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Abstract

Pathology is on the verge of a profound change from an analog and qualitative to a digital 

and quantitative discipline. This change is mostly driven by the high-throughput scanning of 

microscope slides in modern pathology departments, reaching tens of thousands of digital slides 

per month. The resulting vast digital archives form the basis of clinical use in digital pathology 

and allow large scale machine learning in computational pathology.

One of the most crucial bottlenecks of high-throughput scanning is quality control (QC). 

Currently, digital slides are screened manually to detected out-of-focus regions, to compensate 

for the limitations of scanner software.

We present a solution to this problem by introducing a benchmark dataset for blur detection, an in-

depth comparison of state-of-the art sharpness descriptors and their prediction performance within 

a random forest framework. Furthermore, we show that convolution neural networks, like residual 

networks, can be used to train blur detectors from scratch. We thoroughly evaluate the accuracy of 

feature based and deep learning based approaches for sharpness classification (99.74% accuracy) 

and regression (MSE 0.004) and additionally compare them to domain experts in a comprehensive 

human perception study. Our pipeline outputs spacial heatmaps enabling to quantify and localize 

blurred areas on a slide. Finally, we tested the proposed framework in the clinical setting and 

demonstrate superior performance over the state-of-the-art QC pipeline comprising commercial 

software and human expert inspection by reducing the error rate from 17% to 4.7%.
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1. Introduction

Pathology has traditionally a labor intensive manual work-flow which includes tissue 

excision, slide preparation and staining, and the pathologist’s diagnosis based on these 

slides. Unlike other medical imaging domains such as radiology, which have seen a 

complete transformation to a digital work-flow, pathology has yet to take this leap in the US. 

A large difference to radiology, where the images are always digitally generated and stored, 

is that the digitization of pathology requires this additional step of scanning the analog slides 

to the work-flow [12]. In addition, the food and drug administration requires pathologists to 

base their diagnostic report on the analog microscopic images instead of digital slides [12]. 

As a result, there has not been a strong push from the clinical side to digitize the pathology 

work-flow in the past.

In recent years, however, with the advent of high-definition, high-throughput scanners and 

important advances in the fields of computer vision and machine learning, computational 

pathology has emerged with the intent to create a unified framework for pathology image 

analysis to aid the pathologist work [11]. These efforts are adding strength in favor of 

digitizing pathology, with clinics all around the world steadily increasing their scanning 

efforts. The amount of scanned slides can exceed the tens of thousands per month, as 

e.g. at the Memorial Sloan Kettering Cancer Center (MSKCC). This necessarily automated 

digitizing process results frequently in undesirable artifacts such as out-of-focus scans or 

blurred regions due to tissue folds, varying tissue thickness, air bubbles, pen markers, dust, 

scratches or others. Figure 1 examples a partially blurred slide: some areas are blurred since 

the focus points were not set correctly by the machine. Blurred slides have to be rescanned 

for downstream processing.

Further, in the context of computational pathology, automated analysis pipelines rely on 

sharp, artifact-free images. Therefore, it becomes absolutely essential to have a robust 

quality control (QC) system in order to obtain significant results from the analysis.

Indeed, most currently available scanners have built-in quality control mechanisms [21], but 

according to the experienced staff at the MSKCC’s pathology department, these seem to 

under-perform commonly. Others have reported similar difficulties [12, 3]. Frequent human 

intervention is therefore necessary to verify the quality of the scanned images, a very time 

consuming and repetitive task. The QC of digital slides at MSKCC as an example includes 

(i) automatic choice of focus points by the scanner, (ii) manual check of the focus points on 

every slide (and relocation if needed), (iii) automatic quality assessment after high resolution 

scanning by the scanner, (iv) manually inspection of very fourth to tenth slide. This last 

manual check is performed because of the poor confidence in the scanner’s built-in QC 

system. There is no question that an automatic and reliable artifact detection would benefit 

both the clinic by reducing the time needed for manual assessment and the research by 

generating high quality datasets for any computational pipeline.

