
Clinical and Experimental Immunology, 2022, 207, 263–271
https://doi.org/10.1093/cei/uxab015
Advance access publication 18 November 2021
Review

Review

Seroconversion following COVID-19 vaccination: can we 
optimize protective response in CD20-treated individuals?
David Baker1,∗, Amy MacDougall2, Angray S. Kang1,3, Klaus Schmierer1,4, , Gavin Giovannoni1,4 and 
Ruth Dobson4,5

1The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
2Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
3Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen 
Mary University of London, London, UK
4Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
5Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, Barts and The London School of 
Medicine & Dentistry, London, UK
∗Correspondence: David Baker, The Blizard Institute, Queen Mary University of London, London, UK. Email: david.baker@qmul.ac.uk

Summary 
Although there is an ever-increasing number of disease-modifying treatments for relapsing multiple sclerosis (MS), few appear to influence 
coronavirus disease 2019 (COVID-19) severity. There is concern about the use of anti-CD20-depleting monoclonal antibodies, due to the ap-
parent increased risk of severe disease following severe acute respiratory syndrome corona virus two (SARS-CoV-2) infection and inhibition of 
protective anti-COVID-19 vaccine responses. These antibodies are given as maintenance infusions/injections and cause persistent depletion of 
CD20+ B cells, notably memory B-cell populations that may be instrumental in the control of relapsing MS. However, they also continuously de-
plete immature and mature/naïve B cells that form the precursors for infection-protective antibody responses, thus blunting vaccine responses. 
Seroconversion and maintained SARS-CoV-2 neutralizing antibody levels provide protection from COVID-19. However, it is evident that poor 
seroconversion occurs in the majority of individuals following initial and booster COVID-19 vaccinations, based on standard 6 monthly dosing 
intervals. Seroconversion may be optimized in the anti-CD20-treated population by vaccinating prior to treatment onset or using extended/
delayed interval dosing (3–6 month extension to dosing interval) in those established on therapy, with B-cell monitoring until (1–3%) B-cell re-
population occurs prior to vaccination. Some people will take more than a year to replete and therefore protection may depend on either the 
vaccine-induced T-cell responses that typically occur or may require prophylactic, or rapid post-infection therapeutic, antibody or small-molecule 
antiviral treatment to optimize protection against COVID-19. Further studies are warranted to demonstrate the safety and efficacy of such ap-
proaches and whether or not immunity wanes prematurely as has been observed in the other populations.
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Therapeutic B-cell-targeting antibodies are used in the treat-
ment of autoimmune diseases; most recently as a mainten-
ance treatment for the control of multiple sclerosis (MS). 
Membrane-spanning 4A1 (CD20) protein is a cell membrane 
molecule that is involved in the development and differenti-
ation of B cells and is thought to represent a type of calcium 
channel [1]. It is expressed throughout B-cell development 
except in early (stem cells and pro-/pre-B cells) and late 
(plasmablasts and plasma cells) stages (Fig. 1) [1]. B cells can 
be targeted by an increasing number and variety of CD20-
depleting monoclonal antibodies (mAb) including: murine 
(Tositumomab and ibritumomab used as radioactive isotope 
targeting vehicles for lymphoma); chimeric (rituximab used in 
lymphoma, leukaemia, rheumatoid arthritis, vasculitis, pem-
phigus vulgaris and used off-label in many other autoimmune 
diseases including MS and ublituximab for MS); humanized 
(ocrelizumab for MS; obinutuzumab for B-cell lymphomas 
and leukaemia; veltuzumab for idiopathic thrombocytopaenic 
purpura and pemphigus), and human (ofatumumab used 
intravenously from chronic lymphocytic leukaemia and 
subcutaneously for MS) antibodies (Fig. 1) [2]. These cause 
complement-dependent killing, antibody-dependent cellular 
cytotoxicity, and apoptosis of CD20 expressing B cells [3]. In 

autoimmune disease, efficacy may relate to either the direct 
long-term depletion of memory B cells (Fig. 2) and devel-
opment of regulatory B cells within the regenerating CD19 
population [4–6] or indirectly through blockade of T-cell ac-
tivity to inhibit autoimmunity [7, 8] (Fig. 1).

