritins. Shown are tertiary structures of Ec-Dps (PDB
accession number 1DPS) (A), Ec-FtnA (PDB accession number 1EUM) (B), and Ec-Bfr (PDB accession number
3E1J) (C) (18, 180, 181). Homologous alpha helices are displayed in the same color: red, helix A; blue, helix B;
yellow, helix C; orange, helix D. Nonhomologous helices are shown in white. N termini and C termini for each
molecule are labeled with a white “N” and a white “C,” respectively.
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dodecamer compared to the ferritin 24-mer: the Dps dodecamer has tetrahedral sym-
metry, in contrast to ferritin’s octahedral symmetry (18, 27, 36, 45–47).

Several assembly models for Dps have been proposed. In one model, the AB loop
acts as a switch for the number of subunits in an oligomer: a rigid AB loop (like that
found in Dps) directs the assembly of a dodecamer with 2- and 3-fold symmetry, while
a flexible AB loop (like that found in bacterioferritin [Bfr] and ferritin [Ftn] proteins)
directs the assembly of a ferritin 24-mer with 2-, 3-, and 4-fold symmetry (48). In
another model, the N terminus of Dps may modulate Dps dodecamer formation and
self-association during biocrystal formation (12, 49, 50). When examining the stepwise
dynamics of dodecamer assembly, it has been suggested that some Dps species first
form trimers and then form dodecamers, whereas others first form dimers and then
form dodecamers; the difference roughly correlates with the length of the N-terminal
helix (51). It is also notable that two arginine residues, R83 and R113 in Ec-Dps, have
been found to be necessary for Ec-Dps dodecamer assembly (52).

Other quaternary structures.While Dps proteins typically function as dodecamers,
some Dps proteins can form smaller, semifunctional oligomers. Both Lactococcus lactis
DpsA (Ll-DpsA) and Mycobacterium smegmatis Dps1 (Ms-Dps1) form stable dimers and
trimers in addition to dodecamers (2, 53). The Ms-Dps1 trimer has ferroxidase activity,
although it cannot store iron and does not bind DNA; the dodecamer performs all
three functions (2, 50, 54). In some cases, the formation of nondodecameric oligomers
is due to environmental conditions. The hexuronates D-glucuronate and D-galacturo-
nate have been found to destabilize the Ec-Dps dodecamer (55). Notably, in E. coli, hex-
uronate concentrations are highest during log phase, when Dps is poorly expressed,
and decrease significantly during stationary phase, when Dps is highly expressed (56).
Additionally, Deinococcus radiodurans Dps1 (Dr-Dps1) forms DNA-binding dimers at
low salt concentrations in vitro (12, 14), consistent with models of Dps-DNA-binding
sensitivity to the cation concentration (see “Dps as a DNA-binding protein,” below).
Bacillus cereus Dps3 (Bc-Dps3) is found primarily as a dimer but forms dodecamers
upon the addition of Fe(II), suggesting an environmentally mediated mechanism for
dodecamer assembly, akin to Dr-Dps1 (57).

Dps as a DNA-binding protein. During stationary phase in organisms whose Dps is
a DNA-binding protein, Dps and DNA assemble into a tight nucleoprotein complex
called the biocrystal. The biocrystal forms a hexagonally packed assembly, with offset
planar arrays stacked on top of one another, similar to oranges packed in a crate (Fig.
3) (1, 2, 24–27). While Ec-Dps can form hexacrystalline biocrystal-type structures with
itself in vitro, the addition of DNA greatly accelerates the process (11, 49). However, the
spacing of the Ec-Dps crystalline lattice is similar with and without DNA (11). Initially,
during the formation of the biocrystal, Ec-Dps–DNA aggregates form toroidal (ring-
shaped) structures (Fig. 4) (25). It has been hypothesized that Ec-Dps–DNA toroids are

FIG 2 Quaternary structures of the E. coli Dps dodecamer and ferritin 24-mers. (A) Ec-Dps dodecamer (PDB
accession number 1DPS); (B) Ec-FtnA 24-mer (PDB accession number 1EUM); (C) Ec-Bfr 24-mer (PDB accession
number 3E1J) (18, 180, 181). Monomer subunits are shown in distinct colors. Ec-FtnA is a partial structure;
mirrored subunits are shown in the same color. Images are scaled to approximate size differences between the
90-Å-diameter Dps dodecamer and the 180-Å-diameter ferritin 24-mers. (Created with BioRender.com.)
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points of initial nucleation from which biocrystallization spreads until the nucleoid is
largely restructured by Ec-Dps. The spacings of nucleoprotein complexes in early-sta-
tionary-phase toroids and late-stationary-phase biocrystals are similar, supporting this
hypothesis (25).

FIG 3 Model of E. coli Dps-DNA binding. Shown is a model of Ec-Dps DNA binding where blue shapes
represent Dps dodecamers and yellow double helices represent dsDNA molecules. (A) A single Dps dodecamer
is separate from dsDNA; (B) a triad of Dps dodecamers coalesces around a single dsDNA molecule; (C) multiple
Dps dodecamer triads coalesce around dsDNA; (D) 3-dimensional Dps-DNA hexacrystalline array. The image is
not to scale. (Model inspired by Grant and colleagues [18]; created with BioRender.com.)
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Dps-DNA complexes are formed only during stationary phase in E. coli (Fig. 4) (11,
24, 28, 58), where one study found that Ec-Dps occupies over 50% of the nucleoid (22).
This growth-phase-specific phenomenon is not due simply to increased Dps abun-
dance during stationary phase because the overexpression of Ec-Dps during log phase
does not result in biocrystal formation (24). Whether this stationary-phase specificity is
due to unfavorable environmental conditions for Dps binding during log phase or
reflects the concentration of other competing NAPs with a higher DNA affinity during
log phase is not well understood.