Out-of-focus detection has been an important topic of research and vastly applied in 

autofocusing mechanisms especially in digital cameras and microscopy [18, 9, 7]. An 

Campanella et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exhaustive review of algorithms aiming to quantify the sharpness of an image is given in 

Ferzli et al.[9]. These metrics generally tend to perform well when describing blurriness 

in images with the same content (i.e. blurred versions of the same sharp image), but fail 

in recognizing blurriness in natural images with different content [9, 13, 8]. For pathology 

images, whose content can be very diverse, the combination of sharpness metrics has been 

suggested. For example, Lahrman et al.[15] have developed a complete pipeline for the 

scanning of cervical cytology slides where they asses quality of a slide in terms of sharpness 

and automatically re-scan the slide if the quality measure is below a set threshold. Their 

sharpness detector is based on a support vector machine classifier using five sharpness 

metrics as features (number of edges, gradient score, difference to sharpened, difference to 

smoothed, difference to blurred). While their method seem to perform very well, its scope 

is restricted to liquid-based cytology slides. Similarly, Ameisen et al.[3] developed a tool to 

assess the quality of virtual slides using a blur detector algorithm patented by the group.

In this work, we detect and quantify regions of different blur levels for different image 

sizes and for different tissues. We compare the engineered features approach using a 

random forest model [4, 6] with feature learning using a state-of-the-art convolutional neural 

network, called residual network (ResNet), that has been shown to have better convergence 

and accuracy [14]. In addition, we implemented a standalone blur detection application in 

python for usage in the clinic and for research. An overview of the pipeline is presented in 

figure 2. We tested the application in a clinical real-world scenario and it outperformed the 

current QC standards.

The remainder of the paper is structured as follows: Section 2 characterizes the newly 

created datasets along with details about the machine learning approaches used; Section 

3.1 details the results of our benchmark on state-of-the-art engineered features; Section 3.2 

includes our comparisons between feature engineering and feature learning; finally Section 

3.3 describes the implementation of the blur detector software framework, its validation and 

the tests performed in the clinic.

2. Material and Methods

2.1. Benchmark of Engineered Features for Blur Detection

2.1.1. Dataset—In order to facilitate the quantitative evaluation of different machine 

learning algorithms, we generated a novel dataset specifically tailored to sharpness 

quantification. 30 tissue microarray (TMA) spots from clear cell renal cell carcinoma 

(kidney cancer) patients, and 159 whole slide images (WSIs) of prostate cancer were 

retrieved from MSKCC’s pathology department. 18 hippocampus WSIs associated with 

hippocampal sclerosis were granted by the University Hospital Zurich. The prostate and 

kidney slides were scanned on an Aperio AT2 whole slide scanner (Leica Biosystems), 

whereas the hippocampus slides were scanned on a Nanozoomer C9600 virtual slide 

light microscope scanner (HAMAMATSU). All slides were subsequently anonymized to 

protect patient privacy. To guarantee broad applicability of the final prediction models 

not only in terms of instrumentation (e.g. using different scanners), the three sets were 

processed with different immunohistochemical stainings: Prostate was stained with H&E, 

hippocampus with SDF-1 and kidney with TOM20. All the slides were manually inspected 
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to be completely free of blurred regions. We extracted squared gray scaled patches of 

64, 128, 256 and 512 pixels without overlap from those slides. The kidney samples 

originating from TMAs included wide areas of white background. Therefore, a simple 

thresholding approach (t=230 on gray scaled patches) was used to exclude patches with 

too much background. Finally, we artificially blurred the sharp patches using a Gaussian 

filter simulating out-of-focus blur. By increasing the standard deviation parameter σ of the 

Gaussian filter, we obtained increasing levels of blurriness: 0 (sharp), 0.8, 1.2, 1.6, 2, and 

2.4. Table 1 summarizes the extracted patches: the final dataset contained 2880 prostate, 

3816 hippocampus, and 4240 kidney patches of different sizes and blur levels. Due to the 

large number of patches and the arbitrary tissue orientation on the slides, no further data 

augmentation was deemed necessary.

