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ABSTRACT: At the center of the SARS-CoV2 infection, the spike
protein and its interaction with the human receptor ACE2 play a
central role in the molecular machinery of SARS-CoV2 infection of
human cells. Vaccine therapies are a valuable barrier to the worst
effects of the virus and to its diffusion, but the need of purposed
drugs is emerging as a core target of the fight against COVID19. In
this respect, the repurposing of drugs has already led to discovery
of drugs thought to reduce the effects of the cytokine storm, but
still a drug targeting the spike protein, in the infection stage, is
missing. In this work, we present a multifaceted computational
approach strongly grounded on a biophysical modeling of
biological systems, so to disclose the interaction of the SARS-
CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike−ACE2 interaction. Our approach includes
the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network
Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and
monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike−ACE2
complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in
iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe
outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows
higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE
complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in
different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike
dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a)
HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction
pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical
observations.

■ INTRODUCTION

The COVID19 pandemic urgently needs a therapeutic
solution. Emerging in early 2020, the pandemic seems to be
here to stay and coexist with humanity for the foreseeable
future. It is necessary to find reliable therapeutic solutions
based on a deep understanding of molecular mechanisms
underlying virus infection and spreading.1 The spike protein
has become the main molecular target of therapy2 and
vaccination strategies3 due to its central role in the very early
stage of the virus infection.
Its mutations strongly characterize SARS-CoV2 (the virus

responsible for COVID19) with respect to genetic homologues
(such as SARS-CoV), and they all come in the direction of
optimizing the binding of the spike protein with its main
receptor, human angiotensin converting enzyme 2 (ACE2).

Because of the widespread presence of human ACE2 in many
tissues (it is widely present in lungs, kidney, and gut),
COVID19 acts with a multisystemic pathology.
The specific nature of the spike−ACE2 interaction has been

largely explored since the pandemic outbreak, revealing special
features awarding SARS-CoV2 with an unprecedented
infectivity with respect to similar CoV (SARS-CoV and
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MERS-CoV), invoking a step change in spike flexibility as the
main driver for improved infectivity and, more in general,
providing insight on the very successful interaction with the
receptor ACE24 also in the perspective of identification of
epitopes as antibodies targeting.5 The key role played by the
spike−ACE2 interaction is also reflected in the mutational
escape to antibodies upon mutation, which involves mainly the
receptor binding domain (RBD) and receptor binding motif
(RBM) of the spike protein.5

Recently, the role of COVID19 in igniting iron dysregula-
tion and hemoglobinopathy has been evidenced, pointing to an
intermingled concurrence of infectious mechanisms and severe
hematological pathological changes (e.g., blood clots).
Hepcidin plays a central role in iron metabolism and is

involved in different mechanisms activated by COVID19; its
serum values are highly altered in COVID 19 patients and have
been used to predict COVID19 prognosis.6 Hepcidin is the
main hormone in iron regulation, allowing iron retention in
cells during inflammation. For that, it belongs to the molecular
machinery of native immune systems, whose role is more and
more evident in the different stages of the inflammatory
response to infection threats.7 A recent work invokes a mimetic
behavior of spike protein to explain the low level in critically ill
patients.8 Human hepcidin is a 25-residue peptide, produced
by a furin cleavage of the prohormone form. Incidentally, furin
also plays a central role in SARS-CoV2 infection, since furin
cleavage of the spike−ACE2 complex allows virus entry. So
hepcidin and spike protein compete with the same enzyme,
furin, for their activity.
Conversely, hepcidin belongs to the family of beta-hairpin

peptides, with known antimicrobial properties that depend on
the number of disulfide bonds stabilizing the peptide (the
more, the better). In this family, hepcidin has the largest
number of disulfide bonds (four) and is positioned as the
potentially most effective antimicrobial peptide in its family.
Hepcidin exhibits antifungal activity against Candida albicans,
Aspergillus fumigatus, and Aspergillus niger and antibacterial
activity against Escherichia coli, Staphylococcus aureus, Staph-
ylococcus epidermidis, and group B Streptococcus.9

Eventually, Ehsani et al. demonstrated that the cytoplasmatic
tail of the SARS-CoV2 spike protein shows a strong sequence
similarity with hepcidin.10

For all these reasons, we decided to investigate the
molecular interaction of human hepcidin with different forms
of SARS-CoV2. We performed docking of human hepcidin
with the closed, intermediate, and open forms of spike protein
and with the complex spike−ACE2.
We also identified the allosteric sites in the open and closed

conformations, to detect possible active regions for interactions
with hepcidin, in the perspective of verifying its activity as an
allosteric drug. The allosteric drug paradigm has been
emerging as a novel landscape in drug discovery, requiring
us also to better define the protein−protein interactions role in
allostery of oligomeric proteins, such as spike and its
complexes with ACE2.11

We found that different computational approaches, stem-
ming from diverse hypotheses on protein conformational
changes and binding, converge in suggesting a potentially
effective interaction between hepcidin and spike protein. These
results add a “molecular” layer to the multifaceted role of
hepcidin in COVID19 pathogenesis.

■ MATERIALS AND METHODS

Structural Data and Molecular Docking. We performed
the analysis of the complex SARS-CoV2 spike−ACE2 structure
available as Protein Data Bank (PDB) from the Web site of
Zhang’s laboratory12 that we have already used in our previous
work;13 before the analysis, structures were equilibrated by
means of the adaptive tempering molecular dynamics (AT-
MD) technique, as thoroughly explained below (see the next
section).
To test the effect of hepcidin on the stability and affinity of

the different forms of the spike protein, we used the Web
server SWARM to perform the protein−peptide docking,
which has been previously evaluated as the most reliable with
respect to the reproduction of native conformations of
peptide−protein complexes.14 Upon docking, we performed
an all-atom molecular dynamics to equilibrate the spike−

Figure 1. Complex of the spike protein of SARS-CoV2 with the human receptor ACE2 (in yellow). (A) Complex spike−ACE2; (B) complex
spike−ACE2 docked with the hepcidin (blue surface).
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ACE2-hepcidin complex. We performed all the analysis on the
equilibrium conformation resulting from the molecular
dynamics simulation.
We report also the energy parameters of the complexes as

computed through the PDBePISA web server (https://www.
ebi.ac.uk/pdbe/pisa/); energy parameters of assemblies are
explained in detail later.
We performed an all-atom molecular dynamics on the two

complexes, namely, spike + ACE2 and spike + ACE2 +
hepcidin. We report the structure of the equilibrated forms of
the spike−ACE2 complex, with and without hepcidin (see
Figure 1); hepcidin binds in a region partially overlapping with
the Allosteric Modulation Region (AMR) we identified in our
previous study.13

Allosteric Region Identification by Protein Contact
Networks Clustering. In previous works,13,15,16 we demon-
strated the presence of an allosteric site in the spike protein,
with respect to the binding with human ACE2, its main
receptor. In this work, we apply again the same methodology
to derive the main feature of the complexes (with and without
hepcidin) so to disclose the role of this peptide in the complex
of spike with the human receptor ACE2. We applied the
clustering analysis on the structures shown in Figure 1 and to
all the frames of the molecular dynamics of equilibration of the
docked complex (spike protein + ACE2 + hepcidin), in order
to identify guiding variables in the dynamics. The methodology
of network clustering is based on the representation of protein
molecular structures as networks (Protein Contact Networks
(PCNs)): single residues are the network nodes, while network
edges are the active contacts between residues. We define
“active contacts” as those corresponding to a distance between
residues between 4 and 8 Å (significant noncovalent
interactions).17

The mathematical representation of the PCN is the
adjacency matrix, defined as

=A
d1 if lies within 4 and 8 Å

0 otherwise

ij
l
m
oo
n
oo (1)

The basic descriptor of the network connectivity is the node
degree defined as

∑=k Ai
k

ik
(2)

The average degree (adeg) of the network is the average
value of ki over the number N of residues. Network shortest
paths identify shortcuts in signal transmission through
networks. The shortest path spij between the ith and jth
nodes describes the lowest number of links to be trasversed for
connecting the two nodes. This metrics plays a central role in
identifying routes of signal transmission in allosteric regulation,
as demonstrated also in other computational approaches.16,18

In this work, we apply Dijkstra’s algorithm19 to compute the
matrix of shortest paths between residue pairs.
The functional properties of proteins rely on their

modularity, implying that different modules (domains) inside
the protein structure interact with each other and with the
surrounding environment to allow protein physiological
function. This interaction between regions of the protein
structure is at the very basis of the allosteric mechanism, which
in turn is responsible for the regulatory nature of protein
activity.