Stationary-phase-specific nucleoid compaction is dependent on Dps (11, 20, 22, 24,
25, 28–31). To date, research suggests that Ec-Dps is unique among NAPs in that it is
necessary for a proper nucleoid structure. The removal of any other NAP during log
phase does not significantly change the log-phase nucleoid structure, but the removal
of Ec-Dps significantly changes the structure of the stationary-phase nucleoid (59, 60).
Without Dps, the late-stationary-phase nucleoid in E. coli is configured into a choles-
teric (liquid crystalline) phase (24). While a cholesteric organization has been shown to
reduce the accessibility of DNA molecules to a variety of damaging factors, suggesting
an overarching necessity for DNA protection during late stationary phase, this nucleoid

FIG 4 E. coli Dps induces the formation of the stationary-phase-specific biocrystal. Shown is the E.
coli nucleoid structure bounded within cell membranes, where brown circles represent ribosomes,
yellow shapes represent DNA, and blue circles represent Dps dodecamers. (A) During log phase,
chromatin is interspersed with the translation machinery. (B) During the transition between log phase
and stationary phase, toroids composed of regularly spaced Dps-DNA nucleoprotein complexes form,
which are segregated from ribosomes. (C) By late stationary phase, the nucleoid has been
restructured to a regularly spaced “biocrystal” nucleoprotein complex, which is segregated from
ribosomes. Double helices in panel C represent locally parallel DNA within the crystalline nucleoid.
The image is not to scale. (Model inspired by Frenkiel-Krispin and colleagues [24, 25]; created with
BioRender.com.)
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conformation also leads to a longer lag phase and other defects (61, 62). This is likely
due to DNA being in a conformation that is more resistant to the remodeling to a log-
phase chromatin structure that occurs upon inoculation into fresh medium.

Dps-dependent nucleoid compaction during the transition from log phase to sta-
tionary phase is gradual (22, 25). Nucleoid restructuring by Ec-Dps lags behind Ec-Dps
binding (63, 64). This could explain the timing of the shift from toroids to a mature bio-
crystal between early and late stationary phases. Hysteresis, the phenomenon of a
physical change lagging behind its inducing effect, appears to be a feature of the sta-
tionary-phase nucleoid, as nucleoid restructuring by integration host factor (IHF), the
other major NAP during early stationary phase, also displays this property (64).

Not all Dps proteins with DNA-binding activity create a biocrystal. Some form non-
crystalline aggregates, whereas others bind DNA without condensation (15, 53, 54). For
example, the DNA-binding activity of Helicobacter pylori neutrophil-activating protein
(HP-NAP), which is unique among Dps proteins for its positively charged exterior, is
modulated by pH (15). Ms-Dps1, which does not induce DNA condensation and does
not protect DNA from nuclease-induced cleavage, does protect DNA from hydroxyl
radical-induced damage (54). However, the overexpression of either Ms-Dps protein in
M. smegmatis results in nucleoprotein toroid formation (31).

The DNA-binding activity of several Dps species is modulated by environmental fac-
tors in vitro. While the DNA-binding and ferritin-like properties of Dps proteins are bio-
chemically separable, incorporated Fe31 enhances DNA-binding efficiency in some spe-
cies (12, 65). In Staphylococcus aureus, stationary phase alone is not sufficient for
nucleoid compaction, but oxidative stress or the overexpression of MrgA, the S. aureus
Dps protein, results in a highly compacted nucleoid (30, 66). Additionally, treatment of
the M. smegmatis stationary-phase nucleoid with RNase “loosens” the nucleoid struc-
ture (31). RNase-induced loosening may be due to decreased macromolecular crowd-
ing forces, with fewer macromolecules (RNA, DNA, and proteins) in the cytoplasm to
promote nucleoid condensation (67).

Dps has no currently identified sequence or structural specificity for its DNA-bind-
ing activity. Ec-Dps binds DNA with a dissociation constant (Kd) of approximately
2 � 1027 M, which is relatively low for a NAP (the Kd for specific binding of other major
NAPs typically falls around 1029 M [68–72]) and may explain the lack of observed
sequence specificity (16, 18). It has been observed that Ec-Dps does not discriminate
among linear dsDNA, circular dsDNA, and single-stranded RNA (ssRNA) in vitro (11, 73).
Furthermore, Ec-Dps shows no preference between supercoiled and relaxed DNA (14).
However, there appears to be a minimum size for high-affinity DNA binding: dsDNA
fragments smaller than ;90 bp do not bind Ec-Dps efficiently (18). Interestingly, 90 bp
is about the length required to encircle a Dps dodecamer, a number that has been
used to suggest a wrapping model for Dps-DNA binding (74).

While there is no universally accepted model for Dps DNA-binding specificity,
several studies have suggested DNA-binding motifs. One transcriptome sequencing
(RNA-Seq) study suggested that Dps-binding regions are enriched for inverted repeats,
overlap promoter islands significantly, tend to show increased structural flexibility, or
overlap binding sites of other NAPs, particularly the factor for inversion stimulation
(Fis), one of the major log-phase NAPs (17, 75). A SELEX-Seq (systematic evolution of
ligands by exponential enrichment sequencing) experiment suggested a consensus
sequence for linear DNA binding by Dps (76), but the universality of this sequence in
vivo has yet to be confirmed.