2.1.2. Feature Selection—Many sharpness metrics for blur detection have been 

described in literature [18, 9, 7]. According to the approach used to estimate sharpness, they 

can be divided in 4 categories: pixel intensity based, gradient based, transform based and 

perceptual. We implemented 13 sharpness metrics (5 pixel intensity based, 3 gradient based, 

3 transform based and 2 perceptual) from their respective papers, taking care to include the 

widest range of methods and approaches. For an exhaustive description of the metrics used, 

see appendix AppendixA. It is important to note that all features rely on gray-scale images.

2.1.3. Random Forest—A random forest [4, 6] consisting of 1000 trees was trained 

with 13 features using standard parameters. Both a classification task and a regression 

task were tested. For the classification task, all the patches with blur level equal to 0 

were considered sharp and all the others blurred. In the regression task the hypothetical 

standard deviation of a Gaussian filter applied to the image is the value to be predicted. A 

leave-one-image-out cross-validation (CV) was employed where all patches extracted from 

a single TMA or slide were taken out of the training set and used as a test set. Iterating 

through all images, we obtained a prediction for every patch. Since the Random Forest is 

based on randomness, prediction error variability was then estimated by repeating the CV 

analysis 30 times. Finally the importance of features was obtained using a greedy search 

approach by adding at each step the metric that minimizes the CV prediction error.

2.2. Feature Engineering and Feature Learning Comparison

2.2.1. Datasets—We generated two new datasets, a prostate only dataset and a mixed 

tissues dataset, for comparing the performance of a feature engineering approach and a 

feature learning approach. From the prostate slides used before we generated 22896 gray-

scale square patches of size 256 pixels. These were divided in 3 sets: a training set of 16028 

patches, a validation set of 3434 patches and a test set of 3434 test set. The patches were 

artificially blurred as previously explained resulting in a final training set of 96168 patches 

for training and 20604 for each validation and test. From the same pool of slides used before 

plus 69 slides from skin biopsies, we generated a mixed dataset consisting of 7280 square 

patches of size 256 pixels per tissue type (prostate, hippocampus, kidney, skin) for training, 

and 1560 per tissue type for each validation and test. The patches were artificially blurred 

as previously explained, resulting in a final training set of 174720 patches for training and 

37440 for each validation and test.
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2.2.2. Logistic Regression and Random Forest—The 13 sharpness metrics were 

extracted from the datasets. Training was performed on the compound of training and 

validation sets, errors reported are calculated from predictions on the test set. A logistic 

regression and a random forest of 1000 trees were trained for a 6 class classification task. 

Similarly, a random forest was trained for a regression task. Using a model with all features 

and with the reduced set of 10 features was also investigated.

2.2.3. Residual Neural Network Training—We trained an 18 layer deep ResNet 

model[1] which takes as input 3-channel images of 224×224 pixels. We modified the 

architecture to accept as input gray-scale images. This was because, firstly, it allows for a 

better comparison with the engineered features approach which relies on gray-scale images, 

and, in addition, it can help the ResNet learn color independent features, especially since 

staining varies widely between tissues. Finally, during training, center crops are taken from 

our 256 pixels patches to accommodate the network’s 224 pixels input requirement. A 6-

class classification task was performed, where each blur level was considered a class with no 

ordinal information, with cross-entropy as cost function. A regression task was performed, 

where the blur level is the target, with MSE as cost function. Training from scratch was 

performed in parallel on four Nvidia TitanX GPUs for 300 epochs with hyper-parameters 

set as follows: batch size=1024, learning rate=0.1(multiplied by 1/10 every 30 epochs), 

momentum=0.1. For each epoch the training was done on the training set and validation 

error calculated for the validation set. After 300 epochs, the best performing model on 

the validation set was chosen. The test set error was then measured for the best model. 

Convergence plots are shown in appendix AppendixE.