The network formalism allows one also to identify functional
modules inside the protein molecule, linked to the interaction
pathways (link paths) throughout the molecule.
In this work, we apply network clustering based on the

spectral decomposition of the Laplacian matrix, defined as

= −L D A (3)

where D is the degree matrix, that is, a diagonal matrix whose
generic non-null element Dii = ki. Applying the eigenvalue
decomposition on the Laplacian L, the network clustering is a
binary, hierarchical method based on the Fiedler vector v2, that
is, the eigenvector corresponding to the second minor
eigenvalue. The sign of its components assigns residues to
two different clusters at each clustering iteration. The final
result is a so-called “crispy” clustering partition, meaning a
partition of nodes (residues) to different clusters. The number
of clusters (power of 2) is assigned as the input of the
algorithm.
We demonstrated that this method efficiently identifies

functional modules in protein structure, when compared to
geometrical methods of clustering like k-means.20

On the basis of the clustering partition (which assigns
residues to different clusters, which putatively correspond to
protein functional modules), it is possible to compute for each
ith residue the participation coefficient, defined as21,22

= −P
k
k

1i
si

i

2i
k
jjjjj

y
{
zzzzz (4)

where ksi is the node intracluster degree, that is, the number of
contacts of the node (residue) with nodes belonging to the
same cluster, whereas ki is the total node degree.
On the one side, P values range from 0 to 1; null values

correspond to nodes very central in the clusters, not
participating at all in the communication with other clusters;
on the other side, high values of P (>0.75) identify nodes
(residues) that spent most of their contacts with residues
belonging to clusters other than their own.
We previously applied the method to identify functional

regions related to ligand binding23 and to protein−protein
interaction.24

We additionally performed an analysis of the interface
between spike and ACE2, to quantify the effect of the hepcidin
binding, starting from the PCN formalism.
We introduced the interchain degree as the number of

contacts that each residue (possibly) shares with residues
belonging to other chains. Once we define a given interface, we
set two chains, and the corresponding interchain degree
identifies the contacts between residues belonging to the two
chains. In this work, we focus on the interface between the
spike protomer and the ACE2 ectodomain (for instance, chain
C of the trimeric spike and the chain DACE2 ectodomain
in the spike−ACE2 complex).
Nodes (residues) endowed with a high interchain degree are

defined as PCN hotspots at the protein complex interface, and
we hypothesized that they play a pivotal role in protein−
protein interactions, therefore somehow corresponding to
interface hotspots.25

To characterize the overall interface strength with respect to
single chains, we computed the overall interchain degree, for
example, the sum of interchain degree of residues belonging to
a single chain, with reference to a given interface. The average
value over the number of residues participating on the interface
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was defined as the average interchain degree. These two
descriptors were used, for instance, in this case study, in the
comparison of interfaces occurring in the analyzed complexes.
Interface Analysis. Thermodynamic Framework of

Protein−Protein Interfaces Analysis. According to the
theoretical framework for the PDBePisa server,26 the complex
formation strictly depends on its interaction with the solvent
environment.
Given an assembly A = A1, A2, ..., An made up of n subunits

Ai, its stability is defined by the standard free energy of Gibbs
of dissociation

Δ = −Δ − ΔG G T SDISS
0

int DISS
0

(5)

where ΔGint is the binding energy of subunits Ai, and ΔSDISS
0 is

the entropy change upon dissociation. ΔGDISS
0 depends upon

the ensemble of subunits (dissociation pattern); generally, it is
referred to the dissociation pattern that corresponds to the
minimum of ΔGDISS

0 . Unstable complexes show negative values

of ΔGDISS
0 .

The binding energy of subunits in solution is given by

∑ ∑

∑

Δ = Δ − Δ + Δ

+ +Δ

= >

>

G A G A G A

G A A G A A

( ) ( ) ( )

( , ) ( , )

i

n

i
j i

i j
j i

i j

int SOLV
1

SOLV

CONT ES
(6)

where ΔGSOLV(A) is the change of free energy of solvation of
the complex, ΔGSOLV(Ai) is the change of free energy of
solvation for the single subunit Ai, and ΔGCONT(Ai, Aj) and
ΔGES(Ai, Aj) are, respectively, the contact-dependent (main
hydrogen bonds) and the electrostatic contribution of
interaction between the subunits Ai and Aj.
It is possible also to define the solvation free energy gain

upon formation of the interface between two subunits Ai and
Aj ΔGSOLV(Ai, Aj) as the difference in total solvation energies
of isolated and interfacing structures; negative ΔGSOLV(Ai, Aj)
values correspond to hydrophobic interfaces, or positive
protein affinity. The solvation energy for a macromolecular
assembly A is computed considering the solvation occurs after
a cavity C formation of volume V inside the solvent
environment.

Δ = Δ − Δ

+ Δ − Δ

G G V G V

G V G V

(A) (A, ) (C, )

(A, ) (C, )
SOLV CONT CONT

ES ES (7)

Here, V stands for bulk solvent, and all energies are computed
as the difference between vacuum and solvent environments.
ΔGCONT(A, V) and ΔGCONT(C, V) include contact-dependent
between bulk solvent V, the macromolecular assembly A, and
the cavity C.
The contact-dependent free energy change between two

subunits is defined as

Δ = · + · + ·G A A N E N E N E( , )i j
ij ij ij

CONT hb hb sb sb db db (8)

where Nij
hb, Nij

sb, and Nij
db are, respectively, the number of

hydrogen bonds, salt bridges, and disulfide bonds between the
two subunits Ai and Aj.
The main contribution of the ΔGDISS(A) is the entropic

term TΔSDISS(A), that is, the loss of entropy of the solvent
upon complex formation, due to the loss of mobility of bound
solvent molecules.

Topological Analysis of Interface. We adopted the
geometrical descriptors of protein interfaces according to the
method of Mei et al.24 (see Figure 2).

Specifically, given the interface between two chains in the
complex, we defined the following.

1. The total number of residues Q for each chain in the
interface; this number is in general lower than the above-
mentioned total interface degree, due to residues
participating to the interface by multiple links.

2. The length of the peptide segment involved in the
interface R.

3. The interface “roughness” Q/R.
4. The interface amino acid range IAR = R/N, where N is

the total number of residues in the chain.