There are 2 non-mutually exclusive models proposed for DNA-Dps interactions. The
first involves interactions mediated through divalent cation bridges. This is supported
by the observation that Dps will bind DNA only in a certain cationic range of ;1.0 mM
Mg21 in vitro, which is abolished when EDTA is added to sequester cations (24, 53, 64).
The second is that the short, lysine (K)-rich, N-terminal helices from three adjacent Dps
dodecamers coalesce around a dsDNA molecule (Fig. 3) (10, 18, 49). Species with a K-
rich N-terminal helix, including Ec-Dps, tend to also have DNA-binding activity, and
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species that lack a K-rich N-terminal helix tend to lack this activity (Table 1) (14, 26, 45,
65, 77, 78). The second model does have exceptions: Ms-Dps1 and Dr-Dps1 appear to
require both the N-terminal and C-terminal regions to bind DNA, and HP-NAP is postu-
lated to use its positively charged exterior to bind DNA (15, 50, 79, 80). Additionally,
Agrobacterium tumefaciens Dps (At-Dps) has a positively charged N-terminal helix,
although it is 11 amino acids shorter than the 20-amino-acid-long Ec-Dps N-terminal
helix and does not bind DNA (36). The convergent evolution of different DNA-binding
modes exhibited by different Dps species suggests a biological demand for DNA pro-
tection during stationary phase.

Interactions with other NAPs. Log phase is characterized by rapid growth and cell di-
vision, which necessitates high levels of tightly regulated gene expression and, thus, ready
access to the chromosome. This is reflected by the plurality of major NAPs during log
phase and the resultant log-phase nucleoid structure. However, easy access to genetic ma-
terial is not necessarily beneficial during stationary phase. Low nutrient availability and
high population density shift the cell’s focus to maintenance and protection; this requires
the Dps-dependent sequestration of DNA. The transition from a log-phase to a stationary-
phase nucleoid structure requires a transition in NAP availability and perhaps particular
interactions between log-phase and stationary-phase NAPs.

Dps interacts in various ways with other NAPs. Ec-Dps acts antagonistically to Fis as
a nucleoid structural agent (58, 63, 75). Additionally, Dps and Fis expression has been
found to invert between log and stationary phases in E. coli: Fis is highly expressed dur-
ing log phase and below the limit of detection during stationary phase, while Dps is
weakly expressed during log phase and highly expressed during stationary phase (Fig.
5) (19). Fis and H-NS each regulate Ec-Dps expression (81). Both Dps and curved DNA-
binding protein A (CbpA), the two major NAPs present during late stationary phase in
E. coli, self-aggregate and are postulated to cause nucleoid compaction by clustering
distal DNA loci (82).

The interactions between Dps and some of the major log-phase NAPs may suggest a
mechanism for Dps accessing the chromosome throughout stationary phase. Perhaps Dps
replaces other NAPs, including Fis, as they dissociate from the chro-mosome. If log-phase
NAPs dissociate in a concentration-dependent manner, as previously reported (83, 84), this

FIG 5 Major E. coli NAP abundance by growth phase. NAPs are differentially expressed during different growth
phases. Dps (red) and IHF (purple) protein abundances are low during log phase and high during stationary
phase; Fis (black), H-NS (dark gray), HU (light gray), and Hfq (medium gray) are highly expressed during log phase
and lowly expressed during stationary phase; and CbpA (blue) is lowly expressed until mid- to late stationary
phase. The x axis is not linear with time. (Data inspired by Ali Azam et al. [19].)
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may provide the opportunity for Dps molecules to nucleate DNA locally before restructur-
ing the entire chromosome into the biocrystal.

Dps as a ferritin. Iron, a cofactor in many essential biological processes, can be crit-
ical in the generation of reactive oxidative species (ROS), which are capable of damag-
ing a broad range of macromolecules (85). This is achieved primarily through the
Fenton reaction:

Fe21 1 H2O2 ! FeO½ �21 1 H2O

FeO½ �21 1 H1 ! Fe31 1 HO�

Ferritins help the cell manage the dual nature of iron by converting it into its insolu-
ble, less reactive form, storing this detoxified Fe(III), and releasing it when needed.
Bacteria have two highly conserved ferritin proteins: ferritin (Ftn) and the heme-con-
taining bacterioferritin (Bfr). Ftn and Bfr have little sequence homology, except at their
ferroxidase sites, which are highly conserved (86). Dps, while ferritin like, has a number
of notable differences compared to both canonical ferritins (86). Only a few Dps pro-
teins, including the two Dps proteins of L. lactis, have been found not to possess ferri-
tin activity; both of these proteins bind DNA (53). Dps uses H2O2 to oxidize Fe(II) to Fe
(III), while traditional ferritins use O2 as the oxidant (4, 6, 34, 41). One H2O2 is metabo-
lized for every two Fe(II) atoms oxidized, avoiding the production of hydroxyl radicals
via Fenton chemistry (34). For some species with two or more Dps proteins, one may
use O2 to oxidize Fe(II), and the other may use H2O2 (39, 87–89).