2.3. Blur Detector

2.3.1. Human vs detector agreement—In the field of digital image quality control, 

testing a sharpness metric is most frequently done by showing the test set to individuals 

who give a score usually from 1 to 5. Then, the mean score for each image, referred to 

as MOS, is correlated to the proposed metric [9]. Similarly, we tested our entire pipeline 

on real pathology cases at MSKCC. The blur detector (previously trained as described in 

2.2.2) was run on a set of 10 slides from the pathology department at MSKCC that were 

found to have out-of-focus regions by the technicians. It is important to note that these slides 

were not filtered to contain only tissue types that were used for training (kidney, prostate, 

hippocampus), and hence also include other tissue types. We extracted a balanced pool of 

images where the space of the regressed target was binned in 6 regions, obtaining in total 

2345 patches of 512 pixels. The images were presented to experts in the field via a simple 

web application accessible only within MSKCC. Each user was asked to score the level of 

blurriness of a single image at a time out of 6 possible levels 0 through 5, with 0 being sharp 

and 5 very blurred. Scores and scoring time for each image were saved. Screen-shots of the 

web application are shown in appendix AppendixD. In the end we obtained scores for 1391 

images from 10 experts: 2 experts that are in charge of the quality control of scanned slides, 

4 pathologists, and 4 other scientists working at MSKCC. Spearman correlation is then used 

to measure the agreement between raw expert and detector scores. It is important to note that 

users were not trained or preconditioned. Prior to the task a brief explanation was given and 
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6 example images were shown with a different scoring system (3 classes) than the one used 

during the task. Screen-shots taken from the scoring are presented in appendix AppendixD.

2.3.2. Tests in the clinic—The blur detector was run on 193 whole slides. A slide was 

considered positive for blur if more than 5% of the tissue patches had a predicted score 

higher than 0.8.

3. Results and Discussion

3.1. Benchmark of Engineered Features for Blur Detection

Here we discuss the performance of several state-of-the-art features in detecting blurred 

regions in pathology slides. We investigated the performance of these features alone and 

using a random forest model, their importance and the relationships between performance, 

image size and tissue type.

3.1.1. Single Feature Performance—In the first instance, we tested the implemented 

sharpness metrics on a subset of “natural images” taken from the UT Austin LIVE Quality 

Assessment Database [23, 25, 2]. This database is commonly used to benchmark sharpness 

metrics: it contains sharp images and artificially blurred versions of them (a Gaussian 

filter with increasing standard deviation (0.8, 1.2, 1.6, 2, 2.4) is used to simulate out-of-

focus blur). Results are extensively presented in appendix AppendixB. Briefly, most of the 

metrics were able to recapitulate the increase of blurriness for the same image, showing a 

monotonic increase or decrease. The same level of Gaussian blurriness on different images, 

gave very different responses for the different metrics. Perceptual metrics, which take into 

consideration the perception of blur by the human visual system, performed better than the 

other metrics but still failed to capture unambiguously the level of blurriness in natural 

images.

The UT Austin LIVE Quality Assessment Database contains only natural images, and the 

performance of the features could be different for images coming from pathology. We then 

tested the same metrics on pathology images, in particular tissue microarrays (TMAs) from 

clear cell renal cell carcinoma patients with the mitochondria staining TOM20. Patches of 

512×512 pixels were randomly extracted from a set of six sharp TMAs and increasingly 

blurred versions were generated as previously explained. We show in appendix AppendixC 

that even with these apparently similar images, their content is variable enough that no 

metric correlates across patches with the blur level. In conclusion, single features were 

insufficient to detect blurriness across different images. In the next sections we discuss how 

the ensemble of features is descriptive enough to detect blurred regions across pathology 

images with different content.

