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Abstract

Dengue Hemorrhagic Fever (DHF) is a major mosquito-borne viral disease. Studies have reported a strong correla-
tion between weather, the abundance of Aedes aegypti, the vector of DHF virus, and dengue incidence. However,
this conclusion has been based on the general climate pattern of wide regions. In general, however, the human
population, level of infrastructure, and land-use change in rural and urban areas often produce localized climate
patterns that may influence the interaction between climate, vector abundance, and dengue incidence. Thoroughly
understanding this correlation will allow the development of a customized and precise local early warning system.
To achieve this purpose, we conducted a cohort study, during January-December 2017, in 16 districts in Bandung,
West Java, Indonesia. In the selected areas, local weather stations and modified light mosquito traps were set up to
obtain data regarding daily weather and the abundance of adult female Ae. aegypti. A generalized linear model was
applied to analyze the effect of local weather and female adult Ae. aegypti on the number of dengue cases.The re-
sult showed a significant non-linear correlation among mosquito abundance, maximum temperature, and dengue
cases. Using our model, the data showed that the addition of a single adult Ae. aegypti mosquito increased the risk
of dengue infection by 1.8%, while increasing the maximum temperature by one degree decreased the risk by 17%.
This finding suggests specific actionable insights needed to supplement existing mosquito eradication programs.
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Dengue a major mosquito-borne viral infection caused by a virus (Halstead 2008, Bhatt et al. 2013, Shepard et al. 2013, Gaye et al
(DENV 1 to 4) transmitted by Aedes aegypti and Aedes albopictus, 2014). As a vector-borne disease, the temporal variation and spa-
has increasingly become a major public health concern worldwide tial distribution of dengue incidence are highly correlated with the
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distribution of Ae. aegypti (Choi et al. 2016, Wangdi et al. 2018).
A growing body of evidence worldwide has demonstrated the link
between climate variables (temperature, precipitation, and humidity)
(Nakhapakorn and Tripathi 2005, Hau et al. 2011, Chen and Hsieh
2012, Cheong et al. 2013, Morin et al. 2013, Choi et al. 2016, Tong
et al. 2016, Tseng et al. 2016, da Cruz Ferreira et al. 2017, Servadio
etal. 2018, Tosepu et al 2018, Astuti et al 2019) and the distribution
of vegetated areas (Koenraadt and Harrington 2008, Delatte et al.
2009, Colén-Gonzalez et al. 2013, Morin et al. 2013, Townroe and
Callaghan 2014, Xiao et al. 2014, Wong and Jim 2016, Benedum
et al. 2018, Reinhold et al. 2018, Heinisch et al. 2019) to dengue
transmission.

Information on relationships between climate factors and disease
incidences provides an opportunity to create and adopt prototypes
for early warning disease outbreak systems tailored to some vector-
transmitted diseases, as shown for the Rift Valley fever disease out-
break response in the Horn of Africa (Anyamba et al. 2009), malaria
risk prediction in Botswana (Thomson et al. 2006), and dengue in
Brazil (Lowe et al. 2016) and Colombia (Lee et al. 2017). Some
models have already been developed regarding the impact of cli-
mate changes on the distribution of mosquitoes and dengue at var-
ious geographic scales (Johansson et al. 2009, Mweya et al. 2016).
However, these models rarely show the correlation between climate
variables and both dengue epidemiology and vector abundance.

The majority of previous studies are based on the assumption
of a potential role of mosquito density in the distribution of dengue
cases, and vice versa. Moreover, the potential risk of dengue trans-
mission has been measured based on the numbers of eggs, larvae,
and other indices developed by these variables (Afrane et al. 2006).
However, immature stage indicators were not directly associated
with the risk of DENV infection (Liu-Helmersson et al. 2014) and
high larval mortality, the short lifespan of larvae and pupae, and the
brief time period of data collection have resulted in immature popu-
lation measures that do not always correlate in space and time with
the biologically relevant adult measures (Getis et al. 2003). In these
studies, an association between dengue transmission and the existing
indices has not proven to be satisfactorily predictive of dengue, com-
pared to the predictive power of the abundance of adult mosquitoes
(Cromwell et al. 2017, Murdock et al. 2017).