Dps dodecamers have iron entry pores that are unique among ferritins. These pores
are negatively charged and located at the four 3-fold interfaces within the dodecamer
(6, 18, 27). Interestingly, Dr-Dps1 has distinct iron exit channels that constantly release
Fe(II) and contribute to DNA damage in vitro (79). When these iron exit channels are
disrupted via mutation, Dr-Dps1 loses the ability to contribute to DNA damage, and
instead, DNA is partially protected from iron-mediated cleavage (79).

The Dps dodecamer has 12 highly conserved ferroxidase centers, which can each
oxidize two iron atoms simultaneously (34, 79, 88–91). Unlike ferritins, the Dps ferroxi-
dase site is comprised of residues from two adjacent monomers: two histidine residues
from one subunit and an aspartate and a glutamate from the other (6, 27, 41, 45, 51,
86, 92). This is distinct from ferritins, whose active sites are formed solely within each
of the 24 monomers.

Once oxidized, iron is stored in the hollow core of the Dps dodecamer, at which
point it organizes as microcrystals (92). While Dps can form a ferric core with O2 as an
oxidant similar in size to that observed with H2O2, the O2 core formation reaction is less
cooperative and leads to increased heterogeneity in ferric core size in a population of
Dps dodecamers (34). A crystalline iron core is also observed in ferritin proteins (93).
Two steps in Fe(III) reduction and release from Ec-Dps have been observed in biochem-
ical experiments, which may indicate two populations of iron in the protein, perhaps
one representing the bulk iron in the core and the other attached to the interior of the
shell (92).

One Dps dodecamer typically contains up to 500 Fe(III) atoms in its internal cavity under
aerobic culture conditions (32–40). When grown anaerobically, the ferric core contains
;400 Fe(III) atoms; traditional ferritins can store up to ;4,000 oxidized iron atoms per 24-
mer (34, 46, 94). Several Dps species store fewer iron atoms: Thermosynechococcus elonga-
tus Dps (Te-Dps) and Halobacterium salinarum DpsA (Hs-DpsA) each hold ;100 Fe(III)
atoms/dodecamer, and Trichodesmium erythraeum Dps (Te-Dps) and Sulfolobus solfataricus
Dps (Ss-Dps) each store;300 Fe(III) atoms/dodecamer (42, 95, 96) (Table 1). The biological
mechanism(s) for these discrepancies is unknown.

Some Dps proteins have been found to bind other metals, including zinc, calcium,
cobalt, copper, nickel, manganese, and terbium, and one small charged molecule,
phosphate (9, 14, 79, 87, 89, 95, 97–101). Each has been found to bind at the ferroxi-
dase site and/or an allosteric (nonferroxidase) site, depending on the Dps species and
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noniron substrate (Table 1). Dr-Dps-1 contains 2 allosteric Co(II) sites, one near the C
terminus and another near the N terminus of the protein, as well as an allosteric Zn(II)
site in its longer-than-typical Dps N-terminal helix (79, 99). This can alter Dps action; for
example, Zn(II) inhibits ferroxidase activity when bound to the iron site in Nostoc punc-
tiforme Dps4 (Np-Dps4) (89). Additionally, it has been reported that phosphate can
affect the crystallinity and chemical reactivity of ferritin cores, which may be due to
interactions between the negatively charged phosphate and positively charged iron
ions, suggesting that this molecule may serve to modulate these properties in the Dps
core (102). Finally, Dps has been shown to protect Anabaena sp. strain PCC 7120 and E.
coli from copper toxicity (Table 2), contributing further to a physiological role for Dps
in binding noniron metals.

Dps expression. The expression of Dps is primarily dependent on the growth phase.
During log phase, dps expression is low; however, it is upregulated in response to oxidative
stress (7, 66, 102–104). dps expression is upregulated during stationary phase relative to
log phase (1, 19, 21, 104, 105).

The Dps protein concentration is relatively low during log phase. Several studies
have quantified the Ec-Dps concentration as ,1,000 molecules per cell during log
phase (19, 21, 105). Dps expression is controlled at the transcriptional, posttranscrip-
tional, translational, and posttranslational levels during log phase. Transcription is
repressed by the ferric uptake regulation protein (Fur) (106–109). During log phase, Ec-
Dps is induced in response to a variety of stresses (3). This is not due to growth-phase-
specific changes in the transcription machinery: E. coli s 70, the housekeeping sigma
factor, and s s, the stationary-phase sigma factor, have similar affinities for the dps pro-
moter in vitro (81). Instead, various stress-activated transcription factors modulate dps
expression. OxyR, the oxidative stress response transcription factor, activates dps
expression during log phase by binding upstream of the dps promoter and recruiting
s70 (102, 110, 111). This is modulated by the oxidative stress level encountered by the
cell. Reduced OxyR has a significantly lower affinity for the dps promoter; i.e., oxidized
OxyR induces dps expression (112). In addition to OxyR, dps expression is regulated by
PerR, the peroxide regulon repressor (7, 66, 103, 113). dps is upregulated in response
to iron depletion stress, iron excess stress, thermal stress, NaCl stress, ethanol stress,
and gamma irradiation and in the presence of acetyl phosphate (42, 57, 96, 107, 114–
119). The log-phase stressor concentration-dependent expression of Dps is similar to
ferritin expression, which is low unless stressors are added (120).