CD20-depletion is a risk factor for severe 
symptomatic COVID-19
Coronavirus disease 2019 (COVID-19) has been a 
devastating global pandemic, killing millions of people. 
Although the major drivers of disease severity relate to age, 
sex, comorbidities, socioeconomic factors, and viral load [9, 
10] there is concern that disability and being immunocom-
promised may contribute to COVID-19 disease morbidity in 
the MS population [11–13]. CD20-depleting mAb have been 
reported to increase hospitalization and more severe COVID-
19 in many [13–19], but not all [20, 21], studies in MS. As 
anti-CD20 therapies appear to limit antibody responses [22–
24], this apparent increased risk from COVID-19 infection 
[13] may relate to the inability to form, or loss of, a pro-
tective, cross-reactive immunity to cold-causing coronavirus 
responses [25–28]. The ability of specific antibody responses 

Figure 1: B-cell lineage and CD20-specific antibodies. A simplified schematic of the B-cell lineage related to CD20 antigen expression and the CD20-
specific antibodies. Epstein–Barr virus (EBV) can generate memory B cells in the potential absence of antigen and co-stimulation or they can be antigen 
expanded.
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to inhibit severe acute respiratory syndrome corona virus two 
(SARS-CoV-2) infection in animal models [29, 30] and hu-
mans [31–34] highlights the importance of the B-cell response 
for protection. A sufficiently high neutralizing titre may limit 
symptomatic SARS-CoV-2 infection [35, 36] more than a 
T-cell response [37]. However, a B-cell response is not abso-
lutely necessary, as the SARS-CoV-2 virus can be eliminated 
by the innate-immune and T-cell response before the forma-
tion of an effective IgG response, and recovery can occur in 
the relative absence of B cells [23, 25]. However, the full spec-
trum of innate, T- and B-cell immunity will provide the best 
protection [38].

CD20-depletion is also a risk factor for 
poor serological response to infection and 
vaccination
Given the blunted antibody response to other vaccines [23, 
39, 40], it is not surprising that CD20-depleting antibodies, 
notably rituximab and ocrelizumab, have been repeatedly 
and consistently shown to induce poor seroconversion fol-
lowing natural infection with SARS-CoV-2 [41–46]. Likewise, 
although RNA vaccines produce higher antibody titres and 
result in greater proportional seroconversion than adenoviral 
vector vaccines [24, 35, 47, 48], seroconversion in CD20-
depleted, COVID-19-vaccinated individuals is universally 
poor [22, 24, 49–55]. It is evident that it is possible to gen-
erate a COVID-19 vaccine response in the absence of detect-
able peripheral B cells [55–57], indicating that the generation 
of the vaccine-related antibody response likely occurs within 
lymphoid tissues, which are seemingly not completely purged 
of B cells [5], rather than the peripheral blood. However, base-
line B-cell number within the blood has potential biomarker 
activity for predicting seroconversion following vaccination 
[58–61]. People with 1–3% CD19/>10 cells/µl, often, but not 
always, generate COVID-19-related IgG responses following 
vaccination [50, 56, 60–62] related to repopulation of naïve 
B cells. Depletion with CD38-specific antibodies, as used in 
myeloma, can also be associated with poor seroconversion 
[63, 64] supporting a role for CD20+ naïve B, although CD38 

is also found on CD20−, plasmablasts, and plasma cells (Fig. 
1).

Despite a consistently blunted antibody response in those 
treated with anti-CD20 mAb, it is increasingly clear that 
T-cell responses are often generated following both natural 
infection and COVID-19 vaccination [22, 41, 50, 53, 57, 
65–67]. CD4 responses may not only facilitate antibody re-
sponses, but can also provide help for other defence mech-
anisms against the SARS-CoV-2 virus that are augmented by 
vaccination [25, 50, 57, 65–67]. CD8 responses may even be 
augmented in antibody-deficient individuals in MS and else-
where [50, 59, 68], perhaps consistent with mobilization of 
CD8 T cells by vaccination [69]. Such viral spike protein dir-
ected CD8 responses from vaccination [48], may complement 
protective CD8 responses to other viral proteins, such as the 
nucleocapsid protein that are generated following natural in-
fection with SARS-CoV-2 or in some instances with other cor-
onaviruses [25, 70, 71].

However, given the importance of neutralizing antibody re-
sponses following vaccination [37, 38], and the finding that 
protective antibody titres subside over time [35], COVID-
19 breakthrough can and will occur. This is already seen in 
vaccinated, healthy individuals [72–75] and is being seen in 
immunosuppressed individuals [76, 77]. As CD20-treated 
individuals produce lower titre antibody responses than un-
treated controls [24, 49, 78], they are potentially in need of 
effective third cycle/booster vaccinations. Whilst boosters in-
crease seroconversion in some immunocompromised people 
[79, 80], it is likely that CD20-depletion will still inhibit this 
response in the majority of people, as is currently being seen 
[80–83] There is thus a potential need for pilot studies to help 
optimize COVID-19 vaccination in the anti-CD20-treated 
population before mass use of a potentially futile strategy.