Figure 2 depicts the interface between two chains: the length
of the peptide segment in chain A is seven residues, three of
which (solid blue bullets) are involved directly in links with
residues of chain B (solid red bullets), and thus the interface
roughness is 3/7 = 0.43; the overall degree of the interface in
chain A is 4 (all green dashed lines from solid blue bullets).
Conversely, chain B spends 12 residues in the interface (solid
and empty red bullets), only three of which are directly
involved in four links (Q/R = 3/12 = 0.25). We introduced
energy descriptors including the topological description
provided by the protein contact networks method. Starting
from the consideration that the interaction energy is higher if
the contact distance is smaller, we introduced a weight for each
contact defined as

=e
d
1

ij
ij (9)

which is also the generic element of the interface energy matrix
E, defined as

= =E E

d
d

1
if lies within 4 and 8 Å and the residues

belong to different chains

0 otherwise

ij

ij
ij

l

m
oooooo

n
oooooo

(10)

Figure 2. Interface between two chains. In chain A, the length of the
peptide segment participating in the interface accounts for seven
residues (solid and empty blue bullets), and three of them are directly
involved in four links (solid blue bullets). Analogously, chain B
accounts for 12 residues in the interface, three of which are in direct
contact with residues in chain A.
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For each interface, we sorted out the corresponding minor of
the interface energy matrix E (corresponding as indices to the
rectangular minors of the adjacency matrix), and we
introduced the overall interface energy EINT as the sum of eij
for each of the active links at the interface and the average
value ⟨EINT⟩ over the whole number of residues at the
interface. We also analyzed the single residue contribution to
the interface energy, defining the value as follows.

∑=e Ei
j

ij
INT

(11)

We projected values of ei
INT onto the complex structure

(represented as ribbons and colored as heat map b-factor blue-
red) using an in-house Python script, according to the method
described in Di Paola et al.27

Elastic Networks Models. The anisotropic network model
(ANM) and the Gaussian network model (GNM) are two
kinds of elastic network models (ENMs) for performing a
normal-mode analysis on low-frequency modes of proteins and
their complexes. In ANM28 each amino acid residue is
represented by a node placed at its α-carbon coordinate.
Residue pairs that fall within a cutoff distance rc of 15 Å are
connected by harmonic springs of constant force γ. For a
network composed of N nodes, the total potential energy is a
summation over all springs in the system, and the (3N × 3N)
Hessian matrix H is constructed based on the minimum energy
structures that are the same as the crystal structures.
Diagonalization of H yields (3N − 6) nonzero eigenvalues
(λk) with corresponding eigenvectors (uk). Starting with the
first nonzero eigenvalue, λk are sorted in ascending order and
also the corresponding uk. The similarity between the ANM
eigenvector sets described by two different states/conforma-
tions of a system can be calculated according to the following
equation.29

∑ ∑= · ·
= =k

u voverlap
1

( )k
i

k

j

k

i j
1 1

2

1/2i

k

jjjjjjj
y

{

zzzzzzz
(12)

Here, the inner product (ui vj) quantifies the individual overlap
between the ith and jth eigenvectors belonging to the different
sets. The overlapk parameter quantifies the overall corre-
spondence between the first k modes of the sets. In GNM,
instead of H, the (N × N) Kirchhoff/connectivity matrix is
constructed from the structural coordinates with a cutoff
distance of 10 Å. eigenvalue decomposition yields (N − 1)
nonzero modes for a folded structure. In our work, the GNM is
used for evaluating the residue mean-square fluctuations of
proteins. Both GNM and ANM analyses were performed by
using the ProDy package.30

Anisotropic Network Model (ANM) Generated Struc-
tural Ensembles of the Complexes. To create coarse-grain
ensembles of the structures for the protein complexes in the
current study, we utilized the ANM approach,28,31 in which
nonbonded interactions between residues are modeled by
elastic springs. We consider first 20 motion levels of protein
dynamics that require the lowest energy for deformation. The
nonbonded interactions are modeled in this study as a six-step
energy function where the spring stiffness is changed in
discrete steps. To sample long-range interactions, we consider
interaction distances between C-α atoms up to 50 Å. The
generated models are extended to all atoms of the residues.
The ANM-generated ensembles cover global motions of the

complexes. We use Prody 1.10.11 to perform ANM
computations.30

Perturbation Response Scanning Analysis. The
Perturbation Response Scanning (PRS) approach is based on
the linear response theory and allows one to evaluate residue
displacements in response to external forces.32 The PRS
technique was combined with protein dynamics based on
cross-correlations calculated from ANM by constructing the
Hessian matrix H.
The 3N-dimensional vector ΔR of node displacements in

response to the application of a perturbation (a 3N-
dimensional force vector F obeys Hooke’s law F = H × ΔR.
The idea in PRS is to exert a force of a given magnitude on the
network, one residue at a time, and observe the response of the
overall network. The force exerted on residue i is expressed as

= ∧ ∧F F F F(000 000)i
x

i
x

i
x

i( ) ( ) ( ) ( )
(13)

and the resulting response is

Δ = ·−R i H F( ) i( 1) ( ) (14)

ΔR(i) is a 3N-dimensional vector that describes the
deformation of all the residues (in N blocks of dimension 3,
each) in response to F(i). A metric for the response of residue k

is the magnitude ⟨ Δ ⟩Rk
i( ) 2

of the kth block of ΔR(i)
averaged over multiple F(i) expressed as the ikth element of
the N × N PRS matrix, SPRS. The elements of SPRS refer to unit
(or uniform) perturbing force. The response to unit
deformation at each perturbation site is obtained by dividing
each row by its diagonal value.

̅ = ∏

d

d
S

1/ 0

0 1/
PRS

1

N

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz (15)

The average effect of the perturbed effector site i on all other
residues is computed by averaging over all sensors (receivers)

residues j and can be expressed as ⟨ Δ ⟩R( )k
i( ) 2

sensor. The effector

profile ⟨ Δ ⟩R( )k
i( ) 2

effector describes the average effect that local
perturbation in the effector site i has on all other residues. The
maxima along the effector and sensor profiles would
correspond to functional mobile residues that undergo
allosteric structural change.

SEPAS-Affinity Prediction Method. Using Modeler,33 we
repaired some missed atoms in the spike−ACE2 complex. The
repaired three-dimensional (3D) structures are used for
performing blind flexible docking, adaptive tempering all
atom MD simulations, and ANM. The repaired 3D structure of
the complex (ABCD) is composed of SARS-CoV-2 trimeric
spike protein (ABC) in association with ACE2 ectodomain
(D). One of spike RBDs is in the up conformation. The PDB
identification (ID) of the 3D structure of Hepcidin25 (H) is
1M4F.

Affinity Prediction by SEPAS. There are some firmed
methods to predict the binding affinity between protein
subunits: in conventional methods, a 3D structure of the
protein complex is necessary to perform a prediction. To
predict the effect of Hepcidin25 on the binding affinity of the
SARS-CoV2 spike for ACE2, we used a recently introduced
algorithm for the prediction of interaction affinities by using a
single subunit.13,34,35 SEPAS supposes the stability of protein
assemblies is encoded in the mechanical softness of binding
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patches.36 It is a monomer-based predictor of affinity between
protein subunits. By providing a binding patch region on one
partner of the desired protein complex, SEPAS performs an
affinity prediction using the detected relation between the
binding patch stiffness and the stability of the PPIs. The
ensembles of the desired complexes generated by ANM or AT-
MD simulations in the current work are the inputs of SEPAS.
Adaptive Tempering Molecular Dynamics (AT-MD)

Simulations. The structures passed preparation steps before
production runs. After minimization, the structures were
heated gradually to 300 K using a conventional MD simulation
protocol. The Generalized Born implicit solvent (GBIS) is
selected to speed up the simulations.37 In GBIS computations
we consider the hydrophobic effects by considering the
changes in the accessible surface area (ASA) of the molecules
implemented in NAMD 2.13.38 The utilized force fields in
conventional MD and AT-MD simulations are CHARMM 22
and 27.39,40 To sample faster the conformation landscape of
the complex, we run the AT-MD simulation for 2 × 106 steps
as one of the history-dependent versions of accelerated MD
simulations for the temperature range of 300−320 K. In AT-
MD, the potential energy of the system is averaged until the
current step; if the current energy of the system is higher than
the average energy then the Langevin thermostat adapts the
system temperature by rising the current state temperature.41

