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•  Background and Aims  The acquisitive–conservative axis of plant ecological strategies results in a pattern of 
leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies 
evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environ-
mental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence 
of strong environmental variation.
•  Methods  We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content 
(LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the 
dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific 
covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covari-
ation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific 
covariation pattern.
•  Key Results  We found negative correlations for the LDMC–SLA, Ft–SLA, LDMC–Nm and Ft–Nm trait pairs. 
This intraspecific covariation pattern found both in the field and in the common garden and not explained by cli-
matic or edaphic variation in the field follows the expected acquisitive–conservative axis. At the same time, we 
found quantitative differences in slopes among different species, and between these intraspecific patterns and the 
interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species 
(e.g. all the intraspecific LDMC–SLA and LDMC–Nm slopes tend to be shallower than the global pattern).
•  Conclusions  Our study indicates that the acquisitive–conservative leaf functional trait covariation pattern oc-
curs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a 
high degree of variation–covariation in leaf functional traits not driven by environmental variables.

Key words: Leaf functional traits, acquisitive syndrome, conservative syndrome, leaf economics spectrum, intra-
specific trait variation, common garden experiment, Fabaceae, Poaceae.

INTRODUCTION

Leaf functional traits mediate plant responses to environmental 
conditions and, in turn, influence plant effects on ecosystem 
properties (Reich et al., 1997; Cornelissen et al., 1999; Díaz 
et al., 2004; Wright et al., 2004; Shipley et al., 2006b; Violle 
et al., 2007; Cornwell et al., 2008). Leaf traits related to re-
source use strategy have been found to consistently correlate 
with each other. Most of the variation in such traits can be char-
acterized by a single acquisitive–conservative axis. The position 

of any plant species on this axis is related to its resource use 
strategy (Wright et  al., 2004) and describes a gradient from 
‘fast’ or ‘acquisitive’ species – species with a fast recovery of 
foliar investment and fast turnover of matter and energy – to 
‘slow’ or ‘conservative’ species with traits associated with 
slow return on investment. This gradient is manifested as a 
negative correlation between traits related to high net assimila-
tion rate per unit of leaf mass on the one hand, and traits related 
to long leaf life span on the other. Specific leaf area (SLA = 1/
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LMA, where LMA is the leaf dry mass per unit leaf area) and 
leaf nitrogen content per leaf mass (Nm) are intimately (and 
positively) related to the net assimilation rate both empirically 
(Wright et al., 2004, 2005a) and theoretically (Shipley et al., 
2006a; Onoda et al., 2017). On the other hand, leaf mechanical 
resistance (to herbivores, wind and other sources of physical 
damage, often measured as the force to tear; Ft) and leaf dry 
matter content (LDMC) are positively related to leaf life span. 
Leaf dry matter content is a proxy for the cell cytoplasm (Vc) 
to cell wall volume (Vw) ratio (Vc/Vw~Wm; LDMC–1 = 1 – Wm,  
where Wm is the mass of water per dry leaf mass), which could 
be a key variable explaining covariation patterns among leaf 
functional traits (Shipley et  al., 2006a). A  low cytoplasm to 
cell wall volume ratio (i.e. high LDMC) is associated with 
well-defended, long-lived leaves, whereas a high ratio (i.e. low 
LDMC) enables the high metabolic activity in ‘fast’ species. 
Mechanical resistance is considered one of the main causes 
of leaf life span variability (Wright et al., 2004). Leaf thick-
ness, fibre content and density affect leaf mechanical resist-
ance, which enhances leaf life span in the face of herbivory and 
physical damage (Onoda et al., 2011; Kitajima et al., 2012). 
Leaf mechanical resistance depends on leaf thickness, density 
and the specific toughness per unit of density. Therefore leaf 
mechanical resistance is expected to be correlated with SLA 
(negatively) and LDMC (positively). However, because most 
of the variability in leaf mechanical resistance (55–74 %) de-
pends on specific toughness per unit of density (Onoda et al., 
2011), an important degree of independence remains between 
leaf mechanical resistance and SLA or LDMC (see also Grubb, 
2016 for a discussion of departures from these general trends 
among leaf functional traits).

All the proposed causal hypotheses for the acquisitive–
conservative axis are at the level of the leaf and are based on 
biophysical and physiological principles that determine re-
lationships among traits (Wright et  al., 2004; Shipley et  al., 
2006a; Blonder et al., 2011, 2013, 2015; Onoda et al., 2017, 
but see Grubb, 2016). As a consequence, covariation patterns 
should be independent of scale or level of organization. In other 
words, the covariation pattern among leaf functional traits at 
the intraspecific level is expected to mirror the global interspe-
cific pattern.