Long-term memory B-cell depletion may 
support safe treatment breaks for vaccination
The inhibition of vaccine-induced antibody responses by 
continuous CD20-depletion [23, 39, 84] is not surprising, 
as B cells repopulate in a stereotyped behaviour following 

Figure 2: Deletion and repopulation of B cells following ocrelizumab infusion in MS. Individuals received 600 mg ocrelizumab Q24W for four cycles or 
placebo followed by three 600 mg ocrelizumab cycles [6]. The raw data were extracted from the phase II ocrelizumab extension study supplied via the 
www.vivli.org portal using R software. The results represent the mean ± standard deviation; n = maximum 46–47/group.

http://www.vivli.org
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depletion with CD20-depleting mAb [5, 6, 23, 85]. Immature/
transitional/regulatory B cells (Fig. 1) rapidly repopulate the 
space created by B-cell depletion and generate a novel mature/
naïve B-cell pool containing cells that can respond to new 
antigenic stimuli to potentially generate vaccine responses 
[5, 23, 85]. Following 600 mg 24QW doses of ocrelizumab, 
it takes on average 62–72 weeks (range 27–175 weeks) for 
CD19 cells to return to the lower limit of normal (80 cells/
μl) [6, 23]. Repopulation following 500 mg/1000 mg 24QW 
rituximab administration is more rapid [85, 86]. Depletion 
of CD19+ cells following 20 mg subcutaneous ofatumumab 
injections is rapid and sustained during treatment [87]. 
Following treatment cessation, it takes a median of about 25 
weeks for CD19+ cells to repopulate to 40 cells/μl, which is 
faster than found with repeated doses of ocrelizumab [88, 89]. 
The degree of depletion and speed of repopulation induced 
by ocrelizumab may depend on both the dose used in vivo 
and the individual, most notably related to body mass index 
(BMI), where larger people may repopulate quicker [90–93].

In contrast, the memory B-cell pool, which potentially har-
bours important pathogenic response cells, repopulates very 
slowly over many months [4, 5, 94] (Fig. 2). This may provide 
durability of protection against autoimmunity [4, 5]. The ma-
jority of people do not show disease reactivation within 12 to 
18 months following treatment cessation following rituximab 
and ocrelizumab treatment [6, 95, 96] Following the devel-
opment of the COVID-19 pandemic, concerns about the in-
fluence of immunosuppression led to treatment interruption 
[25]. Delays of 1–3 and even 6 months were not generally 
associated with disease breakthrough [96–102].

Is it possible to optimize vaccine response 
through treatment delay? 
There is increasing evidence that antibody responses relate to 
the degree of B-cell depletion and repopulation [56, 62, 103, 
104]. However, B-cell repletion to 1% CD19+ lymphocytes 

occurred in less than 5% of people at 6 months following 
3–4 cycles of ocrelizumab (Fig. 3). Therefore, a large popula-
tion of people established on treatment are unlikely to be able 
to mount an effective COVID-19 vaccine antibody response 
within the 6-month dosing schedule [53, 105]. However, 
about 85–90% of people exhibited a 1% CD19+ B-cell level 
at 12 months following ocrelizumab [106]. It was evident that 
even at 18 months post-infusion some people had not repleted 
to 1% B cells (Fig. 3). A higher BMI (>25) may exhibit a small 
influence on B-cell depletion and repopulation (Fig. 3) [93, 
107]. This could argue for a more personalized dosing regime 
as is currently employed with off-label rituximab in MS and a 
number of other autoimmune diseases, allowing >6 monthly 
extended dosing intervals based on B-cell repletion [6, 108, 
109]. It is evident that people are willing to accept delays in 
ocrelizumab and rituximab treatment [96–102]; therefore, of-
fering an extended dosing interval with CD20-depleting mAb 
infusions is feasible and may safely allow better seroconver-
sion responses for the majority of people [53, 96, 106]. Given 
the novelty of monthly ofatumumab injections, vaccination 
prior to treatment onset should be feasible for most people. 
How this agent will influence future COVID-19-related and 
other vaccinations, and the safety of treatment delays, is cur-
rently unknown. Therefore, is not possible to offer evidence-
based advice to assist patient choice for this treatment.

