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Abstract

Objectives.—Asthma is a heterogenous condition with significant diagnostic complexity, 

including variations in symptoms and temporal criteria. The disease can be difficult for clinicians 

to diagnose accurately. Properly identifying asthma patients from the electronic health record 

is consequently challenging as current algorithms (computable phenotypes) rely on diagnostic 

codes (e.g., International Classification of Disease, ICD) in addition to other criteria (e.g., inhaler 

medications) - but presume an accurate diagnosis. As such, there is no universally accepted or 

rigorously tested computable phenotype for asthma.

Methods.—We compared two established asthma computable phenotypes: the Chicago Area 

Patient-Outcomes Research Network (CAPriCORN) and Phenotype KnowledgeBase (PheKB). 

We established a large-scale, consensus gold standard (n=1,365) from the University of California, 

Los Angeles Health System’s clinical data warehouse for patients 5–17 years old. Results were 

manually reviewed and predictive performance (positive predictive value, sensitivity/specificity, 
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F1-score) determined. We then examined the classification errors to gain insight for future 

algorithm optimizations.

Results.—As applied to our final cohort of 1,365 expert-defined gold standard patients, the 

CAPriCORN algorithms performed with a balanced positive predictive value (PPV)=95.8% (95% 

CI: 94.4–97.2%), sensitivity=85.7% (95% CI: 83.9–87.5%), and harmonized F1=90.4% (95% 

CI: 89.2–91.7%). The PheKB algorithm performed with a balanced PPV=83.1% (95% CI: 80.5–

85.7%), sensitivity=69.4% (95% CI: 66.3–72.5%), and F1=75.4% (95% CI: 73.1–77.8%). Four 

categories of errors were identified related to method limitations, disease definition, human error, 

and design implementation.

Conclusions.—The performance of the CAPriCORN and PheKB algorithms was lower than 

previously reported as applied to pediatric data (PPV=97.7% and 96%, respectively). There is 

room to improve the performance of current methods, including targeted use of natural language 

processing and clinical feature engineering.
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INTRODUCTION

Cohort discovery and identification of patients from the electronic health record (EHR) is 

often achieved by implementing a “computable phenotype,” defined by a set of inclusion 

and exclusion rules involving structured clinical codes and observations (e.g., disease 

codes, medications, keywords, lab values, etc.) that are collectively indicative of a target 

disease.1 Computable phenotypes representing medical conditions have been developed 

for a number of diseases, including diabetes and obesity.2,3 However, there is not yet a 

universal approach for development of these methods.4 In addition, there is no central 

repository, with the algorithms found among several platforms including the Phenotype 

Knowledgebase (PheKB),4 the National Committee for Quality Assurance (NCQA) through 

the Healthcare Effectiveness Data and Information Set (HEDIS),5 the Centers for Medicare 

and Medicaid Services,6 the Agency for Healthcare Research and Quality (AHRQ),7 the 

National Quality Forum,8 the phenotype execution and modeling architecture (PhEMA),9 

the National Patient-Centered Clinical Research Network (PCORnet),10 the Observational 

Health Data Sciences and Informatics (OHDSI),11 and individual academic institutional 

publications.12–14 Markedly, computational phenotyping objectives can vary in intent, and 

it is often unclear for what purpose it was optimized, with no common standards around 

the documentation or evaluation of these methods. For example, cohort identification 

purpose can range from use in research case-control to revenue cycle inquiries and quality 

improvement measures. Consequently, it can be difficult for end users to decide which 

computable phenotype to use for a specific need or if one is generalizable to their 

population of interest. As a result, the application of these algorithms are inconsistent or 

non-generalizable across different tasks or patient populations, and performance may not 

match expectations.15–19
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To help understand the complexities and performance of computational phenotypes, we 

chose to study pediatric asthma. In the United States, asthma is one of the most 

common chronic illnesses of childhood.20 Many factors contribute to its presentation and 

symptom control including variable underlying inflammation, medication response, and 

socioeconomic and environmental stressors, where it leads to high rates of hospitalizations, 

healthcare costs, and school absenteeism.17,21 Yet despite its prevalence, pediatric asthma 

remains difficult to diagnose and there is increasing attention on the use of the EHR both to 

identify untreated individuals, as well as to elucidate the condition and derive new insights 

to better personalize treatment outcomes.22 With its phenotypic complexity, symptoms that 

overlap with similar diseases as well as differences in diagnosis and clinical treatment 

across institutions makes a consistent, rule-based definition of pediatric asthma difficult to 

establish.