Another limitation of existing studies is related to the scale of
the observation area. The distribution of mosquitoes is correlated
with the flight range of the adult Ae. aegypti female, from 10 to
600 m (Reiter et al. 1995, Getis et al. 2003, Liew & Curtis 2004,
Harrington et al. 2005, Russell et al. 2005, Maciel de Freitas and
Lourenco de Oliviera 2009), and the availability of a suitable hab-
itat for breeding (Brown et al. 2017) and rest (Sauer et al. 2021).
In nature, mosquitoes respond to environmental variation at the
micro-level (Potter et al. 2013, Pincebourde et al. 2016, Murdock
et al. 2017, Sauer et al. 2021). In the urban area, the microclimate
at different regions varies according to level of infrastructure (den-
sity of housing and man-made structure), waste heat, number of and
distance to accumulations of standing water, and vegetation cover
(Baruah and Rai 2000, Nagao et al. 2003, Afrane et al. 2006, 2008;
Kamdem et al. 2012, Cator et al. 2013, Townroe and Callaghan
2014, Larsen 2015, Kumar et al. 2018). Such variations can affect
the growth and development of mosquitoes (Li et al. 2014, Murdock
et al. 2017), leading to the variation of its abundance which in turn
may influence the risk of disease.

One study, in Guangzhou, China, produced a model for the im-
pact of local climate on both dengue epidemiology and its vector
abundance (Xu et al. 2017). However, the model has several limita-
tions. First, the lack of an actual population number of mosquitoes

at the point of sampling led to limited findings to a correlation be-
tween climate (meteorological) factors and dengue incidence based
on the intermediary effect of mosquitoes. Second, the possibility of
a spatial-related distribution of dengue vector could be biased since
the data were not originated from the spatial scale. The meteorolog-
ical situation varies spatially within a city; and because of the limited
number of meteorological stations within a city (usually only one),
the effect of local weather on fine-scale distributions of dengue inci-
dence and mosquitoes could not be tested.

Based on the limitations of the prior research, in our study, we
applied cohort data for a shorter study period and with the detailed
local climate of a smaller area (village level) of some major dengue
epidemic areas. This study aims to provide valuable information on
how climate, at local level, influences mosquito densities and dengue
occurrence. The result of the study will provide valuable information
on how mosquito densities and disease interact with climate varia-
bility, especially in a local tropical monsoon climate. The findings
may then be used to develop a program of dengue outbreak preven-
tion and mitigation for similar endemic regions.

Methods

Study Area

The study was conducted in Bandung City (107°36” east longitude
and 6°55” south latitude), the capital of West Java Province, with
a total area of 16,729.65 Ha and located at 791 m above sea level
(asl). The city consists of 30 sub-districts and 151 villages (Fig. 1). It
is surrounded by mountains, creating a basin-like topology that pro-
duces unique local climates in each part of the city. The highest point
is located at the north part of the city (1050 m asl), and the lowest
point at the south part (675 m asl).

The number of reported annual confirmed dengue cases in Bandung
City ranged from 3,000 to 6,000 in the period 2007-2016 (Bandung
City Health Office 2016, Respati et al. 2017). In this study, we used
dengue incidence data based on the number of dengue cases, provided
by local health institute, diagnosed by antigen NS1 test followed by
the QRT-PCR for confirmation. The annual mean proportions of the
confirmed dengue patients in febrile suspected dengue patients ranged
from 7.6 to 41.8 %, and the mean annual dengue incidence between
2007 and 2016 was 17.3 cases/1,000 person, which was 43 times
higher than Indonesia’s national average (Kosasih et al. 2016).

For the surveillance of vector mosquito abundance and micro-
climate, we selected 16 study villages from 151 villages in Bandung
City based on the stratified random sampling approach (Wu et al.
2013). The villages were selected such that the spatial distributions
of mean elevation, population density, poverty rate, and dengue inci-
dence of each village would be as wide and evenly spaced as possible
(Fig. 1).

Data Collection

Epidemiological Data

Monthly dengue incidences for the selected areas, from January 1
to December 31, 2017, were recorded and supplied by the Bandung
City Health Office, Ministry of Health, Indonesia. Population
data as of 2016 at the village level was obtained from the Central
Bureau of Statistics of Bandung, Bandung City Population and Civil
Registration Office. The incidence rate of dengue was calculated by
the formula

Total number dengue incidence

1
Number of population x 1000

Incidence rate =
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Fig. 2. A) AWS, the weather station, complete modules; B) microcontroller with a low power co-processor, additional external memory (SDCard), GPS and GSM

modules; C) logger system for data collection and storage system.