The acquisive–conservative axis was originally observed 
within global databases of diverse taxa collected across broad 
environmental gradients (Reich et  al., 1997; Wright et  al., 
2004; Díaz et  al., 2004, 2016). Also, leaves from different 
populations of the same species distributed across broad geo-
graphical scales (e.g. its entire range of distribution), or under 
contrasting growing conditions, usually reproduce the inter-
specific global patterns (Albert et al., 2010a; Jackson et al., 
2013; Richardson et  al., 2013; Hu et  al., 2015; Niinemets, 
2015; Martin et al., 2017; Fajardo and Siefert, 2018; Xiong 
and Flexas, 2018; Hayes et  al., 2019; Sartori et  al., 2019). 
At these broad scales, climatic and soil properties have been 
shown to drive the leaf functional trait variation (Reich and 
Oleksyn, 2004; Wright et  al., 2005b; Ordoñez et  al., 2009; 
Hidaka and Kitayama, 2011; Moles et al., 2014).

This strong, consistent leaf functional trait covariation pat-
tern at both the interspecific and intraspecific level appears to 
weaken or even change direction as the taxonomic (Anderegg 
et al., 2018) or organization level (Fajardo and Siefert, 2018) of 

analysis gets finer. At the intraspecific level and local scale (i.e. 
from metres to a few kilometres but certainly far smaller than 
the geographic distribution range of a given species), where en-
vironmental conditions are less variable, leaves from individ-
uals of the same population do not always show a covariation 
pattern similar to the global interspecific pattern (Blonder et al., 
2013; Hu et al., 2015). These observations, together with some 
patterns of genetic correlations (i.e. the proportion of variance 
that two traits share due to genetic causes), have led to the sug-
gestion that natural selection has played a bigger role than gen-
etic constraints in the evolution of the acquisitive–conservative 
covariation pattern (e.g. Donovan et al., 2011). Also, it has been 
proposed that the acquisitive–conservative covariation pattern 
in leaf traits might not consistently hold at local scales and, 
at the population level, this pattern should be present among 
ecotypes within species only when these ecotypes span biocli-
matic zones (Messier et al., 2017). However, none of the pre-
vious studies has explicitly addressed the leaf functional trait 
covariation pattern under constant environmental conditions. 
If selection is the main driver in the evolution of the acquisi-
tive–conservative covariation pattern, then homogeneous en-
vironmental conditions should lead to stabilizing selection on 
each trait, and the intraspecific leaf functional trait covariation 
pattern should become weaker and more prone to deviation 
from the global interspecific pattern. Exploring variation in the 
absence of environmental variation (at lower levels of organ-
ization) thus helps elucidate whether biophysical constraints 
on leaf properties are a product of, or independent from, the 
environment.

Whether or not the leaf functional trait covariation pattern at 
the intraspecific level reproduces the global interspecific pat-
tern is also a relevant question beyond plant functional biology. 
The global interspecific acquisitive–conservative axis is a 
powerful concept to link vegetation and ecosystem processes 
(Grime, 2001; Díaz et al., 2004; Garnier et al., 2004; Suding 
et al., 2008; Funk et al., 2017) and predicts plant community 
changes (Shipley et  al., 2006b; Shipley, 2015; Warton et  al., 
2015). If the leaf functional trait covariation pattern underlying 
the considerable intraspecific trait variability (now documented 
by many authors, such as Albert et al., 2010a, b; Messier et al., 
2010; Siefert et al., 2015) does not mirror the global interspe-
cific covariation pattern, it follows that the acquisitive–conser-
vative framework could not integrate plant ecology across all 
organization levels.

In the present study, we ask the following question. At the 
intraspecific level and when the leaf functional trait vari-
ation is not mainly driven by environmental conditions, is 
the covariation pattern of leaf functional traits consistent 
with the global interspecific acquisitive–conservative covari-
ation pattern? To address this question, we studied the leaf 
functional trait covariation patterns in six grasses and four 
woody legumes. We complemented the study of plants from 
a field area with small environmental (climatic and edaphic) 
variation with their descendants grown under common con-
ditions. Growing plants in a common garden removes envir-
onmentally induced phenotypic plasticity and its effects on 
covariation patterns, but not local adaptation (i.e. population 
genetic change due to environmental conditions) that may 
still be present among genotypes. Therefore, to rule out cli-
matic and edaphic variables as explanatory factors for genetic 
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trait variation and covariation patterns, we selected a narrow 
study area with little environmental variability. Additionally, 
we analysed the intraspecific leaf functional trait variation as 
a function of these environmental variables to test if the re-
maining environmental variability is relevant to the leaf func-
tional trait variation, and could affect the leaf functional trait 
covariation pattern, in our study. We analysed the intraspe-
cific covariation of leaf functional traits and compared them 
with the global interspecific covariation pattern. We focused 
on two speciose, locally abundant and well represented plant 
families within the study area: Fabaceae and Poaceae. These 
families differ in their patterns of trait covariation (Adams 
et  al., 2016), which further motivated a comparison of the 
trait patterns observed at local intraspecific scales with those 
at the global interspecific scale, for each family.

We measured SLA, Nm, LDMC and leaf mechanical resist-
ance under two conditions: in the field in order to account for 
natural local intraspecific variability (which is partially shaped 
by phenotypic plasticity), and in a common garden, where the 
effects of phenotypic plasticity are controlled and phenotypic 
differences should be mostly the expression of genetic vari-
ability (maternal effects cannot be ruled out).