Consequently, the system samples faster the conformational
space by jumping local shallow energy wells. The structures of
the systems are selected every 2 ps of AT-MD simulations for a
downstream analysis. In conventional MD, AT-MD, and
targeted molecular dynamics (TMD) simulations, we set the
time step to 2 fs and do Langevin dynamics to a constant
temperature where Langevin damping is set to 1. In regular
MD the Langevin temperature is set to 300 K. In AT-MD we
let the system temperature fluctuate between 300 and 320 K.
We utilized GBIS as an implicit water model, so no pressure
control was needed. The utilized force fields in conventional
MD and AT-MD simulations are CHARMM 22 and 27,
respectively.
Affinity Prediction Using the MM-GBSA Approach. We

used a single trajectory-based molecular mechanics with
generalised Born and surface area solvation (MM-GBSA) to
predict the binding affinity.42,43 In this method, we use
ensembles of ACE2 (D), trimeric spike (ABC), the ABCD
complex, trimeric spike with Hepcidin25 in AMR (ABCH),
and the ABCDH complex for performing the MM-GBSA
affinity predictions. Every noted ensemble is created by sets of
2 × 106 steps of all-atom AT-MD simulations in GBIS implicit
solvent using NAMD 2.13. In GBIS-based simulations, we
consider the hydrophobic effect by considering changes in the
ASA of residues along simulations. The binding free energy,
ΔG (association D), of ACE2 (D) to the trimeric spike while
Hepcidin25 is bonded to AMR is computed considering
following equation.

Δ

= Δ − Δ − Δ

G

G G G

(association D)

(ABCDH) (ABCH) (D) (16)

Flexible and Blind Protein−Protein Docking. To predict
the most probable binding sites of Hepcidin25 on a
monomeric spike or trimeric spike protein of SARS-CoV2
with or without ACE2, we utilize SWARM docking.44,45 By
considering the normal modes of ligand and receptor subunits
of the desired complex, the flexibility of subunits at the levels

of thermal motion energy is implemented in SWARM docking.
The best top 10 solutions of standard or democratic clusters
are considered.

Targeted Molecular Dynamics (TMD) Generated Struc-
tures for the Transition of Spike from Closed to Open States.
There are crystallized trimeric spike structures in both “closed”
and “open” conformations. To study the properties of the spike
along the transition pathway, we utilized the TMD approach.38

General simulation conditions are described in the AT-MD
section. In TMD, a 3D structure is guided toward a final
“target” state using steering forces. In brief, the root-mean-
square (RMS) distance between the current coordinates and
the target structure defines the external force. The force on a
system is defined by the gradient of the potential defined as
follows.

= ·[ − ′ ]U Z t t0.5 RMS( ) RMS ( ) 2 (17)

The spring constant scaled by atoms of the TMD group and
is presented as Z in the equation. RMS stands for the
instantaneous deviation of the structure from the target final
state, and RMS′ evolves linearly from the starting structure to
the target structure over the simulation time. The starting
structure of the spike in the closed state is derived from the
structure with PDB ID 6vxx after minimization is performed
and AT-MD production steps are performed in the GBIS
condition. The target structure is the spike with one chain in
the open state that is derived from the structure with PDB ID
6vsb after minimization and AT-MD production steps are
performed in the GBIS environment. To sample the spike
structures from closed to open states we perform duplicated 3
× 106 steps of TMD simulations.

Energy Transport Networks. To further support the
identification of the AMR, we analyze the transport of energy
across the spike−ACE2 complex. The eigenmodes of the ANM
of the spike−ACE2 complex can be analyzed to locate energy-
transport networks in the complex. We briefly summarize here
how the normal modes of the complex, obtained for the ANM,
can be used to identify pathways along which energy transport
takes place. These pathways may include a combination of
energy transfer along the main chain of the spike protein or
ACE2 and energy transfer across noncovalent contacts. Details
of the method are provided elsewhere.46−48 The nodes of the
network are the residues of the spike protein and ACE2 that
form the complex. The weights are expressed in terms of the
matrix elements of the energy current operator S, which in
harmonic approximation can be written in terms of the
Hessian matrix H and eigenmodes e of the complex, which we
model with the ANM. The matrix elements of S are used to
calculate the mode diffusivity for energy transfer between a pair
of residues, namely, A and A′. The energy diffusion coefficient
DAA′ is computed in terms of the mode diffusivities.
Specifically, we computed the first 1000 modes of the ANM
for the spike−ACE2 complex, and we used modes 900−1000
to compute DAA′, which we take as the sum of all for those
modes. The modes need to be of sufficiently short wavelength
so that the energy transfer between residues can be described
via a Markov model approach. The lowest-frequency modes
are of too long wavelength to satisfy this model. Modes in the
900−1000 range, also other modes lower than these, yield
results that, upon analysis of the network, do not vary with the
selected modes. The time constant τAA′ between A and A′ per
degree of freedom is calculated as
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τ ′ = ′ ′d D( ) /AA AA
2

AA (18)

where dAA′ is the Euclidean distance between A and A′, which
is taken as the center of mass distance.
Local energy diffusion occurs along a path between these

two center-of-mass of regions A and A′, essentially along a one-
dimensional path; thus, we include the factor of 2. We found
that an analysis of the network of residues weighted by the
time constants for energy transfer between residue pairs yields
useful insights into residues and regions of a protein that
mediate allosteric control.48−50 We identify the shortest paths
in time between a residue pair of the complex. Residues that lie
along the shortest paths have been identified as contributing to
allosteric regulation, as these residues control information flow
in the complex.50−52 Since our network is comprised of time
constants for energy transfer between residues, we determine
residues that lie along the shortest paths in time. This is
quantified by the quantity C for node (or residue) v as

∑ ∑ σ=
− −

·
=

−

= +

C v
N N

st v( )
2

( 1)( 2)
( )

s

N

t s

N

1

1

1 (19)

where N is the number of nodes in the network, and σst(v)
takes the value of 1 when the shortest path in time that links
nodes s and t passes through node v and is otherwise 0. We
report the residues with the largest values of C and compare
with the previously identified AMR.

Overview of Computational Workflow. Figure 3 reports
the scheme of the general overflow of the multifaceted
computational approach.

■ RESULTS AND DISCUSSION

In our previous work we reported for the first time the
presence of an Allosteric Modulation Region in the SARS-
COV2 spike protein. The introduced region was mapped on
the spike in its open state while it was associated with ACE2.
In the current study we seek to find the AMR in different
conformational states of spike protein. Allosteric drugs
modulate the function of the desired proteins over the
distance between the drug-binding site region and the protein’s
functional site. In the case of SARS-COV2 spike protein,
finding allosteric effectors that modulate the binding and
dynamic properties of the spike is of interest. We suggest AMR
as a possible binding site for allosteric drugs. To this end, we

Figure 3. General workflow of the multifaceted computational approach to the analysis of the allosteric behavior of the spike−ACE2 complex in the
perspective of inhibition by hepcidin.

Figure 4. Network clustering of closed conformation of the SARS-CoV2 spike protein: (A) the two clusters in the closed conformation are
reported in green and red; (B) the active region (P > 0) in the two clusters partition.
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perform multidimensional computations to study the effect
hepcidin−AMR interactions and the consequence of the
interactions on spike dynamics and its affinity for ACE2.
The performed simulations in the current work are

presented in Figure S1. As presented in the Methods section,
the trimeric spike bonded to ACE2 (ABCD) and the trimeric
spike bonded to ACE2 and hepcidin (ABCDH) are passed
relaxation steps by performing AT-MD simulations. To define
the optimized structure of the complexes, we measure changes
in the root-mean-square deviation (RMSD) and ASA for the

systems (Figure S2). These optimized complexes are used in
ANM, TMD, and MM-GBIS computations.