Dps transcription is controlled by other NAPs during log phase. In E. coli, Fis inhibits
dps promoter accessibility by RNA polymerase (RNAP) formed with s70; Fis and s 70 are
able to corepress transcription by s s (81). H-NS binds the 210 promoter region of dps,
blocking s 70 from binding the promoter (81). Dps, which is an N-end rule degradation
pathway substrate in E. coli, is rapidly degraded by ClpXP (121–124). During log phase,
the Dps protein’s half-life is ;10 min; this increases to ;40 min with the addition of
oxidative stress (121).

Dps is highly expressed during stationary phase, where several studies have quanti-
fied Dps levels in the range of hundreds of thousands of molecules per cell (19, 21,
105). As in log phase, Dps levels are controlled at the transcriptional, posttranscrip-
tional, translational, and posttranslational levels during stationary phase. dps transcrip-
tion is induced by s s, which directly activates dps expression by binding the 210 pro-
moter region (1, 3, 110, 125). dps transcription is also controlled by other NAPs during
stationary phase. IHF, the other major NAP during early stationary phase, has been
found to cooperate with s s in the s s-mediated upregulation of Dps during early sta-
tionary phase (58, 110). At the posttranscriptional level, Dps degradation is not
detected during stationary phase (121). In species with more than one dps gene, differ-
ent dps loci are differentially regulated (7, 57, 126–130). Additionally, if one dps locus is
knocked out in species with more than one dps gene, the expression of other dps loci
may compensate for its absence (127).
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TABLE 2 Dps as a stress response protein

Type of stress Species (reference[s]) Growth phase (reference[s])a

Acid stress Escherichia coli (152) Log (193, 194)
Stationary (62, 193)

Streptococcus pyogenes Log (195)

Base stress Escherichia coli Log (62)
Streptococcus pyogenes Log (195)

Carbon limitation Anabaena sp. PCC 7120 Stationary (196)

Cold shock Listeria monocytogenes (197)
Streptococcus thermophilus (198, 199)

Copper stress Anabaena sp. PCC 7120 Stationary (135, 196)
Escherichia coli Log (200)

Stationary (62)

Endonucleases Campylobacter jejuni (91)
Helicobacter pylori (15)
Trichodesmium erythraeum (95)

Ethanol stress Bacillus cereus (57)

High NaCl Anabaena sp. PCC 7120 Stationary (135, 196)
Bacillus cereus (57)
Escherichia coli Log (10)
Legionella pneumophila Stationary (115)

High pressure Escherichia coli Stationary (201)

Heat stress Anabaena sp. PCC 7120 Stationary (135, 196)
Bacillus cereus Log (7, 57)
Escherichia coli Log (10)

Stationary (62)
Legionella pneumophila Stationary (115)

Iron excess Escherichia coli Log (10, 62)
Stationary (62)

Vibrio cholerae (125)

Iron limitation Anabaena sp. PCC 7120 Stationary (135, 196)
Escherichia coli Stationary (K. Orban, unpublished results)

Nitrogen limitation Anabaena sp. PCC 7120 Stationary (196)

Oxidative stress Agrobacterium tumefaciens (36)
Bacillus anthracis Stationary (44)
Bacillus cereus Log (57)
Bacillus subtilis Log (104, 145)

Stationary (145)
Campylobacter jejuni Log (91)
Escherichia coli Log (1, 10, 194)

Stationary (62, 146)
Helicobacter hepaticus (65)
Legionella pneumophila Log (115)
Listeria innocua (38)
Listeria monocytogenes Log (159)

Stationary (159)
Microbacterium arborescens Log (116)
Nostoc punctiforme (202)
Porphyromonas gingivalis (77)
Salmonella enterica serovar Typhimurium (108, 203) Log (157)
Staphylococcus aureus Log (30)

(Continued on next page)
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Because Dps is a large family of proteins across many species, there are exceptions
to these patterns. In Campylobacter jejuni, dps (Cj-dps) is constitutively expressed dur-
ing log and stationary phases and is not upregulated in response to oxidative stress
(37). Additionally, Borrelia burgdorferi Dps (Bb-Dps) is constitutively synthesized in both
log and stationary phases with no change due to oxidative stress but is differentially
expressed when incubated in mice (low expression) or ticks (high expression) (40).
Finally, Porphyromonas gingivalis dps (Pg-dps) expression is not modulated by oxidative
stress (131).

Dps as a regulator of gene expression. One mechanism by which NAPs can affect
gene expression is by altering nucleoid architecture (132). Like the other major nucle-
oid structural proteins, which affect gene expression through altering nucleoid struc-
ture, Ec-Dps is distributed throughout the nucleoid (1, 63, 133). Data also suggest that
Dps may be a regulator of gene expression. When first identified, radiolabeled two-dimen-
sional PAGE (2D-PAGE) showed many differences between newly synthesized proteins in E.
coli wild-type and dps-null strains in late stationary phase, suggesting a role for Dps as a
regulator of stationary-phase-specific gene expression (1). In addition, a series of promoter-
less lacZ fusions made in an arabinose-inducible dps background showed differential
expression depending on the dps expression status (S. E. Finkel, unpublished results).
Furthermore, a SELEX-Seq experiment identified 624 Dps-binding sites throughout the E.
coli chromosome (76); from the locations of these sites, regulatory targets have been pre-
dicted (https://shigen.nig.ac.jp/ecoli/tec/). Dps in Salmonella enterica and Anabaena sp. PCC
7120 has been shown to affect global gene expression, although it is unknown whether
the modulation effect is direct or indirect (134, 135). However, there are some conflicting
data with respect to gene expression regulation. Antipov and colleagues (75) showed the
differential regulation of genes by Dps between biological replicates in late-stationary-
phase E. coli. These results may suggest regulatory plasticity modulated by Dps. However,
an extensive regulatory study on Ec-Dps found no significant differences in expression via
RNA-Seq or proteomics due to the presence or absence of Dps in log, stationary, or early
long-term stationary phase (136).