3.1.2. Classification Experiments—Classification experiments were performed on 

single tissue datasets (e.g. prostate, hippocampus, kidney, as described in section 2.1.1), 

expecting prediction to be very accurate since the image content is fairly similar within these 

datasets. Indeed, the prediction accuracy was very high for all datasets with errors of 2%, 

1.5% and 0.3% for prostate, kidney and hippocampus datasets respectively for patches of 

64×64 pixels and 0.5%, 0.2% and 0.5% for patches of 512×512 pixels. It was observed 
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that the size of the patches influences accuracy with prediction on bigger patches being 

more accurate than on smaller patches as it can be seen in figure 3. The feature importance 

analysis determined that, in the case of intra-set tasks, only 2 or 3 metrics would be enough 

to reach minimum prediction error, with perceptual metrics and cosine transform metric 

being the most important. Going one step further, all datasets were combined to allow for a 

more general classifier able to predict blurriness independently from the tissue type, at least 

within the tissues in our dataset. Kidney samples with mitochondria staining were harder to 

predict with an error of around 3% mostly due to false positives (sharp patches that were 

predicted blurred), while prostate and hippocampus had instead errors of 0.5% and 0.2% 

respectively, as shown in figure 4. The feature importance analysis (figure 4) underlined 

how, in this case, more metrics are necessary to discern blurriness when image content has 

higher variance.

3.1.3. Regression Experiments—A regressor was then trained on all 3 datasets to 

also predict the level of blurriness of the patches. Results were encouraging with an RMSD 

close to 0.012 and a Spearman correlation coefficient larger than 0.98. In figure 5, the 

dispersion of the predictions is shown and a very flat distribution centered around the 

expected values can be observed, underlying the accuracy of the regression. The feature 

selection (figure 5) was performed minimizing the MSE and it was in accord with the results 

of the classification task.

3.2. Feature Engineering and Feature Learning Comparison

We compared the performance of two machine learning approaches, logistic regression and 

random forest, which rely on manually engineered features, with residual neural networks as 

state-of-the-art convolutional neural networks that are able to learn from scratch the features 

important for classification.

3.2.1. Classification Experiments—We started our experiments using the prostate 

only dataset. The ResNet converged to 0.03% error on the validation set after approximately 

50 epochs (supplemental figure AppendixE.1). The best model (epoch 93) showed 99.95% 

accuracy on the test set across all classes. The result was comparable to the random forest 

approach, which achieved an accuracy of 99.39%. Interestingly, the logistic regression 

showed an accuracy of 94%, pointing to the fact that the non linearity introduced by the 

random forest or the neural network, is important for this task. In addition, by using a 

reduced set of features we lose only 0.29% and 0.66% accuracy for logistic regression and 

random forest respectively. Having obtained good results with one tissue, we then moved on 

to the mixed tissues dataset. For the ResNet, the validation error converged to 0.29% after 

roughly 100 epochs. Taking the best performing model (epoch 193) we had an accuracy 

of 99.74%, outperforming our random forest approach with accuracy 97.43%. Again, the 

logistic regression performed considerably worse (accuracy of 87%). Using the reduced set 

of features, the accuracy drops by 4.18% and 1.08% for the logistic regression and random 

forest respectively. A summary of these results is also presented in table 2. Even though the 

ResNet seems to outperform the random forest, in practice, they would perform similarly 

if the task was a binary classification: sharp and blurred. This can be seen in the confusion 

matrices presented in figures 6 and 7. In the case of mixed tissues, for example, the random 
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forest would yield 25 false positives and 14 false negatives, while the ResNet would give 14 

false positives and 19 false negatives.

3.2.2. Regression Experiments—We then tested the performance of a regression task 

to predict the level of blur present in a patch. As it can be seen in figure 8, all the models 

were able to discern the different levels of blur with fair accuracy. The Resnet converged 

after roughly 30 epochs (supplemental figure AppendixE.2). Prediction on the test set using 

the best model gave an MSE of 0.018, whereas the two random forest approaches resulted in 

0.004 and 0.005 when using all features or a reduced set respectively. The various methods 

showed high level of prediction agreement (supplemental figure AppendixF.1)

3.3. Blur Detector

3.3.1. Implementation—The results from previous experiments encouraged us to 

implement a blur detection application that could be used as part of a computational pipeline 

and in the clinic to more efficiently determine the quality of digital slides. Scanning of 

such slides results in image files of several gigabytes. Any computation performed on such 

images is intensive and particular attention had to be put in maximizing efficiency and 

computation speed. We decided to move forward with a random forest based regression as 

core module of our software. The random forest performance was comparable to that of the 

ResNet. In addition, the random forest pipeline could be more easily ported to the computers 

of the pathology department that are connected to the scanners.