Network Clustering of Spike in Open and Closed
States. We report results for the application of the network
clustering methodology to the identification of functionally
active regions in the free forms of the SARS-CoV2 spike
protein (open/closed conformation). In a previous work, we
identified with the same methodology a putative allosteric site
in the spike proteins of SARS-CoV and SARS-CoV2 with
regard to their binding with ACE2.13 Figure 4 reports the
results of network clustering (two clusters solution) on the

Figure 5. Network clustering of open (1-up) conformation of the SARS-CoV2 spike protein: (A) the two clusters in the closed conformation are
reported in green and red; (B) the active region (P > 0) in the two clusters partition.

Figure 6. Intrinsic dynamics of S proteins in closed, open, and bound states. (A) Overlap of 10 ANM modes between the closed and open states.
(B) Overlap of 10 ANM modes between the open and bound states. (C) The square fluctuations of S proteins in three states based on the first
ANM modes. The bounded RBD is most stable in the closed state (blue) but has the largest flexibility in the open state (green). The bounded RBD
in the complex state has the lowest stability (red).
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closed conformation of the SARS-CoV2 spike protein: in the
closed conformation, the two clusters represent two blocks
whose probable role is to contribute to the stability of the
trimeric structure of the spike. The corresponding active
regions (in red in Figure 4B) lie in the inner core of the
trimeric structure. Similarly, Figure 5 reports the network
clustering results (two clusters) for the open conformation of
the SARS-CoV2 spike protein: the clustering partition and the
corresponding active region (nonnull P values) are completely
different from those of the closed conformation. The region
opening to become prone to the binding of the spike protein of
the virus with human receptor ACE2 is a cluster in its own; the
rest of the protein structure is the second cluster. The active
region is located in the hinge of the opening part of the protein
structure. Thus, in the open conformation, the active region
residues contribute to the protein activity rather than to its
stability. The dramatic change in the structural-functional role
of the same residues going from closed to open conformation
is a signature of the relevant allosteric properties of the
protein.53

Comparison of Conformational Dynamics of S
Proteins in Three States. Collective motions are essential
for protein functions including allosteric interactions. Herein,
the ANM method was used to compare and analyze the
collective motions of the SARS-CoV2 spike proteins in closed,
open, and ACE2 bound states. The overlap maps of the 10
softest modes of S proteins between closed and open states as
well as open and bound states are shown in Figure 6A,B.
During these two conformational changes, most of the global
modes were not conserved, along with a weaker correlation (<|
0.6|) and reordering of modes. Two notable matching modes
were found: mode 2 in the closed state corresponds to mode 3
in the open state, with an overlap of 0.86. Examination of the
individual modes showed that the S protein induced high
fluctuations at two receptor-binding domains still at the
“down” position. In addition, mode 2 in the open state
corresponds to mode 4 in the bound state, showing the “up”
and bounded RBD motions. This clearly suggests that the
dynamics of the S protein is largely affected by both the
opening of the RBD and the binding of the ACE2 protein,
underlying the RBD-dependent dynamics. We further
calculated and compared the square fluctuations for S proteins
among three different states, based on the first 20 ANM
modes, to show how the dynamics difference happened. As a
result, the dynamics difference of closed, open, and bound S
proteins can be captured mostly at the RBD region (Figure
6C). It can be seen that, going from the closed to the open
state, the fluctuation of up RBD becomes much higher
compared with down RBD, while the other regions maintain
similar fluctuations. The high plasticity of up RBD in open
state can promote its binding with the host receptor ACE2.
From the open state to the ACE2-bound state, the fluctuation
of the up RBD becomes smaller clearly, as the binding process
will make the RBD, especially the binding interface, more
stable as expected. Besides, the binding of ACE2 not only leads
to decreased flexibility in the RBD but also to increased
flexibility of all other regions at the distal sites from the binding
interface. This may suggest that the ACE2 binding can also
affect residues in distal sites by modulating long-range
allosteric communications caused by the conformational
change of binding interface (RBD). In summary, S protein
undergoes a spectrum of conformational changes going from
the more stable down to the more flexible up conformational

switch that can promote binding with the host receptor ACE2
and the small stability in a bound complex state. The
conformational study of S trimers shows that the dynamical
coupling range varies widely among different conformations,
while these different binding conformations may lead to long-
range allosteric communications.

The S-ACE2 Complex Shows the Highest Allosteric
Potential. In ENM global motions, the residues with lower
fluctuations form the hinge sites critical for the protein
functions and allosteric regulations. Herein, the local minima
of mean-square fluctuations based on the three GNM slowest
modes are predicted as hinge sites, which are listed in Table 1.
In all states, the distribution of hinge sites is relatively uniform
along a sequence. Especially for the closed state, hinge sites
distributed on each chain with a quite large degree of
symmetry. Here, we focus on the hinge sites of S monomers
that share the conformational change among three states. As
shown in Figure 6A, the predicted hinge sites of the closed
state are mainly located at nonfunctional domains but occupy
some topologically important regions including protein−
protein interactions between each S monomer and interfacial
residues between S1 and S2 domains. Most of these hinges in
the closed state are maintained, but hinge sites in the N-
terminal domain (NTD) shift to RBD in the open state
(Figure 6b).
Such a hinge shift of RBD reveals implications for the further

binding process. After the binding of the ACE2 receptor, a
similar trend was found with most of these hinges in the open
state being maintained. The most important finding is that
there are several hinge sites present at the AMR in the bound
complex, including Asp578, Leu582, Ile742, and Asn856 (the
red circle in Figure 7c), all with P > 0.8. On the basis of these
findings, we proposed that the conserved hinge sites in both
closed and open states may alter the transitions of up and
down forms, and the hinge sites located the AMR in the
complex state may allosterically impact RBD-ACE2 binding.
On the basis of an ANM calculation, the perturbation-

response scanning (PRS) approach was employed to quantify
the allosteric effect of each residue in the prtein structures on
all other residues in response to an external perturbation. In
our previous study,13 we showed that effectiveness is a good
indicator to describe the allosteric properties of AMR and
identified the key residues for which perturbation provokes
structural dynamical changes at a long distance. Here, we also
adapted effectiveness based on a PRS calculation to describe
the allosteric potential of S proteins in closed, open, and bound
states.
As shown in Figure 7D, the box plot shows that S proteins in

closed and open states show similar effectiveness values, but
the S protein in the bound state had a statistically higher
effectiveness than the other two states (under p < 2.2 × 10−6

by Wilcoxon signed-ranked test), which shows that the S
protein in the bound or “complex” state has higher allosteric
potential. The allosteric profiles based on PRS would give
provide more insight into the signaling ability of each residue
(Figure 7E).
As we can see, S proteins with closed and open states display

very similar profiles with relatively low effectiveness values,
while the predicted AMRs (black stars) in both states show
some valleys with very small signaling ability. But in the bound
state, the S protein presents a more marked allosteric profile,
while some peaks are mainly located at some functional
domains, including cleavages and heptad repeats of three S
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monomers. In particular, additional peaks were found at the
predicted AMR in the S-ACE2 complex. Our previous results
suggest that the SARS-CoV2 AMR has stronger allosteric
character than the AMR in SARS-CoV, and our current
findings suggest this region in the S-ACE2 complex still has
higher allosteric potential than two unbound states.
In the S-ACE2 complex, the AMR corresponds to hinge sites

and has higher allosteric potential, thus the modulation of
conformational dynamics of a binding interface by an allosteric
ligand interaction at the AMR. Since the hinge sites and the
AMR in the S-ACE2 complex also provide some potential drug
binding sites, we recommend ongoing efforts to dock hepcidin
peptide at the AMR in the “complex-like” state, not the “apo-
like” state, to inhibit the binding interface.