Generating a protective antibody response
An alternative solution to extended dosing or boosters may 
be to provide a prophylactic antiviral response through the 
use of small-molecule antiviral agents, such as Molnupiravir, 
which are in development [110–112], or the generation of a 
high-titre antibody response through the delivery of convales-
cent sera or mAb cocktails that can be optimized for activity 
against circulating variants [112–115]. Intravenous or sub-
cutaneous SARS-CoV-2 mAb cocktails such as casirivimab/
imdevimab and bamlanivimab/etesevimab [32, 33], against 

Figure 3: CD19 B-cell repletion after repeated ocrelizumab infusions. Individuals received 600 mg ocrelizumab Q24W for three or four cycles followed 
an 18-month treatment-free period [6]. The data were extracted the raw data from the phase II ocrelizumab extension study (NCT00676715) supplied via 
the Vivli Inc. portal using R software. Data were stratified according to baseline body mass index. The results represent the approximate time from the 
last infusion and probability of repopulating to 1% CD19 B lymphocytes.
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different parts of the SARS-CoV-2 spike protein may offer the 
potential to provide prophylactic treatment in people who are 
not expected to mount an adequate immune response to com-
plete SARS-CoV-2 vaccination [32, 112]. These have shown 
some protection in CD20-depleted individuals [113, 116]. 
However, their benefit will depend on efficacy against SARS-
CoV-2 variants of concern circulating with the population at 
the time of use [117, 118]. Some of these agents have standard 
antibody half-lives and require frequent administration, per-
haps limiting their long-term use [112]. However, they have 
potential for targeted prophylaxis, such as following ex-
posure to household infection [32]. Long-acting antibodies 
that are Fc-manipulated to substantially increase serum half-
lives, such as a tixagevimab/cilgavimab cocktail [114, 115], 
may offer more widespread benefit (Table 1).

However, a concern is that untreated, immunosuppressed 
individuals may harbour prolonged SARS-CoV-2 infection 
that could allow serial mutations to develop, impacting on 
infectivity and immune escape [119–122]. This view is tem-
pered by the alternative possibility that evolution of the virus 
selected by the presence of convalescent sera/mAb cocktails 
could drive the selection of viral escape mutants [123]. Whilst 
mAb cocktails have been developed to limit this risk [32, 33, 
112], this remains a potential problem.

Conclusions
At initial vaccine roll-out, the priority was to vaccinate all 
people with MS in the timeliest manner possible, to provide 
some immunity against COVID-19 [124]. However, recent 
data enable us to take a more considered approach on the 
best way to balance protecting people taking CD20-depleting 
antibodies, whilst maintaining effective disease control. 
Although blunted, many people make some form of response; 
a simple approach would be to determine whether boosters 
can augment this, as suggested by early evidence [77, 83]. A 
growing body of evidence appears to show that inactivated 
and adenoviral-based vaccines generate lower titre antibody 
responses and potentially weaker protection than RNA vac-
cines [24, 35, 48]; thus, booster injections should ideally focus 
on RNA vaccines, where mRNA-1273 appears to give the 
highest titre response [35, 52]. In some places, it may be feas-
ible to offer whole inactivated virus vaccines and whilst they 
may not offer comparable protection from infection to RNA 
vaccines [48], they expose the immune response, notably the 
T-cell compartment to additional viral antigens, such as the 
nucleocapsid protein, that could contribute to more effective 
protection against severe COVID-19 [71]. Furthermore, 

delaying treatment for a short period, perhaps by 3–6 months, 
to facilitate 1–3% B-cell repletion, and the development of 
the most effective booster programme possible may be a jus-
tifiable risk and could be offered to the immunosuppressed 
individual to make an informed choice. This could be facili-
tated by monitoring B-cell repletion and disease activity using 
imaging. It remains to be seen whether anti-CD20-depleted, 
but vaccinated individuals remain at any additional risk of 
severe COVID-19 compared to the general population, and if 
so, measures discussed here may be warranted. Optimization 
studies are therefore urgently required so that they can inform 
on vaccine boosters for immunosuppressed people.
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Table 1: Prophylactic inhibition of COVID-19 infection

Demographic  Treatment Protection 

Baseline subgroup Onset of case AZD7442 Placebo Relative risk reduction

All participants All cases 23/749 17/372 33% (−26 to 65) reduction
PCR-negative All cases 6/715 11/358 73% (27 to 90) reduction
PCR-negative 7 days 1/170 6/352 92% (32 to 99) reduction

Participants (adults > 18 years old) with a potential exposure to an affected individual were 1:2 randomized to saline placebo (n = 372) or a single set of 
intramuscular 300 mg tixagevimab/cilgavimab [(AZD7442) n = 749] in a double-blind, randomized trial (STORMCHASER; NCT04625972). Whilst the 
primary endpoint, triggered after 35 infection events, of illness occurring up to day 183 post-potential contact, was not met, unplanned post hoc analysis 
of individuals who were confirmed viral polymerase chain reaction (PCR) test negative at the start of the trial and did not develop disease for 7 days after 
infusion, to avoid analysis of people infected before infusion, showed marked prophylactic protection [115].
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