Microclimate Monitoring

Telemetric automated weather stations (AWS) were constructed at
one location per study village (1 = 16) to collect continuous and real-
time in situ microclimate data (Fig. 2). The parameters measured by
the weather stations were precipitation (mm); air temperature (°C),
air pressure (mbar or hPa), and relative humidity (%); and wind

speed (km/h) and direction (intercardinal). Data were collected every
minute and kept in a centralized data logger system prior to extrac-
tion for analysis. The measurement values were then formatted as a
one-line data text record, simultaneously written to internal memory
and transmitted via internet protocols on a cellular (GSM) network
to the server (Fig. 2C). Based on the device id and GPS timestamp
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as key identifiers, these records were then appended to each device
dataset in the server database. For subsequent analysis based on
timestamps, all the AWS records in its dataset were accumulated into
24 h timescale. Web-based interfaces were built to provide access to
the real-time data of the accumulated data in the server database.

All the AWSs were operated on a trial basis at the same loca-
tion before installation in the study villages and were confirmed
to show the same observations over 2 wks outdoors. In addition,
one AWS unit was used for batch validation and calibration with
the official and certified weather station device at Badan Geofisika,
Meteorologi, Klimatologi dan Geofisika (BMKG, Meteorological,
Climatological and Geophysical Agency) AWS. The difference (delta)
of measurements between the AWS and the official weather station
was then taken as a correction value for our AWS that was applied
automatically by the server, in the database system, for each meas-
ured parameter.

The data observed every minute were converted to a weekly av-
erage value based on the average gonotrophic cycle of mosquitoes at
7 d. The average, as well as the minimum and maximum measure-
ments of the microclimate parameter for the week, were used in the
subsequent analysis.

Mosquito Surveillance

Adult Ae. aegypti and Ae. albopictus were collected from the 16
villages using commercially available mosquito UV light traps
(Krissbow Mosquito Killer Set 7w) equipped with the hay infusion
that attracts mosquitoes (Reiter et al. 2001). Mosquitoes were col-
lected from 20 households randomly selected from each village every
week from January to December 2017 (48 wks), for a total of 320
households. Two mosquito traps were installed for 24 h inside the
selected houses. Mosquito abundance in each household was evalu-
ated as the catch per unit effort, i.e., the number of individuals per
trap, and the data were collected daily. The collected adults were
morphologically identified as Ae. aegypti or Ae. albopictus using the
keys (Rueda 2004). Only female Aedes mosquitoes, which transmit
the dengue virus, were counted and used for our data analysis. The
abundance of the mosquitoes then divided into temporal level of dry
and raining season.

Data Analysis
The dataset consisted of 768 weekly observations (48 wks in 16
villages) of dengue incidence, microclimate parameters, and a total
15,360 data of mosquito abundance (48 wks, 16 villages, and 20
houses) (Fig. 3). Before analysis, the village-level data were aggre-
gated into spatial average values within the 16 villages and daily
mosquito abundance data also aggregated into weekly data.
Because the data were not normally distributed, based on the
Kolmogorov-Smirnov test, we applied a Spearman correlation test to
analyze the temporal correlations of dengue incidences, female Aedes
mosquitoes mosquito abundance, and the microclimate parameters
(maximum, mean, and minimum temperature; maximum, mean,
and minimum humidity; minimum and maximum rainfall). The
Spearman correlation test was conducted using PAST 4.05.

Local climat

Mosquito

We used a generalized linear model (GLM) to examine the in-
fluence of microclimate parameters and mosquito abundance on
dengue incidence. In this study, microclimate parameters and female
Aedes mosquitoes abundance (as a major vector of dengue) were
designated as independent variables, while the natural log of the
number of dengue incidences was used as the dependent variable. To
determine the appropriate time lag for each microclimate parameter
and mosquito abundance, we applied from 0- to 12-week lags in
each dependent variable and found the best lag-time for each var-
iable based on a comparison of the Akaike’s Information Criterion
(AIC) (Akaike 1973). The best model in comparison to other can-
didate models has the smallest AIC (Burnham and Anderson 2004)
as it provides the best approximates of the reality given by the data.
The models with the lowest AIC were selected to determine the sig-
nificant lag effect per climate variable and female mosquito abun-
dance as a predictor for the dengue incidence. All of this process was
conducted in the MASS package of R studio following the instruc-
tions written in Zhang et al. (2016).