The pipeline and metrics were implemented in python and performance was tested in terms 

of feature extraction time vs. prediction accuracy. This is because the bottleneck of this 

approach in terms of speed is actually the feature extraction, as opposed to the actual random 

forest prediction, which is very fast. The number of trees of the random forest was set to 

19 in the implementation. In figure AppendixG.1 the time needed for feature extraction 

from a square patch of 512 pixels is plotted against the accuracy of the random forest with 

that particular set of features. The most time consuming features were removed one by one 

from the model and the increase in prediction MSE was measured. As expected, as the 

number of features used decreases, the computation time also decreases with the accuracy 

of the prediction and an increase in MSE. The final regressor used in the application uses 

a reduced set of 10 metrics. This set of features keeps the processing time to a minimum 

while maximizing the accuracy. The above described regressor was trained on the mixed 

dataset described in section 2.2.1 and it is the main component of the algorithm that we 

implemented to detect blurred regions in digital slides. The algorithm takes full advantage of 

the OpenSlide[22] API for python. OpenSlide is a C library that allows to read whole-slides 

for most of the commercially available scanners. Our pipeline is designed to run in parallel 

on all processors of a machine to increase efficiency: for a test slide 67,448 pixels wide and 

27,817 pixels high, with tissue covering 20% of the slide area, the single process execution 

takes on average 309 seconds, while a parallel execution on 32 CPUs brings the execution 

down to 17 seconds. Further performance analysis is presented in appendix AppendixG.2. 

Briefly, a sliding window approach is used to scan through the slide’s dimensions to find 

tissue regions. If a patch is detected as tissue, the metrics are extracted and blur level 
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predicted. In the end, a map of blurred and sharp regions is obtained. An overview of the 

algorithm is presented in figure 2.

3.3.2. Human vs detector agreement—The overall humans’ score was highly 

correlated to the detector’s score with a Spearman rank correlation of ρ = 0.66 (95% CI: 

0.63–0.69), even without expert training. Figure 9 stratifies the users into ”quality control 

personnel”, ”pathologists” and ”others” revealing the highest correlation for people routinely 

engaged in quality control of virtual slides (ρ = 0.786), followed by pathologists (ρ = 

0.731) and other scientists (ρ = 0.581). Focusing on the false negatives (images considered 

sharp by the blur detector but not so by the humans), we can understand where to focus 

our attention to improve our detector. Around one third of the false negatives were very 

homogeneous stroma images without any edges or structural elements hindering sharpness 

determination. A few other cases were interesting because they were mostly sharp but had 

small regions clearly out of focus. The detector seems to weight more the presence of the 

sharp regions, while the experts payed more attention to the blurred regions. Examples of the 

false negatives are shown in appendix AppendixH.

3.3.3. Clinical evaluation—Finally we evaluated the proposed framework in the 

clinical setting at Memorial Sloan Kettering. The current clinical pipeline consists of 

commercial quality control by the software of the scanner vendor followed by manual 

quality control by a team of QC technicians. To quantify the difference between the state-of-

the-art and our machine learning approach, we analyzed all 196 slides scanned with a single 

scanner during one day of clinical operation. Three of these slides were loaded in reverse 

and correctly flagged by the scanner’s QC application while all other 193 slides passed the 

commercial quality control checks. The subsequent routine manual assessment consisted of 

spot checking every fourth slide by the quality control technicians. The inspection of these 

48 slides resulted in two additional detections and the slides were submitted for rescanning.

For comparison we automatically analyzed all 193 slides with the proposed framework. 

Besides the two slides that were found by the technicians, our system predicted 42 extra 

slides containing blurred regions. An expert QC technician was then tasked to inspect the 

detected slides. 33 slides were found to be blurred while 9 were considered false positives. 