There are several potential explanations for the differing Dps gene expression results,
particularly across E. coli studies. First, the methodologies differ. Genetic experiments such
as promoterless lacZ fusions, which examine larger-scale, population-level effects, may
show different phenomena than sequencing experiments such as chromatin immunopreci-
pitation sequencing (ChIP-Seq) and mRNA-Seq, which examine changes at the molecular
level. Similarly, biochemical experiments such as radiolabeled 2D-PAGE and mass spec-
trometry may show different phenomena than one another, as the former examines newly

TABLE 2 (Continued)

Type of stress Species (reference[s]) Growth phase (reference[s])a

Stationary (13, 30)
Streptococcus mutans (204)
Streptococcus pyogenes Log (195, 205)
Streptococcus suis Stationary (41, 206)
Thermosynechococcus elongatus (43, 87)
Vibrio cholerae Log (125)

Stationary (125)

Phosphorus limitation Anabaena sp. PCC 7120 Stationary (135, 196)

UV and gamma irradiation Anabaena sp. PCC 7120 Stationary (135, 196)
Escherichia coli Stationary (62)
Staphylococcus aureus Log (30)

Visible-light stress Nostoc punctiforme (127)

Zinc excess Escherichia coli Transition (62)
Streptococcus pyogenes Stationary (195)

aFor species that are not assigned a growth phase for the Dps-mediated stress response, the work was done either in vitro or on plates.
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synthesized proteins and the latter probes the global protein distribution. Second, the
strains being studied differ. The same mutation can produce a range of phenotypic
changes, or no change at all, depending on the genetic background (137). This may be the
case with Dps gene expression effects.

Macromolecular sequestration and phase separation. The formation of the Dps-
DNA biocrystal may be one example of a larger biological mechanism of protection.
Ferritins also form crystalline assemblies, potentially indicating an evolutionary pressure to
promote biocrystallization processes as a stress response (138). Ferritin crystals form when
ferritin is overproduced in E. coli and cells are exposed to Fe(II), a potent source of oxidative
stress that can damage macromolecules like DNA and proteins (61). This may indicate an
evolutionary advantage in structural motifs that facilitate a transition of proteins into crys-
talline structures that protect cellular components through the rapid sequestration of valu-
able macromolecules from damaging agents. Additionally, biocrystallization has been sug-
gested as a means to maintain homeostasis in stressful environments. For example, the
nucleoids of dormant Bacillus spores are arranged into an SspC (small, acid-soluble spore
protein C)-DNA crystalline lattice via toroid-mediated condensation, similar to the early-sta-
tionary-phase-specific nucleoid packaging mediated by Dps, although the packing of tor-
oids and crystalline lattice formation in the spore are different than those mediated by Dps
(139, 140). Because sporulation is induced in response to various stresses, the nucleoid
repackaging occurring during this time supports the hypothesis of biocrystallization as a
stress response mechanism.

The crystalline assembly of Dps-DNA complexes has been posited to create a dis-
tinct phase within the heterogeneous mixture of the nucleoid, a potentially important
example of the role of phase separation in biological systems (141, 142). Early studies
of Dps-DNA complexes in E. coli show a crystalline assembly (11, 24, 25), although the
mechanism could be due to either liquid- or solid-phase separation. Additionally, Dps
exhibits highly cooperative binding, which is emblematic of phase separation (142,
143). Finally, RNA polymerase can access DNA when bound by Dps (136), but nucleases
and other DNA-damaging agents cannot as efficiently (1, 136). This observation is con-
sistent with other phase-separated complexes, which can selectively concentrate
enzymes and other factors (142). Just as Dps is highly expressed in stationary phase,
phase separation is dependent on high concentrations of the proteins involved in the
phase (142). Phase separation has been shown to play an important role in managing
stress responses, including thermal and pH stress (144). This is notable when consider-
ing Dps-mediated phase separation, as Dps is a known contributor to stress responses
(see below).

Stress response. Dps confers resistance to several environmental stresses (Table 2),
the most extensively studied of which is oxidative stress (1, 11, 30, 57, 62, 145, 146). It
does so in three notable ways: (i) physical protection of DNA, (ii) sequestration of iron,
and (iii) neutralization of H2O2. First, Dps specifically protects DNA from oxidative-
stress-induced damage (10, 11, 57, 91, 146). This is akin to eukaryotic histone proteins,
which physically protect DNA from oxidative stress (147). Moreover, Ec-Dps has been
found to interact with DnaA to impede DNA replication initiation during log phase in
periods of oxidative stress, suggesting a secondary regulatory role that is targeted at
protecting DNA (148). Second, in its role as a ferritin, Dps protects the cell from oxida-
tive stress by sequestering iron and, thus, preventing the formation of ROS. In addition
to its physical sequestration of iron, Ec-Dps has also been found to interact with the
iron-sulfur cluster protein YtfE to diminish YtfE-induced oxidative stress (149). This
demonstrates a secondary regulatory role that is targeted toward reducing oxidative
stress, which is a theme similar to that of how Dps protects DNA. The third way in
which Dps protects the cell from oxidative stress is through the detoxification of H2O2.
This is inherent in its ferritin function, as this protein’s preferred oxidant for iron is
H2O2. Dps also confers resistance to other stressors, although the protective effects dif-
fer depending on the growth phase and species (Table 2).