MATERIALS AND METHODS

Study area and species

The field study area is located in central Argentina, at the 
southern extreme of the South American Gran Chaco (approx. 
31°18′‒31°32′S and 65°23′‒65°32′W). The sampling area 
is approx. 25 km long north to south and 10 km wide east 
to west. The climate is sub-tropical and semi-arid (Cabido 
et al., 1994) with a mean annual precipitation of 514.8 mm 
concentrated in spring–late summer (October–March) and 
a mean annual temperature of 19.6 °C (Supplementary data 
Table S1). Soils vary from Torriorthents (Entisols order) 
to Camborthids ustolics (Aridisols order) (Cabido et  al., 
1994). Vegetation corresponds to an open-canopy xerophytic 
forest with the trees Aspidosperma quebracho-blanco and 
Prosopis flexuosa as canopy and sub-canopy dominants, re-
spectively. The shrub layer is often dense and dominated by 
Mimozyganthus carinatus, Senegalia gilliesii and Larrea 
divaricata. Land use, logging and livestock grazing result in 
a mosaic of communities with different relative abundances 
of these species and varying proportions of bare soil (Cabido 
et al., 1994).

We measured the leaf functional traits of six perennial 
C4 grasses (Aristida mendocina, Gouinia paraguayensis, 
Neobouteloua lophostachya, Sporobolus pyramidatus, 
Leptochloa crinita – formerly Trichloris crinita –, Leptochloa 
pluriflora – formerly Trichloris pluriflora) and four woody 
legume species (Vachellia aroma –formerly Acacia aroma 
–, Senegalia gilliesii – formerly Acacia gilliesii –, Prosopis 
flexuosa and Prosopis torquata) (see Supplementary data Table 
S2 for the species list including authorities). All these spe-
cies are common and often abundant in the Chaco ecosystem 
(Cabido et al., 1993, 1994).

Sampling protocol

In the study area, 39–49 sampling points were selected for 
each species. For each species, sampling points were separated 
by at least 100 m to avoid cross-pollination both for grasses 
(Bateman, 1947; Griffiths, 1950; Jain and Bradshaw, 1966; 
Caisse and Antonovics, 1978) and for woody legumes (Vilardi 
et al., 1988; Saidman and Vilardi, 1993; Butcher et al., 1998; 
Bessega et al., 2000, 2005; Casiva et al., 2004). For grasses, 
each sampling point corresponded to a group of three individ-
uals of a given species with <20 m distance from each other. 
For grasses, at each sampling point, we collected a leaf sample 
from each of these three individuals. For woody legumes, each 
sampling point corresponded to a single individual of a given 
species. For woody legumes, at each sampling point, we col-
lected two leaf samples from the sun-exposed outer canopy of 
one reproductively mature plant, one sample from the lowest 
branch and one sample from the highest branch reachable 
(approx. 2 m). Each leaf sample (for both grasses and woody 
legumes) consisted of three or more fully developed leaves. 
A total of 1172 leaf samples were analysed from plants in the 
field (850 leaf samples from 850 grass individual plants and 
322 leaf samples from 161 woody individual plants).

Leaf functional trait measurements

All leaf samples were processed independently and used to 
measure SLA (mm2 mg–1), LDMC (proportion), Ft (N mm–1) 
and Nm (%), following the protocols of Pérez-Harguindeguy 
et al. (2013). In woody legumes, all measurements were per-
formed on leaflets (excluding rachis), therefore Ft could not be 
measured because leaflets were too small to be handled into 
our measuring device. Leaf nitrogen content per leaf mass was 
measured using an Elementary Analyzer Perkin Elmer 2400 
Series II (USA). Due to financial limitations, we only were 
able to measure Nm in two species per family. We selected the 
most contrasting ones in terms of growth form and habit: the 
grasses L. pluriflora and N. lophostachya and the woody leg-
umes P. flexuosa and P. torquata.

Soil properties and climatic variables

At each sampling point, we measured surface compaction 
(pocket penetrometer), compaction at 0‒5  cm and 5‒10  cm 
(dynamic cone penetrometer INTA-Villegas) and volumetric 
soil water content at 3  inches (Field Scout TDR 100 Soil 
Moisture Meter, Spectrum Technologies, Inc.). Additionally, 
we collected a pooled soil sample (four samples 0‒10 cm deep) 
from each sampling point to determine pH (PHS-3E pH Meter, 
Arcano), conductivity (PHS-3E pH Meter, Arcano), organic 
matter content (Walkley and Black technique, Sparks et  al., 
1996), total nitrogen content (Elementary Analyzer Perkin 
Elmer 2400 Series II), extractable phosphates (Olsen technique, 
Sparks et al., 1996), silicates (Wei-min et al., 2005) and cation 
(Ca2+, Mg2+, Na+ and K+) concentration (atomic absorption 
spectroscopy, Laboratorio de Edafología del Departamento de 
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Recursos Naturales de la Facultad de Ciencas Agropecuarias, 
Universidad Nacional de Córdoba, Argentina). Soil samples 
were pooled by the closeness of the sampling points, grouping 
all samples into 22 composite samples. The other variables were 
averaged following the same grouping factor before statistical 
analysis. Also, we extracted 19 standard WorldClim bioclimatic 
variables (Supplementary data Table S1) from WorldClim 2.1 
at 30 s resolution (approx. 1 km2) (Fick and Hijmans, 2017).