We evaluated two computable phenotypes: 1) the Chicago-based CAPriCORN Asthma 

Cohort Committee algorithm12,23 and 2) a PheKB algorithm, developed at the Children’s 

Hospital of Philadelphia (CHOP).24 Both methods are published and report statistical 

results for identification of asthma patients from institutional EHRs. Each were motivated 

by different purposes - the PheKB algorithm for identification of asthma cases in a 

genome-wide association research study, while the CAPriCORN algorithm was validated 

for generalizability to identify asthma cases across Chicago-area institutions. We tested 

these methods on a large, UCLA-derived cohort of pediatric patients to ascertain predictive 

performance as well as to gain deeper insights into the difficulties of reproducing 

computational phenotyping approaches.

OBJECTIVES

Our goals were to assess and compare the performance of the CAPriCORN and PheKB 

asthma computable phenotype algorithms on a subset of pediatric patients drawn from the 

UCLA Health System population. We specifically examined the error types that arise in 

these asthma computable phenotypes as part of the design requirement to propose steps for 

rule optimization.

METHODS

Healthcare system

The study was conducted within the University of California Los Angeles (UCLA) Health 

System, an academic quaternary care facility. UCLA Health System includes four hospitals 

and over 180 outpatient clinics across the Los Angeles area. It has a catchment area of over 

4 million people with a wide range of socioeconomic status, cultures, and payor mix. Our 

inclusion criteria were children 5–17 years old as of February 28, 2019 with more than 

one encounter at any time within the UCLA Health System’s electronic health record (Epic 

Systems) data warehouse.

Computable phenotypes

The CAPriCORN algorithm was developed at the University of Chicago by Pacheco et al. 
and later modified by Afshar et al. with the goal of identifying asthma patient cohorts for 
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research within the Patient-Centered Outcomes Research (PCORI) Clinical Data Research 

Network.12,23 The computable phenotype was applied to a population ages 5–89 years old. 

The PheKB algorithm was developed by Almoguera et al. at CHOP within a study to 

identify genetic markers in asthma patients and the average age of participants was 11-years 

old.24

Details of the CAPriCORN and PheKB algorithms are depicted in Table 1. We modified the 

inclusion criteria to include only children ages 5–17 years old and included ICD-9 codes 

as well as mappings to their equivalent ICD-10 diagnosis codes. To map ICD-9 to ICD-10 

codes, we used the General Equivalence Mappings (GEMS) data method published by the 

Centers for Medicare and Medicaid Services (CMS).25

Gold standard creation

We performed our analysis on a subset of manually reviewed patients (i.e., the gold 

standard), which were drawn from the UCLA pediatric patient population, ages 517. We 

defined true asthma status (positive or negative) based on the National Institutes of Health 

National Asthma Education and Prevention Program (NAEPP) and the Global Initiative 

for asthma (GINA) guideline definitions of asthma (Appendix, Table 1).17,26 Case review 

using this definition guide was performed by pediatric residents and pre-medical students 

(M.R., A.N., H.H., and A.L.) and all cases were reviewed and adjudicated by a pediatric 

pulmonologist (M.K.R.). A set of 500 previously identified possible asthma cases was then 

matched with a set of 500 predicted negative controls as defined by CAPriCORN exclusion 

criteria and a set of 500 predicted negative controls as defined by PheKB exclusion 

criteria, for a set of n=1,500 patients. After removal of duplicates, cases were classified 

by the authors into three categories: asthma positive, asthma negative, or ambiguous. The 

ambiguous category consisted of cases classified as “probable asthma” or “possible asthma.” 

“Probable” cases contained either diagnoses and/or medication related to asthma without 

documented confirmation of clinical treatment response, pulmonary function testing, etc. 

“Possible” cases were those with an asthma diagnosis documented in the past medical 

history or problem list but without supporting clinical documentation. Only non-ambiguous 

cases were used for the final analysis, yielding 1,365 cases.

