
Gene expression

hacksig: a unified and tidy R framework to easily

compute gene expression signature scores

Andrea Carenzo 1,*, Federico Pistore2, Mara S. Serafini1, Deborah Lenoci1,

Armando G. Licata1 and Loris De Cecco1,*

1Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy and 2Head

and Neck Cancer Medical Oncology 3 Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on December 30, 2021; revised on February 25, 2022; editorial decision on March 14, 2022; accepted on March 16, 2022

Abstract

Summary: Hundreds of gene expression signatures have been developed during the last two decades. However,
due to the multitude of development procedures and sometimes a lack of explanation for their implementation, it
can become challenging to apply the original method on custom data. Moreover, at present, there is no unified and
tidy interface to compute signature scores with different single sample enrichment methods. For these reasons, we
developed hacksig, an R package intended as a unified framework to obtain single sample scores with a tidy output
as well as a collection of manually curated gene signatures and methods from cancer transcriptomics literature.

Availability and implementation: The hacksig R package is freely available on CRAN (https://CRAN.R-project.org/pack
age=hacksig) under the MIT license. The source code can be found on GitHub at https://github.com/Acare/hacksig.

Contact: andrea.carenzo@gmail.com or loris.dececco@istitutotumori.mi.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A gene signature can be defined as a set of genes sharing a com-
mon pattern of expression in relation to a certain phenotype or
biological process (Cantini et al., 2018). In years, several enrich-
ment methods have been developed for microarray and RNA-seq
data in order to summarize the information coming from gene
sets into a single score. This could lead to a more meaningful in-
terpretation of results, both from a biological and clinical point of
view, as well as a reduction in the effects of the curse of dimen-
sionality problem affecting genomic studies (i.e. many more varia-
bles than samples).

Gene signature scoring methods can follow a number of
approaches. For example, by averaging the expression values for
genes in a signature (Rooney et al., 2015); or also, by fitting a
penalized regression model and then computing single sample
scores as a weighted sum between fitted model coefficients and
gene expression values (De Cecco et al., 2014). However, it is not
always straightforward to directly apply gene signature scoring
methods from the literature to custom data. Sometimes details
about how a method is implemented are vague and open to inter-
pretation. Other times gene identifiers and eventual model coeffi-
cients must be extracted manually from .pdf files or even from
images. So, computing signature scores with the original

publication method can become a time-consuming procedure even
in the best-case scenario.

Gene expression signature scores can be derived using either the
original publication procedure or one of five single sample enrich-
ment methods, all of which are collected into two distinct R pack-
ages: GSVA, implementing four methods and singscore, enabling
to compute enrichment scores with the self-titled procedure
(Hänzelmann et al., 2013; Foroutan et al., 2018). The interfaces of
these R packages are obviously different and designed to work pri-
marily within the Bioconductor ecosystem (Huber et al., 2015).
Hence, none of them do provide a tidy output as intended by
Wickham et al. (2019) that is a consistent format for successive data
analysis pipelines such as data visualization with ggplot2 and
modeling with tidymodels.

Herein, we propose the R package hacksig in order to address
the above-mentioned issues and hence to:

1. compute single sample scores for both custom and manually

curated gene expression signatures either with the original publi-

cation method or with three alternatives, namely the combined

z-score, single sample GSEA (ssGSEA) and singscore (Lee et al.,

2008; Barbie et al., 2009; Foroutan et al., 2018);

2. provide a unified, simple interface and a tidy output.
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2 Features and methods

The current release of hacksig includes 23 cancer transcriptomics
gene signatures, which were selected mainly due to our interest in
the tumor microenvironment biology and its possible influence on
response to treatment in head and neck cancer patients (Van den
Bossche et al., 2022). The function get_sig_info() can be used
to retrieve IDs, associated keywords, DOIs for the original publica-
tion and a brief description for each signature (see also
Supplementary Table S1).

Most of the package functions require a normalized gene expres-
sion matrix as a primary input argument, with genes as rows and
samples as columns. Hence, both microarray and RNA-seq normal-
ized data are supported. A list of official HUGO gene symbols com-
posing each implemented signature can be obtained with
get_sig_genes().