Common garden experiment

From all sampling points, we collected seeds and pro-
duced seedlings that were grown in pots in a common garden 
at Córdoba National University, Argentina. For woody leg-
umes, seeds from a given sampling point were all from a single 
mother plant, the same plant whose leaves were measured, so 
they constituted a maternal family (full or half-siblings). In the 
case of grasses, seeds from a sampling point were collected 
from several random plants (within a 20 m radius circular 
plot) so the resulting seedlings are not necessarily maternal 
siblings. Nevertheless, we treated the plants produced with 
seeds from the same sampling point as ‘genetic families’ for 
both woody legumes and grasses. For all the pots, we used a 
commercial potting soil similar to field soil (Supplementary 
data Table S1). For grasses, we used 0.79 L (10 cm diameter, 
10 cm height) pots. For woody legumes, we used 2.4 L (10 cm 
diameter, 30  cm height) pot. All pots were weeded weekly 
during the growing season and monthly in winter. Herbivory 
by ants and aphids was controlled by applying insecticide 
to all plants when herbivores were detected. All plants were 
watered in short pulses (1–3  min) with automatic sprinklers, 
evenly spaced and homogenously (Christiansen’s uniformity 
coefficient: CUC  =  87 %) covering the whole surface where 
the pots were placed. Each watering day, plants received four 
pulses. Irrigation (frequency and pulse duration) was adjusted 
weekly or more frequently to ensure enough moisture and 
avoid overwatering. We successfully obtained seedlings from 
the seeds from 28–40 sampling points per species. A year after 
germination, we measured the leaf functional traits of these 
plants, 2–4 individual plants per sampling point. We took one 
leaf sample per plant, each sample consisting of three or more 
fully developed leaves. A total of 1195 individual plants (and 
samples) were analysed in the common garden experiment. At 
that time, grasses had reached maturity and reproduced sexu-
ally. In contrast, woody legumes were still juvenile.

Data analysis

If two leaf functional traits are affected by the same environ-
mental variable, this environmental effect will produce a cor-
relation between the two traits. Therefore, in the case of plants 
growing in the field, for each species separately, we tested for 
correlations (Pearson correlation test) between each leaf func-
tional trait (log10-transformed) and each environmental vari-
able. We then tested for significant correlation (P-values <0.05) 
among each environmental variable and two or more leaf 
functional traits.

We next analysed the correlation (Pearson correlation test) 
between pairs of leaf functional traits for each species and 
growing condition, both in the field and in the common garden 
separately, as well as correlations for the global interspecific 
dataset as a whole, and for the Fabaceae and Poaceae families 
within it (see below). To compare each of these correlations, 
we computed Fisher’s z effect size (Fisher, 1925). Additionally, 
we computed the overall effect size for the intraspecific cor-
relation in our Fabaceae and Poaceae species in the field and 
in the common garden by using the ‘rma’ function from the R 
package ‘metafor’ (Viechtbauer, 2010).

Finally, we computed the slopes of the relationships between 
pairs of leaf functional traits in each one of our species, in the 
global interspecific, in the Fabaceae interspecific and in the 
Poaceae interspecific datasets. To do that, we performed stand-
ardized major axis (SMA) regressions (Warton et  al., 2006) 
where both elevation (i.e. intercept) and slope varied freely. 
We used the R-package ‘smatr 3’ (Warton et al., 2012) and the 
pair-wise comparisons among the resulting slopes. P-values 
were adjusted using the Sidak correction (Šidák, 1967) to re-
duce false positives among multiple comparisons. All leaf func-
tional traits were log10-transformed to achieve normality and 
homoscedasticity across the whole dataset (in analyses of both 
correlation and slopes). For multiple comparison tests among 
slopes, only groups with significant correlation (P-value ≤0.05) 
between leaf functional traits were included.

In common garden conditions, the whole covariation pattern 
(phenotypic covariation) can depend on the covariation be-
tween families (genetic correlation, i.e. an estimate of the addi-
tive genetic effect that is shared between our pair of traits) and/
or covariation within families. So, in the case of leaf functional 
traits for which several measurements were taken per genetic 
family (SLA, LDMC and Ft), we performed the same analyses 
(correlation and slopes comparisons) for genetic families, to as-
sess the genetic correlation between leaf functional traits. All 
analyses were performed within R version 3.6.1 (R Core Team, 
2019).