Results

Dengue Incidence, Microclimate, and Mosquito
Abundance

The microclimate data showed small fluctuation in temperature and
rainfall during the study period while humidity showed more fluctu-
ation value (Table 1, Fig. 4).

Altogether, 201 dengue cases were reported from the 16 study
villages between January and December 2017. The average number
of total cases per week was 4.2 cases, ranging from 0 to 10 weekly
cases. High numbers of dengue cases were recorded during the dry
season in Bandung, especially during June (Fig. 4).

The Spearman Correlation Analysis

There was a strong indication of the temporal distribution of
dengue cases related to mosquito population and the seasonal
pattern of microclimate parameters, especially maximum temper-
ature. The abundance of female Aedes mosquitoes appeared to be
independent of the change of local microclimate, as none of the
observed variables developed any correlation to the abundance of
mosquitoes (Table 2).

In general, the correlation between dengue incidences and local
microclimate was weak and nonlinear. There was a negative corre-
lation between dengue incidences and maximum temperature, min-
imum temperature, and maximum humidity.

Dengue Cases and Female Mosquito Abundances

A total of 1,428 female adults Ae. aegypti of a total number of
8,216 mosquitoes were collected from the 16 villages. The number
of mosquitoes also showed a clear temporal pattern in which the
number during the rainy season (January to May and October to
December) was significantly higher than that in the dry season (June
to September) (t-test, P < 0.001). Humidity produced during the

Dengue case

Fig. 3. Hypothetical interaction among local climate, mosquito, and dengue incidence.
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Table 1. Microclimate of study area

Max Rainfall
(mm)

Mean Rainfall

(mm)

Min Humidity

(%)

Max Humidity

(%)

Mean Humidity

Min Temp.
(%)

(O]

Max Temp.

Mean Temp.
(°C)

Mosquitoes

Case

0.008 3.671

41.225

94.854

26.344 35.260 21.688 76.712

29.750
17.204

4.188

Mean

1.541
1.740
8.380

0.010

3.607
32.950
47.530

2.974
84.410
98.990

5.879
63.571
88.499

0.794
20.180
23.420

1.433
32.060
38.010

0.399
25.573
27.159

2.447

Standard Deviation

Minimum

0.000
0.060

0.000
80.000

0.000
10.000

Maximum

rainy season acted as the significant positive factor for vector abun-
dance (Fig. 5).

In Indonesia, the raining season, with sporadic heavy rainfall,
usually occurs from October to March (West Moonsoon) and the
dry season usually occurs from April to September (East Moonsoon)
(Fig. 5A). Correlation analysis showed a strong significant and pos-
itive correlation between female mosquito abundance and dengue
incidence (Table 2).

Generalized Linear Models (GLMs)

GLM analysis showed mosquito abundance at lag 0 (week) is the
most important factor for dengue to happen, followed by the max-
imum temperature at lag 3 and mean temperature at lag 0. Both
the number of mosquitos and maximum temperature proved to be
significant, yet they affect the number of dengue cases in a different
way. Following the trend in the latest lag, mosquito abundance had
a positive correlation with dengue cases, while the maximum tem-
perature showed the opposite (Table 3). Based on these significant
values, our model suggests that increasing one unit mosquito from
normal abundance level could increase the risk of dengue incidence
by 1.8%, while reducing the maximum temperature by one unit
could improve the risk of dengue by 12.4%.

Based on AIC calculation, the best prediction model for dengue
incidence was vector abundance (156.4) followed by the combina-
tion of both microclimate data and vector abundance (183.41). In
contrast, the non-significant effect of local climate on female mos-
quito abundance showed the highest AIC value (202.41) (Fig. 6).

Based on both calculations (GLM and AIC value), the final model
for the effect of local microclimate and female mosquito abundance
on dengue incidence is as follow:

Dengue case ~ = mosquitoes (lag (0)) + mean temp (lag (0)) +
max temp (lag (3)) + cum rainfall (lag (1)) + mean humidity (lag (1)
+ min temp (lag (0)).