In species with more than one dps gene, each gene may confer differential resist-
ance to different stresses (7, 127, 128). In Bacillus cereus, two of its three Dps proteins
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(Bc-Dps1 and Bc-Dps2) act cooperatively to confer resistance to oxidative stress (7). In
E. coli, both the ferritin and DNA-binding properties of Dps are required for full Dps-de-
pendent DNA protection (10, 11). Ec-Dps significantly reduces the numbers of DNA
strand breaks, abasic sites and ruptured/oxidized guanine, and GC!TA1TA!AT base
mutations (146). This is due to Dps DNA protection, as the protein is not involved in
the repair of oxidatively damaged DNA (146).

Other functions. In addition to its ferritin and DNA-binding abilities, Dps has been
identified in other important cellular functions. Dps has been identified in a screen for
genes involved in biofilm formation, although no specific role has been classified, and
one study of spontaneously occurring phage-tolerant E. coli identified Dps at the outer
membrane, which may implicate Dps in an as-yet-undetermined role in each of these
processes (3, 150–153). Dps has also been implicated in virulence (40, 77, 108, 125, 151,
154–162). This makes particular sense since iron acquisition can play a vital role in
determining pathogenicity (163). Salt sensitivity, which is modulated by Dps (Table 2),
is also highly correlated with virulence. The Dps protein from Helicobacter pylori, NAP,
has been shown to impair human iron absorption and target iron to H. pylori during
infection (164). Another Dps protein, Microbacterium arborescens amino acid hydrolase
(AAH), catalyzes the cleavage and formation of amide bonds (78). Additionally, the
overexpression of Ec-Dps has been found to impede colony growth on agar plates by
2- to 3-fold during log phase (148).

In some species, Dps has been found at the outer membrane, although the function
of this localization is currently unclear (3, 150, 152, 153). In Synechococcus sp. strain
PCC 7942, more DpsA is observed at the inner cell membrane during lag phase and
log phase than during stationary phase (165). This makes sense in the context of sta-
tionary-phase-specific DNA binding, as more Dps should be observed in the nucleoid
at that time, leaving fewer proteins available to participate in their outer membrane
function(s). This, of course, assumes that Dps is able to move between the inner mem-
brane and the nucleoid with relative freedom. The same study found DpsA localized at
the cell membrane and the nucleoid (165). The authors of that study proposed that
there are two “pools” of DpsA that function in Synechococcus: an insoluble, DNA-bind-
ing fraction at the nucleoid and a soluble, ferritin-active fraction at the membrane
(165). Two pools of a Dps protein have been observed in D. radiodurans: Dr-Dps2,
which can function either as the full-length gene product or as a truncated form (lack-
ing the nonpolar portion of the N terminus that protrudes past the positively charged
portion), is found in the full-length form at the membrane and in the truncated form in
the nucleoid (80). Currently, the functional differences between the full-length and
truncated forms of Dr-Dps2 are unclear; localization to different cellular components
suggests broad functional differences.

Dps in nanotechnology. Recently, Dps proteins, like ferritins, have been used for a
range of nanotechnology applications. The “hollow-ball” structure of Dps and ferritin
proteins makes them excellent candidates for nanotechnologies that require protein
cages. It is advantageous to use Dps instead of canonical, 24-mer ferritins for several
reasons. First, Dps is smaller, making it a better option when a smaller size is desirable
(166, 167). Second, Dps is highly thermostable, making it easy to purify and often more
durable (167).

Dps and ferritins have primarily been used in materials science and drug develop-
ment and delivery. In materials science, horse spleen ferritin has been used as a nano-
reactor (168), Ec-Dps has been used as a scaffold for nanodevice assembly (167), and
Bacillus subtilis Dps (Bs-Dps) and Listeria innocua Dps (Li-Dps) have been used as cata-
lysts for the formation of carbon nanotubes with a limited diameter distribution (169)
and for platinum nanocluster formation for hydrogen production (170), respectively.
Ec-Dps has also been used as a platform to experimentally reconstitute protein-protein
interfaces (171), and Li-Dps has been used to synthesize CdSe nanoparticles with nano-
metric gaps (172) and to fabricate a “high-density, periodic silicon-nanodisc (Si-ND)
array” for use in silicon quantum dot solar cells (173). In drug development and deliv-
ery, horse spleen and human ferritins have been used as platforms for antigen
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presentation (174), vaccine development (174), cancer immunotherapy development
(175), and drug delivery (176) and as a magnetic resonance imaging (MRI) contrast
agent (176). In recent years, there has been increasing interest in nanotechnologies for
use in a range of applications such as tissue repair, drug delivery, and immunoassays
(177). Combined with its smaller size and high thermostability, these demonstrated
uses make Dps increasingly valuable in nanotechnology.

Future directions. While much progress has been made in the understanding of
the ferritin properties of Dps, there is much more to be learned. The dynamics of Dps
ferric core organization are not well understood. If two iron subpopulations are present
in the protein, it is important to understand the division between, dynamism within,
and biological relevance of those populations. Furthermore, an investigation of the
determining factors behind which Dps species bind other ions, metals, or small
charged molecules awaits clarification.