It should be noted, that in clinical practice, 9 of the blurred slides would not have been 

rescanned due to blurred artifacts, that would not have improved with repeated scanning. We 

hypothesize that the false positives slides could have been classified correctly by optimizing 

the blur score decision threshold, which has been kept fix on this independent test set. 

An example of a positive detection is shown in figure 10. Meanwhile, examples of false 

positives are shown in appendix AppendixI.

In summary our algorithm detected 33 blurred slides the joint commercial and human 

pipeline missed, thus reducing the error rate from 17% to 4.7% (table 3).

4. Conclusions

Modern pathology departments, like the one of the MSKCC, digitize tens of thousands of 

whole slides per month, which makes high precision quality control a paramount element of 
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every high-throughput digital pathology pipeline. In addition, the fine-grained assessment of 

quality not only on slide level but within a slide itself is an indispensable prerequisite for 

real-world computational pathology pipelines.

In this paper we focused in depth on the aspect of blur detection. The contributions of this 

work are the following: (i) We created a comprehensive benchmark dataset consisting of 

10936 patches from digital slides of prostate cancer, renal cancer and hippocampal sclerosis 

patients. (ii) We implemented 13 state-of-the art sharpness metrics and (iii) conducted a 

comprehensive comparison of their performance and extraction speed within a random 

forest framework. To compare feature engineering vs. feature learning (iv) we trained a 

residual network from scratch and compared its prediction accuracy to random forests 

and logistic regression. In addition to exhaustive quantitative evaluation we conducted 

a qualitative study with human domain experts from MSKCC’s quality control group, 

practicing pathologists and additional scientists. To this end we (vi) implemented a web-

application for collecting and visualizing human expert estimations. Furthermore, (vii) we 

implemented a parallel blur detection software package which can take advantage of modern 

multi-core systems and hence offers high speed quality control for high-throughput digital 

pathology workflows. The software produces fine-grained sharpness assessment maps for 

every slide, thus enabling computational pathology at scale on real-world data. An example 

blur map is presented in figure 11. Finally, (viii) we independently tested the proposed 

system in the clinical setting and compared it to the state-of-the-art joint QC pipeline of 

commercial scanner software and human QC experts, resulting in a reduction of detection 

error from 17% to 4.7%.

We expect that the use of automated methods for blur detection will substantially enhance 

the digital pathology work-flow in addition to overall greater virtual slide quality. On the 

computational pathology side, it has still to be shown quantitatively to what extent the 

introduction of a quality control step will enhance the accuracy of computational pipelines 

beyond the empirical evidence. We strongly believe that an effort has to be put into the 

standardization of the quality of virtual slides for achieving more reproducible and better 

performing computational approaches that will undoubtedly lead to better care of patients. 

In this paper, the crucial problem of detecting out-of-focus regions was addressed, but other 

quality related problems, such as color standardization and tissue fold-detection, should be 

studied to compile a comprehensive quality control pipeline for virtual slides in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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*Highlights

i. A comprehensive benchmark dataset for blur detection was created.

ii. A comprehensive performance comparison of 13 sharpness metrics was 

obtained.

iii. Feature engineering was compared to deep feature learning for blur detection.

iv. A blur detection software was implemented for usage in the clinic.

v. The blur detector was validated on 3 datasets, and against human experts.

vi. The blur detector was tested in the clinical setting and compared it to the 

state-of-the-art joint QC pipeline of commercial scanner software and human 

QC experts.
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Figure 1: 
Example of blur artifacts in a H&E slide of our dataset. a: Whole slide thumbnail. 

b,c,d: Comparison between sharp, slightly blurred, and very blurred regions at maximum 

magnification (20×), presented as arrows in a.
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Figure 2: 
Overview of our automatic blur quantification pipeline. After digitizing pathology slides 

(left) they are processed by our blur regression algorithm (middle): First, the tissue is 

separated from the white background. Then, foreground patches are extracted in a sliding 

window approach. Blurriness features from each patch are extracted and processed by a 

random forest regression algorithm assigning a blur score to the corresponding patch. The 

output of the system (right) is a visual representation and a quality score proportional to the 

amount of blurred regions present.
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Figure 3: 
Prediction error variability for the classification task trained on the tissue types separately. 