Interspecific leaf functional trait data

The global interspecific, Fabaceae and Poaceae covari-
ation patterns were obtained from the publicly available 
data in the TRY global communal database (www.try-db.
org; Fitter and Peat, 1994; Shipley, 1995, 2002; Cornelissen, 
1996; Cornelissen et  al., 1996, 1999, 2003, 2004; Atkin 
et al., 1997, 1999, 2015; Medlyn et al., 1999; Meziane and 
Shipley, 1999; Pyankov et al., 1999; Castro-Diez et al., 2000; 
Shipley and Lechowicz, 2000; White et  al., 2000; Wilson 
et al., 2000; Meir et al., 2002; Shipley and Vu, 2002; Loveys 
et al., 2003; Quested et al., 2003; Xu and Baldocchi, 2003; 
Adler et  al., 2004, 2014; Díaz et  al., 2004; Givnish et  al., 
2004; Wright et al., 2004; Craine et al., 2005, 2009, 2011, 
2012, 2013; Louault et  al., 2005; Sheremetev, 2005; Vile, 
2005; Cavender-Bares et  al., 2006; Kazakou et  al., 2006; 
Kerkhoff et al., 2006; Michaletz and Johnson, 2006; Preston 
et  al., 2006; Campbell et  al., 2007; Craven et  al., 2007; 
Meir and Levy, 2007; Price and Enquist, 2007; Scherer-
Lorenzen et  al., 2007; Swaine, 2007; Kleyer et  al., 2008; 
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Kraft et al., 2008; Shiodera et al., 2008; Kattge et al., 2009, 
2011; van de Weg et  al., 2009, 2011; Wirth and Lichstein, 
2009; Baraloto et al., 2010; Freschet et al., 2010; Laughlin 
et al., 2010, 2011; Messier et al., 2010; Ordonez et al., 2010; 
Blonder et  al., 2011, 2012, 2013, 2015, 2016; Butterfield 
and Briggs, 2011; Campetella et al., 2011; Chen et al., 2011; 
de Araujo et al., 2011; Milla and Reich, 2011; Onoda et al., 
2011; Prentice et al., 2011; Tucker et al., 2011; Sandel et al., 
2011; Yguel et al., 2011; Yu et al., 2011; Adriaenssens, 2012; 
Beckmann et al., 2012; Choat et al., 2012; Frenette-Dussault 
et  al., 2012; Gutiérrez and Huth, 2012; Han et  al., 2012; 
Minden et  al., 2012; Powers and Tiffin, 2012; Rolo et  al., 
2012; Spasojevic and Suding, 2012; Vergutz et  al., 2012; 
Williams et al., 2012; Wright and Sutton-Grier, 2012; Auger 
and Shipley, 2013; Boucher et al., 2013; Demey et al., 2013; 
Dahlin et al., 2013; Guy et al., 2013; Kichenin et al., 2013; 
Lukeš et  al., 2013; Martinez-Garza et  al., 2013; Joseph 
et  al., 2014; Minden and Kleyer, 2014; Muir et  al., 2014; 
Seymour et al., 2014; Siefert et al., 2014; Slot et al., 2014; 
Smith et al., 2014; Takkis, 2014; van der Plas and Olff, 2014; 
Walker, 2014; Ciccarelli, 2015; La Pierre and Smith, 2015; 
Li et al., 2015; Maire et al., 2015; Minden and Kleyer, 2015; 
Tribouillois et al., 2015; De Vries and Bardgett, 2016; Gos 
et al., 2016; Lhotsky et al., 2016; Schroeder-Georgi et al., 
2016; J. M. Sharpe and N. Solano, unpubl. res.; E. Chacón-
Madrigal et al., 2018). Once entries with ErrorRisk (indica-
tion for outliers, distance to mean in standard deviations) >4 
were excluded, the dataset contained information on 10 369 
species from 309 taxonomic families. From these, 5403 spe-
cies from 249 taxonomic families including ferns, gymno-
sperms and angiosperms contain information for at least two 
leaf functional traits. The observations are widely distributed 
over the world (Supplementary data Fig. S1).

RESULTS

Overall leaf functional trait variation and environmental effects

In general, the ten Chaco species measured in this study were 
clustered in a relatively narrow section of the global interspe-
cific variability for each leaf functional trait (Supplementary 
data Fig. S2). Bioclimatic variables showed little variability 
among sampling points [coefficient of variation (CV) <4 
%], whereas some soil properties were quite variable (e.g. 
soil Mg2+ content and conductivity show a CV of 48.3 % 
and 43.3 %, respectively) (Supplementary data Table S1). 
However, only one correlation (between SLA and Ft) for 
two species (S. pyramidatus and L. pluriflora) could be par-
tially explained by the effects of environmental variables. In 
S. pyramidatus, soil water content correlated positively with 
SLA (r  =  0.363, P-value  <0.0001) and negatively with Ft 
(r = –0.446, P-value <0.0001) (Fig. 1). In L. pluriflora, soil 
conductivity correlated negatively with SLA (r  =  –0.517, 
P-value  <0.0001) and positively with Ft (r  =  0.523, 
P-value <0.0001) (Fig. 1). No other pair of leaf functional 
traits from any species correlated significantly with any other 
environmental variable. Therefore, environmental variation 
within the study area could not explain most of the covari-
ation patterns observed (presented below).