Energy Flow in Spike−Protein Complexes. We
compare the AMR identified by an analysis of contact
networks for the spike−ACE2 complex with results of an
analysis of energy-transport networks computed for the same
complex. We specifically determine residues that mediate
energy transport in the complex. As discussed above, this is
quantified by C for node (or residue) v (see eq 19).
We computed C for all residues of the complex and plotted

those residues with the largest values in Figure 8. Five residues
of the spike−ACE2 complex stand out with values of C that are
at least 70% larger than any other values computed. Those
residues, which all have values of C between 0.175 and 0.195,
are identified in red in Figure 6. The relatively large values of C
for these residues indicate they lie along a much larger number
of shortest energy-transport paths between any two residues of
the complex than do other residues. Also plotted in Figure 6
are the residues identified as having the largest values of the
participation coefficients (4). All of these residues, those found
from the energy-transport network analysis and those
identified with the largest participation coefficients, lie in the
same region of the complex, identified in earlier work as an
Allosteric Modulation Region.13 We have seen in earlier work
on allosteric proteins that residues that control energy flow
through the network play a central role in allosteric
regulation;23,54 a mutation of such sites can alter the allosteric
control.48,49,51

Hepcidin-Binding Changes the Network Clustering in
Spike. In the following, we report the results of network
clustering on the spike−ACE2 complex, with and without
hepcidin for the sake of comparison. Figure 9 reports the
network clustering for the equilibrated form of the spike−
ACE2 complex.
The cluster partition is very similar to that found by Di Paola

et al.;13 the detailed list of AMR residues (P > 0) is provided in
Table 2: they are all in chain C carrying the RBD in direct
contact with ACE2. Only ARG328 is endowed with relevant
intermodule communication competencies (P ≥ 0.75),
reported in italic font type in Table 2.
Similarly, Table 3 reports the identity, position, and

participation coefficient P of residues in the AMR for the
equilibrated conformation of the complex spike + ACE2 +
hepcidin. After performing blind and flexible docking between
HPC and ACE2-bonded spike chain C, we find that HPC
binds preferentially to AMR.
The presence of hepcidin strongly changes the allosteric

modulation scenario: in this complex, we found 33 residues
(more than 3 times the number in the complex without
hepcidin) all in the C chain, with five residues with P ≥ 0.75
(15%). The average value of P in the complex without hepcidinT
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is ∼0.001; in the presence of hepcidin it rises to 0.0035. Thus,
the hepcidin binding entails an enhanced allosteric character of
the complex spike−ACE2.
Noticeably, again no active residue is within the RBD or in

the RBM, addressing a purely allosteric nature of the
communication between complex domains.

Hepcidin Binding Changes the Properties of Spike−
ACE2 over Distance. Table 4 reports thermodynamic results
of the application of the Proteins, Interfaces, Structures, and
Assemblies (PISA) to the complex spike + ACE2 (with and
without hepcidin), compared to free forms of the spike protein
(open and closed). The stability of the closed form subunits is
uniform, but the symmetry is broken upon activity (open
conformation), since all subunits become less stable, with a
quite high change in the C subunit, shifted to the open RBD
conformation. The effect is mirrored as well in the interface
interactions between subunits, which in general decrease upon
activation, with a special regard to the B−C interface. In the
complexes of the spike with ACE2, the stability of the subunits
is strongly increased but not the interface binding between
spike protomers (similar to values of the open form). The
binding contribution to the general stability, however, strongly
increases, passing from a fairly positive (unstable conforma-
tion) to a strongly negative (stable conformation) value. That
means the ACE2 binding provides a large contribution to
stabilize the complex molecular structure. In the presence of
hepcidin, the ACE2−spike binding becomes a little bit more
stable, whereas the whole complex (spike + ACE2 + hepcidin)
gains more stability with respect to the spike + ACE2 complex
(−130.7 kcal/mol in the spike + ACE2 vs −183.4 kcal/mol in
the spike−ACE2 + hepcidin).
Tables 5 and 6 report in detail the results for the interface

analysis adopting the PCN approach. Results confirm that
hepcidin contributes to stabilize the spike−ACE2 binding,
mainly in terms of an increased number of contacts.

Figure 7. Allosteric properties of S proteins in closed, open, and bound states. (a−c) Distributions of the hinge sites (green beads) based on the
first three GNM modes. (d) Comparison of effectiveness for three S proteins. (e) Effectiveness profiles for three S proteins, while their predicted
AMR are labeled with black stars.

Figure 8. Spike−ACE2 complex, with chain A, B, and C shown in
green, cyan and magenta, respectively, and the ACE2 ectodomain in
yellow. The five residues identified as having the largest influence on
energy transport in the complex are indicated in red. They all lie in
the AMR, previously identified as containing the residues with the
largest participation number in the complex, labeled in dark blue.
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SEPAS-Affinity Results. We are interested to find the
possible binding sites of hepcidin25 on the spike of SARS-
CoV2. As proteins have their own intrinsic motions, we need
an efficient algorithm that considers protein motion in
docking. SWARM docking performs flexible docking by
including normal mode dynamics of receptor and ligand
molecules. The blind docking option enables us to seek the
spike protein for possible binding sites of hepcidin25 without
prejudice. When we introduce trimeric spike protein (ABC) as
receptor and hepcidin25 (H) as ligand molecule to SWARM, it
returns us the best 10 complexes (Figure 10). In two structures
of the top 10, hepcidin25 binds around/to AMR of the upward
subunit of the trimeric spike with binding energy of −22 and
−24 kcal/mol (Table 7).
SWARM-docking results indicate that hepcidin25 also binds

to the ACE2 binding site of spike protein (Table 7). To test
how much the AMR accessibility affects hepcidin25 binding to
AMR, we test the flexible docking between the first 700
residues of spike protein chain C and hepcidin25: results
indicate that hepcidin25 binds with higher energy to the
monomer form of spike. It also declares that the flexible
structure of hepcidin25 and spike trimer are crucial for finding
the binding sites of hepcidin25 on spike. The results of
SWARM docking indicate that hepcidin25 also has a high
affinity for the ACE2 binding-site region of monomeric or

trimeric spike protein, suggesting that hepcidin25 may be a
competitive inhibitor of ACE2 for binding to the SARS-CoV2

Figure 9. Network clustering of the equilibrated form of the spike−ACE2 complex. (a) Cluster partition; (b) participation coefficient P map; (c)
complex chains.

Table 2. Allosteric Modulation Region (AMR) in the
Equilibrated Spike−ACE2 Complexa

name position P

VAL 327 0.44
ARG 328 0.89
PHE 329 0.19
PRO 330 0.17
ASN 331 0.56
CYS 525 0.13
PRO 527 0.51
LYS 528 0.31
LYS 529 0.36
SER 530 0.44

aAll residues are located in the C chain. In italic the most competent
residue (Arg 328) in intermodule communication (P ≥ 0.75).