In addition to ferritin activity, the dynamics of Dps dodecamer formation are still
poorly understood. While data suggest that certain Dps species form dimers and/or
trimers before the dodecamer forms, a more thorough inquiry is required to better
understand these dynamics. The driving force behind the stable dimers/trimers and
dodecamers formed by some Dps proteins may be the pH or salt concentration, as pre-
viously suggested (12, 14, 54). If that is the case, however, a comparative study of those
Dps proteins that form stable dimers/trimers and those that do not is warranted to dis-
tinguish mechanisms of assembly.

The additional functions of Dps present interesting avenues of experimentation. Several
studies have found Dps at the outer membrane. However, it is still unclear exactly why Dps
is localized there. If Dps exists in a substantial quantity in the membrane, any movement or
changes in the quantity or concentration may indicate its function there, whether ferritin,
stress response, DNA-binding, or an additional, as-yet-undetermined activity. Examining
membrane composition and permeability in dps-null strains, dps-overexpressing strains, as
well as mutants for oligomerization, DNA-binding, and ferritin activities could shed further
light on why Dps exists at the outer membrane.

Compared to log phase, little is known about the stationary-phase nucleoid. This
includes its structure, dynamics, and protein composition. More specifically, Dps-de-
pendent nucleoid compaction during stationary phase may be due to cellular environ-
mental conditions. Another model for this phenomenon is that Dps binds DNA when
DNA is available to it, which is more likely after log phase when there are lower con-
centrations of other NAPs with which to compete. Furthermore, it is important to
explore how the biocrystal forms. It is unknown what stimulates the formation of bio-
crystal precursor toroids: might this result from log-phase NAPs dissociating from
DNA? It is also unknown whether the biocrystal forms at programmed chromosomal
loci or if the process is more stochastic. Perhaps there is an intermediate mechanism
by which preliminary, local nucleoid restructuring by Dps occurs when log-phase NAPs
dissociate from the chromosome and secondary, global restructuring occurs in a pro-
grammed manner. If Dps truly has no discernible sequence or structural specificity, but
the biocrystal forms reproducibly at certain loci, how is Dps directed to the sites to
which it binds?

There is conflicting evidence with regard to Dps as a regulator of gene expression.
Perhaps Dps does affect gene expression, as suggested by Almirón and colleagues’ 2D
gel electrophoresis studies (1), but the stationary-phase intracellular environment is
such that these changes cannot be detected by transcriptomic or proteomic techni-
ques that focus on the global mRNA/protein population. If both gene expression as
well as RNA and protein degradation slow during stationary phase, a larger relative
shift in expression profiles may be necessary to outweigh the baseline from log phase
and detect these phenomena during stationary phase. Alternatively, a posttranscrip-
tional mechanism of gene expression regulation may be yet undiscovered; a direct interac-
tion between Dps and mRNA may explain the biological relevance of the ssRNA-binding
ability of Dps.
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Until recently, the role of posttranslational modifications (PTMs) in NAPs had not
been studied in bacteria (178). This is still largely the case for Dps proteins and station-
ary phase. While it has been shown that S. enterica Dps can be glycosylated (179) and
that Dr-Dps2 can have its N terminus cleaved in vivo (80), it would be interesting to fur-
ther study how and where Dps acquires PTMs and what the effects are, if any. The ac-
tivity of Fis, to which Dps acts antagonistically, seems to be less subject to alterations
by PTM than other log-phase NAPs. It has been hypothesized that this is due to Fis ac-
tivity being more dependent on growth phase than the other NAPs, so PTMs would
potentially be a redundant signal here (178). Because Dps activity is also highly regu-
lated by growth phase, PTMs may not act as frequently on Dps as other NAPs. The
results of a study of Dps PTMs may help bolster the Fis hypothesis or shed light on
another factor in play.

Conclusion. During stationary phase, the cell encounters an environment in which
nutrient availability is more limited than during log phase. The cell has a biological im-
perative during this time to protect its genetic information from damaging agents,
including ROS-inducing ferrous iron ions. Dps provides an elegant solution to this
problem, both sequestering iron in its inner cavity and creating a phase-separated
nucleoid that is less accessible to DNA-damaging agents. While stationary-phase-spe-
cific nucleoid compaction is surely impacted by the action of other NAPs, it requires
Dps. This is likely because the cell needs a rapid switch to adapt its nucleoid to the
pressures of stationary phase. In its role as a major NAP throughout stationary phase,
Dps offers DNA protection against damaging agents and accessibility to “trusted”
DNA-binding proteins such as RNA polymerase.

Dps is a highly conserved bacterial ferritin and NAP. It has unique ferritin and DNA-
binding properties that make it not only interesting to study from a basic biological
standpoint but also increasingly important in the development of nanotechnologies
and drug delivery. Dps is involved in conferring resistance to a myriad of stresses.
Whether Dps functions as a direct transcriptional regulator is not clearly understood;
however, it is involved in regulating gene expression, even if indirectly through nucle-
oid restructuring. Additional studies will prove useful to understand the dynamics of
the ferritin core of Dps; the process of Dps dodecamer formation; the structure, dy-
namics, and composition of the stationary-phase nucleoid; gene expression regulation
by Dps; PTMs on Dps and other NAPs during stationary phase; and other functions of
Dps, particularly as they pertain to virulence, phage resistance, biofilm formation, and
presence in the cell membrane.
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