Trait–trait covariation patterns

The intraspecific covariation of the leaf functional traits 
generally followed the expected pattern. We observed a nega-
tive correlation for the LDMC–SLA, Ft–SLA, LDMC–Nm 
and Ft–Nm trait pairs, but a positive correlation for the SLA–
Nm and Ft–LDMC trait pairs (Supplementary data Table S3; 
Fig. S3). Only some species in some conditions showed non-
significant correlations, but the effect size was always in the 
expected direction (e.g. L.  crinita in common garden for the 
Ft–SLA correlation) and the overall effect sizes for intraspecific 
correlations (Fabaceae intraspecific field, Fabaceae intraspe-
cific common garden, Poaceae intraspecific field and Poaceae 
intraspecific common garden) followed the expected pattern in 
all cases (Supplementary data Fig. S3). The intraspecific co-
variation pattern was similar to the global, the Fabaceae and 
the Poaceae interspecific patterns for most of the pairs of leaf 
functional traits, but was different for the Ft–Nm and Ft–LDMC 
pairs of traits. For these, the interspecific patterns showed no 
correlation.

Trait–trait slopes

The intraspecific slopes always followed the expected 
qualitative trend, i.e. a negative slope for the pairs LDMC–
SLA (Fig. 2A), Ft–SLA (Fig. 2C), LDMC–Nm (Fig. 3A) and 
Ft–Nm (Fig. 3C), and a positive slope for the pairs LDMC–Ft 
(Supplementary data Fig. S4A) and SLA–Nm (Supplementary 
data Fig. S4C). This pattern was observed in leaf functional 
traits of individuals both collected in the field and grown in 
the common garden (Figs  2B, D and 3B, D; Supplementary 
data Fig. S4B, D). Even family means showed similar patterns 
(Supplementary data Fig. S5; Tables S4 and S5).

While the intraspecific patterns of leaf functional trait co-
variation in this study matched those expected on a global 
scale, many of the intraspecific slopes significantly dif-
fered from the global interspecific slope as well as from the 
slopes of its respective taxonomic family (Figs 2B and 3B; 
Supplementary data Fig. S4D). Specifically, for the LDMC 
vs. SLA relationship, ten out of 20 cases (species × growing 
condition) and three out of ten species have slopes shallower 
than the global interspecific slope (Fig. 2B; Supplementary 
data Table S6). Within Fabaceae, three species (P. flexuosa 
field, P.  flexuosa common garden, P.  torquata field and 
V.  aroma field) showed shallower slopes than the interspe-
cific Fabaceae slope (Fig.  2B; Supplementary data Table 
S6). Within Poaceae, two species (N.  lophostachya field, 
N.  lophostachya common gardenand S.  pyramidatus field) 
showed slopes steeper than the interspecific Poaceae slope 
(Fig. 2B, Supplementary data Table S6). For the Ft vs. SLA 
relationship, three out of 12 cases and one out of six grasses 
have slopes steeper than the global interspecific slope 
(Fig. 2D; Supplementary data Table S7). However, none of 
the grasses (Ft was not measured for woody legumes) was dif-
ferent from the interspecific Poaceae slope. For the LDMC vs. 
Nm relationship, three out of eight cases had slopes shallower 
than the global interspecific pattern (Fig. 3B; Supplementary 
data Table S8). Within Fabaceae, one species (P.  flexuosa 
field, P. flexuosa common garden) showed shallower slopes 
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than the interspecific Fabaceae slope, which is in turn steeper 
than the global interspecific (Fig.  3B; Supplementary data 
Table S8). Within Poaceae, just one case (L. pluriflora field) 
showed a slope shallower than the interspecific Poaceae 
slope (Fig.  3B; Supplementary data Table S8). For the Nm 
vs. SLA relationship, three out of eight cases and one out of 
four species (all grasses) have steeper slopes than the global 
and Poaceae interspecific slopes (Supplementary data Fig. 
S4; Table S9). For the Ft vs. Nm and the Ft vs. LDMC rela-
tionships, at the intraspecific level, there were strong cor-
relations for most cases (Supplementary data Table S3; Fig. 
S3). Moreover, the intraspecific slopes of all cases with sig-
nificant correlation were similar (Fig.  3D; Supplementary 
data Fig. S4A).

Field vs. common growing conditions

For a given species, the relationship between a pair of leaf 
functional traits sometimes differed depending on whether the 
plants were grown in the field or in the garden. These differ-
ences appeared more common for the LDMC vs. SLA pair 
of traits (Fig. 2B) than others (e.g. Ft vs. SLA; Fig. 2D). The 
slopes of the relationship between leaf functional traits never 
changed sign under different growth conditions (even in genetic 
family analysis); however, in some cases, the correlation be-
came non-significant. This was more common in pairs of traits 
involving Nm, in the common garden and in woody legumes 
(Supplementary data Table S3). For the rest, only Ft vs. SLA 
for L. crinita in the common garden showed a non-significant 
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Fig. 1.  Relationship between leaf functional traits and environmental variables. Here we show the only two cases where an environmental variable (Supplementary 
data Table S1) affects simultaneously two leaf functional traits within a species. SLA, specific leaf area. Ft, force to tear.
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correlation (Supplementary data Table S3). The correlation 
between a pair of leaf functional traits was significant in the 
common garden but not in the field only in the case of SLA and 
Nm in P. flexuosa (Supplementary data Table S3).