Table 3. Allosteric Modulation Region in the Equilibrated
Spike−ACE2 + Hepcidin Complexa

name position P

PHE 342 0.61
ASN 343 0.36
ALA 344 0.36
THR 345 0.56
ARG 346 0.31
TRP 353 0.61
ASN 354 0.84
ARG 355 0.31
LYS 356 0.27
PHE 374 0.40
SER 375 0.56
THR 376 0.56
ASP 398 0.51
SER 399 0.66
PHE 400 0.33
VAL 401 0.19
VAL 407 0.23
PRO 412 0.56
LYS 424 0.19
LEU 425 0.56
PRO 426 0.64
ASP 427 0.75
THR 430 0.19
VAL 433 0.19
ILE 434 0.36
ALA 435 0.64
TRP 436 0.80
ASN 437 0.75
TYR 508 0.1736
ARG 509 0.5950
VAL 510 0.79
VAL 511 0.3306
VAL 512 0.1900

aAll residues are located in the C chain. In italic font type the most
competent residues in intermodule communication (P ≥ 0.75) are
given.
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spike protein. The SWARM-docking results provide us a
possible 3D structure of the complex between hepcidin25 and
the AMR of spike protein. Our previous observations
suggested that changes in the AMR structure affect the affinity
of spike for ACE2 protein. These results encourage us to study
the effect of hepcidin25 binding to AMR on the affinity of
spike for ACE2.
We predict the affinity of trimeric spike for ACE2 when

hepcidin25 is bonded to the AMR of spike. SEPAS allows us to
predict the affinity of spike for ACE2 considering changes in
the mechanical softness of the spike binding site for ACE2. To
perform affinity predictions, we consider the ensembles

generated for trimeric spike in association to ACE2 in the
presence (ABCD-H) or in absence (ABCD) of hepcidin25 in
AMR by ANM as a coarse-grain approach or by utilizing the
structural ensembles generated by all-atom AT-MD simu-
lations.
The presented results in Figure 11 suggest that the binding

of hepcidin25 to the AMR of spike possibly increases the
binding affinity of spike for ACE2 to some extent. Also we
predict the binding affinities using the MM-GBSA approach as
another established method. We predict the binding energy of
ACE2 (D) to the trimeric spike (ABC) of SARS-CoV2 in two

Table 4. Thermodynamic Parameters of Protein−Protein Interface (from PISA)55

chains ΔGSOLV(Ai) kcal/mol pairs ΔGSOLV(AiAj) kcal/mol ΔGint kcal/mol ΔGDISS kcal/mol TΔSDISS kcal/mol

S+A A −1080.1 A-B −43.3 −130.7 −9.7 16.0
B −1073.3 B-C −39.6
C −1050.0 A-C −42.8
D −453.3 C-D −5.0

S+A+H A −1014.7 A-B −46.8 −183.4 −5.6 15.9
B −1002.4 B-C −46.8
C −1011.9 A-C −43.2
D −524.7 C-D −7.4

S closed A −919.1 A-B −52.9 34.5 170.9 37.2
B −919.5 B-C −52.8
C −919.5 A-C −52.8

S open A −888.3 A-B −49.6 28.5 163.8 37.2
B −864.2 B-C −45.9
C −736.9 A-C −50.8

Table 5. Interface Analysis through PCNs: The Complex Spike−ACE2 (without Hepcidin)

Q A i (Q/R)Ai
IAR A i

EA Ai j ∑ k A Ai j
⟨ ⟩k A Ai j ∑ k A A

EM
i j ⟨kAiAj

EM ⟩

A-B
Ai 91 0.092 0.781 70.06 248 1.34 37.56 0.15
Aj 94 0.115 0.643
B-C
Ai 88 0.089 0.779 72.30 284 1.58 44.29 0.16
Aj 92 0.112 0.643
A-C
Ai 91 0.109 0.654 68.01 251 1.30 36.55 0.15
Aj 95 0.096 0.781
C-D
Ai 11 0.367 0.024 9.38 25 1.04 3.62 0.14
Aj 13 0.039 0.563

Table 6. Interface Analysis through PCNs: The Complex Spike−ACE2 (with Hepcidin)

QAi (Q/R)Ai
IAR A i

EA Ai j ∑ k A Ai j
⟨ ⟩k A Ai j ∑ k A A

EM
i j ⟨kAiAj

EM ⟩

A-B
Ai 109 0.101 0.852 90.80 294 1.27 44.69 0.15
Aj 122 0.146 0.655
B-C
Ai 86 0.080 0.846 64.20 211 1.25 31.45 0.15
Aj 83 0.102 0.643
A-C
Ai 146 0.134 0.853 107.01 338 1.23 50.55 0.15
Aj 129 0.120 0.848
C-D
Ai 12 0.245 0.039 10.50 34 1.26 5.34 0.16
Aj 15 0.045 0.560
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different cases; when hepcidin25 binds to AMR (ABCDH) or
in the absence of hepcidin25 (ABCD).
The binding energy of ACE2 to trimeric spike is −52 kcal/

mol (standard error of mean (SEM) = 0.24) when hepcidin25
bonded to AMR in comparison to its absence in AMR when
the binding affinity of ACE2 for spike is −47 kcal/mol (SEM =
0.23). The predicted change in the affinity of ACE2 to trimeric
spike upon binding of hepcidin25 to AMR suggests that the
binding of hepcidin25 to AMR significantly (p < 0.05)
increased the affinity of ACE2 to spike. The density plot of the
MM-GBSA-based affinity is presented in Figure S3.
To study the possible effects of hepcidin25 binding to AMR

on the dynamics of spike protein, we compute the angle
between three residues (residues 494, 538, and 1042) of spike
protein subunit C. These residues reside in the binding site of

ACE2, around the AMR, and in an interface of the stalk region
of chain C and other spike chains.
Using SWARM docking, we find a possible binding site of

hepcidin25 on chain C (Table 7 and Figure 12). As we observe
that hepcidin25 binds to the AMR of chain C in single-chain
form (Figure 12A), we measure the changes of the noted angle
in ANM-generated ensembles of chain C alone, chain C with
hepcidin25 in its AMR (CH), chain C binds to ACE2 (CD),
and when chain C is bonded to ACE2 and simultaneously
hepcidin25 binds to AMR of chain C (CDH). The noted angle
for chain C in different assemblies has its own spectrum; we
assume the lowest value of the angle as the closed state because
the binding site of ACE2 is close to the body of spike trimer in
such a small angle. We compute the difference between the
measured angle and the smallest angle of chain C in each
assembly. Therefore, if the measured deviation is a small
negative value, it means that the observed state of the ACE2
binding site of chain C is similar to the proposed closed state.
We present the measured deviation from the closed state in

Figure 12B for chain C in the absence of other spike subunits
and in Figure 12C for the complete spike. It is declared in
Figure 12 that the binding of hepcidin25 in the AMR
encourages chain C to spend more time in its closed state. We
know that the closed state of spike has a lower tendency for
ACE2 because of topological barriers ahead of spike subunits
in the closed state for binding to cell-bonded ACE2.46,47 While
we predict that the binding of hepcidin25 to the AMR
increases the affinity of spike chain C for ACE2 to some extent
in the open state, we also observed that the binding of
hepcidin25 to AMR converts the spike RBD from an upward
state into the closed state, which naturally has a lower tendency
for interaction with ACE2. These observations in addition to
the possible action of hepcidin25 as a competitive inhibitor of
ACE2 for interaction with spike suggest hepcidin25 as a
possible therapeutic agent for COVID19.

The Dynamic Transition of Spike from the Closed to
Open State Dictates AMR−Hepcidin Interactions. In the
previous section, we study the interaction of hepcidin25 with
spike protein. The considered spike was open and ready for
binding to ACE2. Spike protein is in an inactive, trigger-ready,
and closed state before binding to its cognate ligand. Upon
interaction with host receptors, ACE2, the closed state of spike
is changed to the open state. To study the binding of
hepcidin25 to transient structures of spike from closed to open

Figure 10. Result of SWARM docking is presented. Trimeric spike protein acts as a receptor protein and hepcidin25 acts as a ligand molecule.
Chain C of the spike trimer is presented as blue wire, and other chains of the spike are presented as gray dots.