Hippocampus classifier showed best accuracy, followed by prostate and kidney. The 

relationship between patch size and classification error can be observed: bigger patches 

seem to have lower error rates.
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Figure 4: 
Classification task performance for a classifier trained with all tissues together. a) Prediction 

error variability separated by tissue type. b) Feature importance analysis. From left to right 

the feature is successively added to the classifier which reduces the overall prediction error 

most (Greedy approach).
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Figure 5: 
Regression task performance for a classifier trained with all tissues together. a) Predicted 

blur level for each real blur level. Each red dot is a single patch. b) Feature importance 

analysis. From left to right the feature is successively added to the classifier which reduces 

the overall RMSD most (Greedy approach).
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Figure 6: 
Classification experiments on the prostate dataset. Comparison between models: a) Logistic 

regression on all features, b) Logistic regression on the reduced set, c) Random forest on all 

features, d) Random forest on the reduced set, e) 18 layer ResNet. ResNet (red) gives the 

best overall accuracy.
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Figure 7: 
Classification experiments on the mixed tissues dataset. Comparison between models: a) 
Logistic regression on all features, b) Logistic regression on the reduced set, c) Random 

forest on all features, d) Random forest on the reduced set, e) 18-layer ResNet. ResNet (red) 

gives the best overall accuracy.
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Figure 8: 
Comparison of model performances for the regression task. Predicted values for each model 

are plotted side by side for each Gaussian σ. The distribution of predicted values of the 

ResNet is much wider spread than that of the random forest approaches, underlying a higher 

MSE. The red line indicates the decision boundary between ”sharp” and ”blurred”.
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Figure 9: 
Blur detector validation results: boxplot and scatter plot (artificially jittered horizontally 

for better visualization) showing the correlation between human score (x-axis) and detector 

score (y-axis), stratified by observer group. The Spearman rank correlation coefficient is 

highest for ”quality control personnel” (ρ = 0.786, left), followed by ”pathologists” (ρ = 

0.731, middle) and ”other scientists”(ρ = 0.581, right).
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Figure 10: 
An example slide that passed all quality control checkpoints in the clinic but was detected 

by our application. The original slide (left) is shown next to the blur prediction mask (right) 

where white means sharp and red indicates blurred. a-d show enlarged patches (a: sharp; b,c: 

blurred; d: mixed).

Campanella et al. Page 23

Comput Med Imaging Graph. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11: 
Fine-grained blur prediction map. Each color on the colormap represents a blur level: white 

is sharp and black is very blurred.
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Table 1:

Summary of patch extraction. 18 hippocampus sharp virtual slides were used. 10 patches were extracted from 

each slide for each of the 4 sizes. Subsequently, each sharp patch was blurred with a Gaussian filter with 5 

levels of intensity yielding a total of 4240 hippocampal patches of varying size and blurriness. Similarly for 

prostate and kidney sample.

dataset original sharp slides patches per slide patch sizes blur levels total # patches

kidney 30 4 4 6 2880

prostate 159 1 4 6 3816

hippocampus 18 10 4 6 4240
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Table 2:

Classification accuracy of ResNet compared to different supervised classifiers on the test set. For logistic 

regression and random forest: all means training was done with all 13 metrics, red. means training was done 

on the subset of 10 metrics that maximized accuracy over extraction time.

Logit Random forest

dataset all red. all red. resnet

prostate 94.26% 93.97% 99.41% 98.75% 99.95%

mixed 87.25% 83.07% 97.43% 96.34% 99.74%
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Table 3:

Results of the test in the clinic: comparison between current quality control (QC) procedures (right) and our 

blur detector (left). P is positive for blur, N is negative for blur.

Detector performance Current QC performance

ground-truth ground-truth

detector P N current QC P N

P 2+33 9 P 2 0

N 0 149 N 33 158

Error: 4.7% Error: 17.1%
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