DISCUSSION

If the acquisitive–conservative axis arises from biophysical 
constraints on leaf functional traits, it should be present across 
levels of organization and be independent from the magnitude 
of environmental variation. Yet patterns at the intraspecific level 

have been reported to deviate from the global interspecific pat-
tern (Donovan et al., 2011; Niinemets, 2015; Martin et al., 2017; 
Anderegg et  al., 2018; Xiong and Flexas, 2018; Hayes et  al., 
2019). We sought to test whether phenotypic plasticity or local 
(genetic) adaptation might explain such deviation. We found that 
the intraspecific leaf functional trait covariation pattern within 
each of the ten selected species, belonging to two contrasting 
taxonomic families and growth forms, are consistent with the the-
oretically expected acquisitive–conservative axis. These covari-
ation patterns are also similar to the interspecific trait covariation 
pattern, although the strengths of the correlations are variable. 
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Fig. 2.  Relationship between leaf dry matter content (LDMC), force to tear (Ft) and specific leaf area (SLA). Different colours represent different species, con-
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analysis and data for the global, Fabaceae and Poaceae interspecific dataset obtained from the TRY datasets. Left panels (A and C) show the SMA lines for each 
species at each condition, the global interspecific data and the Fabaceae and Poaceae interspecific data. Each dot represents one species; intraspecific data (indi-
vidual plants) are not shown. Right panels (B and D) show the estimated slope and 95 % confidence interval for each group. When an estimated slope comes from 
a non-significant correlation, it is indicated in the right panel by reporting the corresponding P-value and it is not shown in the left panel. Results from multiple 

comparisons of the slopes are shown in Supplementary data Tables S6 and S7.
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This suggests that the trade-off between resource acquisition and 
conservation, which has been extensively documented among 
species, also operates within species. This is in accordance with 
previous studies at the intraspecific level (Albert et al., 2010a; 
Vasseur et al., 2012; Blonder et al., 2013; Jackson et al., 2013; 
Richardson et al., 2013; Niinemets, 2015; Hu et al., 2015; Martin 
et al., 2017; Anderegg et al., 2018; Fajardo and Siefert, 2018; 
Xiong and Flexas, 2018; Hayes et al., 2019; Sartori et al., 2019). 
However, those studies focused on trait covariation along envir-
onmental gradients, and/or under contrasting growing conditions 

(Supplementary data Table S3). We gained further insight by fo-
cusing on intraspecific covariation patterns under less variable 
conditions in the field to avoid the effect of major environmental 
gradients such as rainfall and temperature (i.e. local adaptation), 
as well as in a common garden experiment to capture the genetic 
rather than environmental underpinning (phenotypic plasticity) 
of leaf functional trait correlations. Although we detected some 
environmentally driven variation in SLA and Ft for two species, 
this was an exception rather than a commonality, and does not 
influence the study conclusions.
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http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa198#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcaa198#supplementary-data


Gorné et al. — The acquisitive–conservative leaf axis under homogeneous conditions 717

We found that the pattern of covariation related to the ac-
quisitive–conservative axis persists at the intraspecific level, 
both in the field and in a common garden experiment, even 
when environmental variation among sampling points (in the 
field) cannot explain such covariation. This suggests that, in 
our dataset, plastic responses or local adaptation (in response 
to selection) are not the primary determinants of the intraspe-
cific acquisitive–conservative covariation pattern, as previously 
proposed (Donovan et al., 2011). On the contrary, it seems that 
the same trade-offs shaping the global interspecific acquisitive–
conservative axis operate at the intraspecific level.

Donovan et al. (2011) showed that the genetic correlation be-
tween leaf functional traits may be variable among species and 
even between populations of the same species. They showed 
that such genetic correlations may be opposite to what is ex-
pected on the basis of the global acquisitive–conservative inter-
specific axis, leading them to conclude that natural selection 
should be the main force shaping the acquisitive–conservative 
covariation pattern. However, covariance among leaf func-
tional traits is modulated by plasticity (Sherrard et al., 2009). 
In our work, field conditions are different from common garden 
conditions in many ways, e.g. water availability. These differ-
ences induced variable effects in the slopes according to the 
leaf functional trait pair considered, i.e. there is some degree 
of plasticity in such covariance structure, and some trait–trait 
correlations may be more plastic than others. So, even when 
the main trends in the acquisitive–conservative pattern were in-
dependent of environmental variation, this heterogeneity could 
modulate the strength and slope of the covariation pattern.

The relationship between SLA and LDMC is mediated by 
leaf thickness and leaf density (Vile et  al., 2005). Moreover, 
there is a link between leaf morphology and chemical compos-
ition such that the thicker the leaf is, the greater is the LDMC 
(Roderick et al., 1999). It follows that the steeper the negative 
LDMC–SLA slope, the more steeply positive the LDMC–thick-
ness slope would be. With respect to the LDMC–Nm slopes, 
if leaf nitrogen is assumed to be located mostly in the cytosol 
(the liquid phase) and not in the extracellular matrix (Roderick 
et al., 1999), Nm is inversely proportional to LDMC (Shipley 
et al., 2006a), and the log–log relationship should have a slope 
equal to –1. While, the less steep the negative slope, the less 
nitrogen there should be (proportionally) in the extracellular 
matrix (the solid phase). Leaf N allocation to cell walls ranges 
from 2.8 % to 25 % (90 % quantile range) (Onoda et al., 2017). 
This N allocation trade-off may have important functional con-
sequences because of its effect on the photosynthetic nitrogen 
use efficiency. Among our studied cases, grasses tend to show 
a shallower slope than legume species in the LDMC–Nm rela-
tionship. This indicates that the N content of the cytoplasm per 
unit of nitrogen content of the cell wall (Ncyt:Nwall) is greater in 
grasses than in legumes.