2.1 The main function
The most important function of the package is hack_sig(), which
can be used to easily compute gene expression signature scores in a
number of ways. Figure 1A summarizes the syntax and different
choices for arguments of the function.

If only an expression matrix is given in input, then hack_sig()
will compute scores with the original procedure for all the imple-
mented signatures, except those related to CINSARC (Chibon et al.,
2010), ESTIMATE (Yoshihara et al., 2013) and Immunophenoscore
(Charoentong et al., 2017), for which dedicated functions exist (see
next section). Anyway, signature scores can also be derived with one
of the three possible single sample enrichment methods by setting
the argument method to one of ‘zscore’, ‘ssgsea’ or ‘sing-
score’, corresponding to the combined z-score, ssGSEA and sing-
score, respectively. This will cause hack_sig() to compute
enrichment scores with that particular procedure for all the imple-
mented signatures. In addition, other optional arguments regarding
single sample methods can be modified, such as the exponent in the
running sum statistic of ssGSEA or its type of normalization.

It is possible to select just a particular group of signatures or to
compute scores for a custom list of gene sets by means of the argu-
ment signatures, which is set to ‘all’ (i.e. all the implemented
signatures) by default. If signatures is a character vector (e.g.

c(‘immune’, ‘ifng’)) with one or more valid keywords,
hack_sig() will compute scores only for signatures matching
those strings, either with the original procedure or with one of the
three single sample alternatives depending on the choice of method.
If signatures is a custom list of gene sets, then hack_sig() will
compute scores with the procedure specified in the method argu-
ment, which cannot be set to ‘original’ in this case. If method is
not specified, raw ssGSEA scores will be obtained by default for cus-
tom gene sets.

In general, the result of calling hack_sig() will be a tibble (i.e.
a modern redefining of the data.frame R class) with one row per
sample, a column indicating sample IDs and one column for each
considered gene signature giving the corresponding scores (Fig. 1B).

2.2 Other features
Although hack_sig() can be used to compute scores for most of
the gene signatures included in the package, there are three particu-
lar methods which for us deserve their own function implementa-
tion. These are hack_cinsarc(), which implements the
CINSARC classification (Chibon et al., 2010; Lesluyes and Chibon,
2020); hack_estimate(), which computes the immune, stroma,
ESTIMATE and tumor purity scores as in Yoshihara et al. (2013);
hack_immunophenoscore(), giving immune marker scores to-
gether with the Immunophenoscore (Charoentong et al., 2017).

Before computing enrichment scores, it should be considered
good practice to always check if genes composing a signature are
well represented in the expression matrix. For this reason, we devel-
oped check_sig(), a function that returns counts and proportions
of how many genes are present in a gene expression matrix for every
input signature as well as possible missing genes.

Finally, the package supports the future framework to parallel-
ize and speed-up computations either on a local machine or a com-
puter cluster (Bengtsson, 2021).

More details about the usage of hacksig are reported in the
package vignette, either on CRAN or running vignette(‘hack-
sig’) in R.

3 Conclusions and future perspectives

The R package hacksig offers a tidy and unified framework aimed
at simplifying the computation of gene signature scores following
both the original methods or three single sample alternatives. We ac-
knowledge that our implementations of enrichment methods using
ranks (i.e. ssGSEA and singscore) are slower than those in the GSVA
and singscore packages (see Supplementary Material).
Parallelization through the future R package is supported and can
definitely decrease computation time. Nonetheless, the code for
some functions might be rewritten in order to improve performance
even more. More features are planned to be added, and we want to
encourage future users of the package to open an issue on GitHub
for every signature or method they would wish to be implemented.
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Fig. 1. Syntax and output for the main function hack_sig(). (A) Possible choices

for its three main arguments expr_data, signatures and method are shown.

(B) An example output resulting from choosing arguments in bold is shown (i.e. a

custom list of gene sets and the combined z-score method). The ellipsis represents

additional arguments controlling options for the enrichment methods
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