Table 7. Top 10 Solutions of SWARM Docking Are
Presented for Trimeric and Monomeric Spike Protein as
Receptor of Hepcidin25a

# solution energy, kcal/mol position

trimeric spike (chain ABC)
1 −31.7
2 −29.44
3 −28.92 RBM
4 −27.3
5 −24.13
6 −23.95 near AMR[27.86]
7 −22.84
8 −21.94 near AMR [24.70]
9 −21.89
10 −21.85
monomeric spike (chain C)
1 15.63
2 −13.1
3 −26.14 AMR [19.98]
4 −10.39
5 21.68
6 3.5
7 4.78
8 −10.76
9 0.59
10 −18.83 RBM

aThe stalk region is laid on the body of spike in this section. The
distance between Hepcidin25 and AMR is presented in brackets.
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states, we utilized Targeted Molecular Dynamics simulations.
To sample the spike structures, we perform the TMD
simulations using spike in a trimeric state with all chains in
the closed state, PDBID 6vxx, as the starting point and trimeric
spike with one subunit in the open state (PDBID 6vsb) as the
target structure. The resulting trajectories provide us possible
3D structures of spike along the transition from closed to open
states (Figure 13A). We select six representative structures
along the closed to open state pathway. The representative
structure is introduced to the SWARM flexible docking
algorithm. SWARM generates 10 first elastic normal modes
for receptor and ligand structures to consider the natural
motion of the structures that reside in the bottom of the
energy curve. This approach not only implements the flexibility
but also generates the possible structures around the seed
structure for expanding the available binding sites. The docking
results are presented in a clustering list that we consider the
top 10 clusters.

The results reported in Figure 13B indicate hepcidin25
binds to the receptor binding motif of spike. The diameter of
circles in Figure 13 correlates with the population of the
considered cluster defined by SWARM. We introduced
trimeric spike to the SWARM algorithm. Hepcidin25 binds
to the RBM of different chains in trimeric spike. If it binds to
the chain that will stand up then we colored the corresponding
circle red. The utilized samples of the trimeric spike structure
from closed to open states show one meaningful complex with
hepcidin25 in the AMR. The rectified spike chain in the
trimeric form of spike protein presents a binding site around
the AMR for hepcidin25 when it is near to the open
conformation. In this state the distance between the center
of mass of hepcidin25 and the AMR reaches 19.1 Å, but
hepcidin25 is not successful for penetrating into the AMR;
instead of binding into the AMR cavity it binds to the external
wall of the AMR. Because the spike structure suffers structural
changes in the RBM during the transition from closed to open

Figure 11. SEPAS-predicted affinity of trimeric spike protein for ACE2 in the presence of hepcidin25 in the AMR (ABCD-H) or its absence
(ABCD).

Figure 12. Effect of hepcidin25 on the dynamics of spike subunits. (A) Docked binding sites of hepcidin25 on chain C. (B) Measured angle is
reported for Chain C, chain C with hepcidin25 in AMR (CH), chain C in association with ACE2 (CD), and hepcidin25 bonded to AMR of chain
C in complex with ACE2 (CDH). (C) Results of hepcidin25 binding to chain C in association with other subunit chains and ACE2 (ABCD-HPC)
or without hepcidin25 (ABCD).
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states, the RBM shows a different affinity for hepcidin25 along
the transition path (Figure 13B). It is indicated in Figure 13B
that the RBM is becoming a better binding site for hepcidin25
upon transition of trimeric spike to the open state. We noted in
a previous part that the considered spike was in the trimeric
state, and by using TMD, we simulate the transition of one
chain from the closed to open states in the context of the
trimeric spike. Because of possible hindrances, hepcidin25 did
not find the AMR in spike. When we introduce the
representative transition structures of spike in monomer
form to SWARM as a receptor, we detect that hepcidin25
binds to the AMR in most members of the top docking clusters
(Figure 13C). It is indicated in Figure 13C that the affinity of
hepcidin25 is decreased for AMR upon transition of spike to
the open state.
We compute the interaction energy between residues of

AMR and other parts of spike in trimeric form or the
interaction of the AMR with itself (Figure 14) along the
transition of spike from the closed to open state. The
presented results in Figure 14 indicate that, upon transition
of spike from the closed to open state, the AMR shows less
contact with other regions of spike but becomes tighter
because of its interactions with itself increased by the transition
of spike to the open state (Figure 14). These results may
rationalize why hepcidin25 has a lower chance for binding to
AMR in the open state of trimeric spike. Our computations
suggest that hepcidin25 preferentially binds to the RBM of
spike in the trimeric open state while hepcidin25 tends to bind
to AMR in closed monomeric spike protein. These

observations comply with the above-stated conclusion that
hepcidin25 upon binding to the AMR tends to convert spike
from the open state to the closed and safer state.

■ CONCLUSIONS
By employing a multifaceted computational approach on
complexes of SARS-Cov2 spike protein, we gave a proof-of-
concept that the binding of hepcidin to the complex ACE2−

Figure 13. Results of hepcidin25 interaction with spike in different states. (A) Output of the TMD simulation for sampling the spike structure from
closed to open states. The most important residues of the AMR, P > 0.5, are declared by sphere. (B) SWARM-predicted affinity of hepcidin25 for
the RBM of spike chains along the transition from closed to open states. The horizontal axis represents the distance of the state to the open
conformation of spike by computing the RMSD between the considered frame and the target structure in TMD. (C) Same story but for affinity
between hepcidin25 and the AMR in monomeric spike. The size of the circle (B, C) correlates with the size of the SWARM suggesting the top
cluster corresponds to the considered representative introduced receptor.

Figure 14. Pair-interaction potential is computed for the AMR. The
relative interaction potential is presented in the vertical axis. More
negative potential means a higher amount of interactions. The
horizontal axis represents the distance of the state to the open
conformation of spike by computing the RMSD between the
considered frame and the target structure in TMD.
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spike can promote the allosteric character of AMR interactions
by enhancing the stability of the intermolecular interactions.
PCN results highlighted active residues in the complex of
ACE2-spike-hepcidin and that the hepcidin presence enhanced
the strength of interactions at ACE2−spike interface. These
results came along with the SEPAS and ENM results, both
pointing to an increased affinity of the binding. Eventually,
energy flow results converged toward the same allosteric region
in the modulation of the ACE2−spike complex, with and
without hepcidin.
Thus, all the adopted computational methods converge to a

very consistent picture of the SARS-Cov2 spike protein
binding process to ACE2 receptor highlighting the allosteric
character of the process and confirming the presence of an
allosteric modulating region playing a crucial role in
determining receptor binding affinity. These results can be
interpreted as a case study of a possible integration of different
computational techniques looking for their invariant features.
In this case, the take-home message is the consistency of the
hepcidin role in allosteric modulation.
Hepcidin, as often happens in pharmacology, while exerting

a possible antagonist role in spike protein receptor binding
(therapeutic effect), plays at the same time a crucial role in the
iron balance of blood cells, and this implies any alteration of
hepcidin concentration can result in a risk of blood clotting. In
a similar vein, the structural (and sequence) similarities of
spike protein segments with hepcidin offer a possible
explanation to COVID19 pathogenesis as well as to the rare
thrombotic cases associated with vaccination.
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v2.4.2. Figure 5: generated by PyMol v2.4.2. Figure 6:
generated by VMD 1.9.2. Figure 7: generated by VMD 1.9.2.
Figure 8: generated by excel and R. Figure 9: generated by
VMD 1.9.2., R and excel. Figure 10: generated by VMD 1.9.2.
and excel. Figure 11: generated by excel. Figure 12: panels (a)
and (b) have been generated by Prody (http://prody.csb.pitt.
edu/), panel (c) by VMD 1.9.2. Figure 13: panels (a−c) have
been generated by VMD 1.9.2. and panel (d) by R.
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