The acquisitive–conservative axis (and its variants, such as 
the leaf economics spectrum) has proven to be a useful concept 
to understand vegetation dynamics and ecosystem processes, 
as well as being relevant to functional and comparative plant 
ecology (McGill et al., 2006; Reich, 2014). The evidence pre-
sented here confirms that, in general, the acquisitive–conser-
vative covariation pattern is valid from the global level to the 
local population level, which has already been demonstrated in 

a number of other studies (Blonder et al., 2013; Hu et al., 2015; 
Fajardo and Siefert, 2018). Our study goes further by showing 
that the pattern occurs at the intraspecific level even when en-
vironmental conditions do not explain it, and it also holds in 
the absence of environmental variation. This strongly suggests 
that natural selection, while clearly modulating this pattern 
(e.g. Wright et al., 2005b), is not indispensable for its emer-
gence. Our findings also reinforce the idea of one underlying 
cause for the pattern across scales and levels of organization. 
However, all the different causal hypotheses for the leaf eco-
nomics spectrum (Wright et al., 2004; Shipley et al., 2006a; 
Blonder et  al., 2011, 2013, 2015; Onoda et  al., 2017) have 
found empirical support at some levels of organization, but 
failed when tested out of their domains (Blonder et al., 2015). 
Among all the new studies that could be carried out to further 
elucidate the causes of these patterns, operating across levels of 
organization, the combination of phenotypic integration, i.e. the 
study of complex patterns of covariation among functionally 
related traits in a given organism, and pleiotropy, i.e. the phe-
nomenon of a single gene affecting multiple traits, frameworks 
(Pigliucci, 2003; Paaby and Rockman, 2013; Geiler-Samerotte 
et al., 2020), is arguably the most promising. For example, the 
fact that the leaf functional trait covariation pattern holds in 
the absence of environmental variation could be explained by 
the fact that highly integrated phenotypes (stronger covariation 
among traits) have higher adaptive value (Damián et al., 2020) 
and therefore are selected for. However, different types of plei-
otropy (Paaby and Rockman, 2013; Geiler-Samerotte et  al., 
2020) could also explain the covariation pattern even if no se-
lective advantage arises from integrated phenotypes. An experi-
mental design combining both theoretical frameworks could 
shed light on the mechanisms driving the acquisitive–conserva-
tive axis at different levels.

Conclusions

Our study indicates that the acquisitive–conservative leaf 
functional trait covariation pattern occurs at the intraspecific 
level, in a similar way to the well-known global interspecific 
pattern, even in the absence of relevant environmental vari-
ation in the field. This pattern remains mostly consistent even 
when the possible plastic responses were removed by common 
growing conditions. This suggests a high degree of variation–
covariation in leaf functional traits not driven by environmental 
variables, i.e. not shaped by selection or plasticity. Our study 
supports the idea that genetic (or developmental/biophysical) 
constraints are the main determinants in the evolution of the ac-
quisitive–conservative axis in the leaf functional traits; natural 
selection then operates, modulating it.

SUPPLEMENTARY DATA

Supplementary data are available online at https://aca-
demic.oup.com/aob and consist of the following. Figure 
S1: geolocation of the entries in the TRY public dataset. 
Figure S2: distribution of the four traits considered in 
our analysis across the interspecific global dataset, the 
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interspecific Fabaceae and Poaceae and the intraspecific 
variability. Figure S3: Fisher’s z effect size for all correl-
ations among leaf functional traits. Figure S4: relationship 
between force to tear and leaf dry matter content as well as 
specific leaf area and nitrogen content per leaf mass. Figure 
S5: SMA slopes of the relationship between force to tear, 
leaf dry matter content and specific leaf area, from plants in 
the field and from genetic families in the common garden. 
Table S1: edaphic and climatic description of the sampling 
points, the common garden potting soil from our study, as 
well as the available data from previous studies about intra-
specific covariation patterns of leaf functional traits. Table 
S2: full botanical names of the studied species. Table S3: 
correlation coefficient for each pair of leaf functional 
traits in each species and condition. Table S4: slopes of 
log10(LDMC)~log10(SLA) for each species and condition and 
groups resulting from multiple comparison test. Table S5: 
slopes of log10(Ft)~log10(SLA) for each species and condition 
and groups resulting from multiple comparison test. Table 
S6: slopes of log10(LDMC)~log10(SLA) for each species and 
condition and groups resulting from multiple comparison 
test. Table S7: slopes of log10(Ft)~log10(SLA) for each spe-
cies and condition and groups resulting from multiple com-
parison test. Table S8: slopes of log10(LDMC)~log10(Nm) for 
each species and condition and groups resulting from multiple 
comparison test. Table S9: slopes of log10(Nm)~log10(SLA) 
for each species and condition and groups resulting from 
multiple comparison test.
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