Discussion

Vector Abundance and Microclimate

This correlational study showed humidity to be the microclimate
variable that strongly and positively affects the abundance of dengue
vectors. This result supports the hypotheses on the strong effect of
humidity on Ae. aegypti populations (Lega et al. 2017, Evans et al.
2019, Tuladhar et al. 2019). This positive correlation may be re-
lated to the improvement of oviposition activities and egg survival
rate at higher humidity, especially during the high-temperature pe-
riod (Costa et al. 2010). As a tropical country, high temperatures
are common in Indonesia and can rise above 30°C (our study area
had the country’s highest daily temperature, between 32 and 38°C).
However, although many studies have reported an effect of temper-
ature on the survival and host finding and reproduction behaviors
related to dengue infestation (Beck-Johnson et al. 2017, Haider et al.
2017, Wong and Jim 2016, Asigau and Parker 2018), our study
showed a lack of correlation between vector abundance and tem-
perature. This result may be related to the endophilic behavior (high
preference to taking shelter inside a closed structure like a house) of
Ae. aegypti (Reinhold et al. 2018) which allows them to benefit from
a controlled indoor temperature (Jansen and Beebe 2010).

Vector Abundance and Dengue Cases

Recent studies have produced growing evidence that Aedes
abundance correlates positively with the occurrence of dengue
cases in endemic areas (Potter et al. 2013, Agha et al. 2017,
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Fig. 4. Weekly transition of total dengue cases and mean microclimate data in the 16 study villages in Bandung City between January and December 2017.

Betanzos-Reyes et al. 2018, Ong et al. 2018, 2021), a finding
that accords with our study. By incorporating information on
the actual population and number of dengue cases in a specific
region, our GLM further predicted that the addition of one in-
dividual adult female Ae. aegypti in a household may increase
dengue incidence by 1.8%.

Although our study did not directly observe the DENV in
the vector, we based our quantitative influence on two assump-
tions: (1) a higher abundance of Ae. aegypti can increase the risk
of dengue because of their biting behavior, which will lead to an
increase in virus transmission (Scott et al. 2000, Medlock et al.
2009, Harrington et al. 2014): and (2) silent circulation of dengue
virus occurrence (Ferreira de Lima et al. 2020) due to natural ver-
tical transmission of DENV may be added as another considera-
tion, as reported in another area in Indonesia (Mulyatno 2012).

This addition may be applicable for endemic areas, like our study
area, where cases occur every week (except week 29 in our data)
and thus the source of DENV is always available. However, fur-
ther studies are required to confirm these hypotheses for our study
area.

Dengue Case and Microclimate

This study showed a significant negative correlation between dengue
case and maximum temperature at lag 3 wks, which may indicate
that infection is less likely to occur during the hottest week (incuba-
tion and symptomatic period for dengue usually last for 2-3 wks).
Additionally, our GLM showed that increasing the maximum tem-
perature by one unit would reduce the incidence of dengue cases by
about 12.4%. This finding is consistent with a study by Campbell
etal. (2013) which reported a significant general correlation between
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Table 2. Spearman's rank correlation coefficients and probability (p) values between dengue incidence, microclimate parameters, and mosquito abundance

Max Rainfall
(mm)

Min Humidity Mean Rainfall
(%)

Max Humidity

(%)

Mean Humidity

(%)

Min Temp.
(0 C)

Max Temp.
(0 C)

Mean Temp.
(0 C)

Mosquitoes

Case

(mm)

0.059

0.271

0.713

0.190
0.489

0.710 0.094
0.033

0.026
0.823

0.386
0.021

0.886

7.80 x 10¢

Case

0.190
0.974
0.325

0.058

0.360
0.108

0.441

0.596

Mosquitoes

0.953

0.849

0.964
0.754

0.336

-0.021
-0.033
-0.114

0.128
-0.322
-0.055

Mean Temperature
Max Temperature

0.346
0.250

3.29x10°
0.021

2.01 x 10

0.418

0.331

0.743

2.85x10°
0.023

0.599

-0.120
-0.046

0.142
-0.007
-0.028
-0.235

Min Temperature
Mean Humidity
Max Humidity

0.107
0.547
0.059

0.291

0.166
0.007

0.078
-0.565

0.308
0.102
-0.135

0.244
-0.192

0.282

0.327
0.203

0.574
-0.699
-0.139
-0.145

0.155

-0.381
-0.158

0.332
0.169
0.049

0.054
0.162
0.275

Min Humidity
Mean Rainfall
Max Rainfall

0.075

0.208

0.156
0.236

0.009
-0.005

0.276

0.259

0.275

0.089

0.192

incidence of cases and temperature and slightly between cases and
humidity, albeit a lack of information on the quantitative influence
of each unit of temperature or humidity.

Lower dengue cases at high temperature could be related to
lowering the vectorial capacity (VC), the number of infectious
bites that could potentially arise from one fully infectious host
(Smith et al. 2012, PIOs Pathogens). Further, our study recorded
the extreme highest temperature (on average more than 35°C)
which could produce a negative effect on mosquito blood-seeking
behavior (Carrington et al. 2013, Reinhold et al. 2018), survi-
vorship of adults (Gonidin 2015, Marinho et al. 2016), and
longevity (Costa et al. 2010, Marinho et al. 2016) which are re-
lated directly to virus transmission by Ae. aegypti. Also, highly
fluctuating diurnal temperature (about 12-13°C in this study) re-
portedly causes a negative effect on vector competence and life
history (Lambrechts et al. 2011, Mohammed and Chadee 2011,
Carrington et al. 2013, Ernst et al. 2017), which may also ex-
plain the negative correlation between maximum temperature
and dengue incidences.

Future Implication

Global climate change, especially global warming, is a major con-
cern worldwide, and a study on the climate model has showed the
possibility of increasing mean and maximum daily temperatures and
humidity in the tropical region (Zhang et al. 2021). Although our
research showed the negative correlation between temperature and
dengue transmission, however, the possibility of increasing instal-
lation of indoor temperature regulator systems and the endophilic
behavior of Aedes aegypti may increase the possibility of dengue
incidence as the number of eggs deposited indoor relatively similar
to outdoor (Putra, unpublished data).

However, although temperature is an important determinant of
biting rate, egg and immature mosquito development, development
time of virus in the mosquito, and survival at all stages of the mos-
quito life cycle (Mordecai et al. 2017), the effect is not always linear
or very localized (Brady et al. 2014). Therefore, due to the complex
interaction of weather and other factors, changes in the incidence
of dengue are difficult to predict based only on microclimate data
(Viennet et al. 2016), although such data could provide baseline in-
formation for an early warning system.

We hope our study will strengthen the basis for improvements
in mosquito eradication policy. Our model supports a previous
study on the efficient ability to transmit the virus at a very low
level of the population (Gubler 2002a,b; Kuno 1997). Although
we aggregate the data, individual data at finer scale showed the
correlation among microclimate, dengue vector (adult mosquitoes),
and dengue incidence at all sampling area which may explained
the dynamic of the virus transmission at endemic areas. The rapid
changes of microclimate at finer scale allowed the changed of epi-
center of the virus and could explain the unpredictable pattern of
dengue incidence at both spatial and temporal. In addition, our
study emphasizes the importance of a sustainable public-health
program that can lower and maintain the vector population under
the threshold (Achee et al. 2015; Bowman et al. 2014; Scott et al.
2000).

Conclusion

Our model showed a positive correlation between vector abun-
dance and dengue incidence, while maximum temperature showed a
negative correlation. In general, an increase in vector abundance by
a single unit may increase the possible dengue incidence by 1.8%,
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Fig. 5. Temporal correlation of weekly female mosquito abundance and microclimate parameters.

Table 3. GLM analysis of correlation of local climate and
mosquito on dengue case

Coefficients Estimate Std. Error z value Pr(>lzl)
(Intercept) -4.072  5.714 -0.713 0.476

2 Female mosquito lag (0) 0.018  0.004 4.339 1.43 x10°***
Mean temperature lag (0)  0.423  0.221 1.917 0.055

Max temperature lag (3) -0.124  0.063 -1.979 0.048*
Cumulative rainfall lag (1) 0.001  0.001 0.347 0.728

Mean humidity lag (1) 0.006  0.014 0.427 0.669

Min temperature lag (0)  -0.112  0.115 -0.978 0.328

Significance codes: 0 “***> 0.001 “**> 0.01 <*> 0.05 <> 0.1 > 1

while a small increase in maximum temperature may reduce the
possible dengue incidence by 12.4%.

This study shows the effect of climate, in the urban area, on
vector abundance and dengue incidence and benefit of utilization of
collection of small-scale data for various sampling point to generate
a prediction model based. This study also points to the importance
of developing a more localized early warning system for dengue pre-
vention, especially based on vector abundance.
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