Algorithm evaluation

We extracted information from the clinical data warehouse needed to execute the 

CAPriCORN and PheKB computable phenotype rules (patient encounters, demographics, 

visit diagnoses, clinical text, and medications), applied the algorithms to predict a label 

for each child of being asthma “positive” or “negative,” and matched the labeled cases 

to the gold standard. We calculated positive and negative predictive values (PPV, NPV), 

sensitivity, specificity, and F1-score of each computable phenotype. Agreement between the 

CAPriCORN and PheKB algorithms to identify asthma cases was evaluated using Cohen’s 

Kappa score. The positive cases (n=375) were upsampled to match the n=990 control 

patients and test performance in a balanced manner. Twenty subsamples of 200 patients 

were used to bootstrap confidence intervals of performance metrics. Discrepancies between 

the algorithms’ determination of asthma status were quantified. To reflect PheKB’s and 

CAPriCORN’s performance (which were originally evaluated on balanced datasets), we 
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reviewed performance with the original distribution of 375/990 cases/controls as well as 

after balancing.

To further understand algorithm differences, the false positives and false negative cases were 

manually reviewed by the domain expert (M.K.R.) and categorized into themes based on 

best judgment to describe the reason for error. We also reviewed the specific computational 

phenotype rules, the corresponding potential to cause incorrect classification, and potential 

solutions.

Ethical considerations

A waiver of consent was obtained from the UCLA Institutional Review Board (IRB) 

committee (IRB #18–002015).

RESULTS

100,869 pediatric patients aged 5–17 met our initial inclusion criteria, and from this cohort, 

the CAPriCORN and PheKB algorithms were separately applied to build the gold standard. 

After manual review, the ambiguous asthma status and overlapping cases were excluded for 

a final gold standard set of 1,365 children in our analysis: 375 children (27%) with asthma 

and 990 without (73%), demographics Table 2.

Performance

Applied to pediatric patients within the UCLA Health System, the unbalanced CAPriCORN 

rule’s performance resulted in a PPV of 90.0% (95% CI: 85.5–92.3%), sensitivity of 

89.0% (95% CI: 82.7–90.7%) and F1 of 89.5% (95% CI: 84.7–90.2%). The balanced 

CAPriCORN algorithms performed with a positive predictive value (PPV) of 95.8% 

(95% CI: 94.4–97.2%), sensitivity of 85.7% (95% CI: 83.9–87.5%), and F1 of 90.4% 

(95% CI: 89.2–91.7%); Table 3. The balanced dataset and particularly the unbalanced 

dataset underperformed in some areas compared with its published performance using 

the CAPriCORN Chicago-area data of a PPV 97.7% and sensitivity of 97.6% (n=409 

children)15 and a derived F1 of 96.4%.

The unbalanced PheKB algorithm performed on the UCLA data with a PPV of 67.3% 

(95% CI: 62.8–69.8%), sensitivity of 73.0% (95% CI: 67.7–75.2%) and F1 of 70.0% (95% 

CI: 65.7–71.0%). The balanced PheKB algorithm performed with a PPV of 83.1% (95% 

CI: 80.5–85.7%), sensitivity of 69.4% (95% CI: 66.3–72.5%), and F1 of 75.4% (95% 

CI: 73.1–77.8%). The PheKB algorithm has been measured previously in terms of PPV, 

with a reported performance (n=25) at Marshfield Health System in Wisconsin of 96%.16 

Markedly, the CAPriCORN and PheKB computable phenotype yielded a Cohen’s Kappa of 

0.63 (unbalanced), and 0.60 (balanced).

Error analysis

There were four general categories of errors discovered among the computable phenotype 

algorithms (Table 4):
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1. Computational.—Computational errors were those that a computable phenotype 

inherently cannot perform such as identifying asthma cases using details within progress 

notes, scanned documents, or outside records (e.g., if an outside record or scanned document 

contains information supportive of an asthma diagnosis, this is not captured in the algorithm 

rules). These are errors that arise prior to the design of a phenotyping algorithm and are 

difficult to perform computationally by the phenotyping algorithm itself.

2. Definition.—Examples of errors caused by the computable phenotype definition were 

exclusion criteria that were not identified (e.g., hypotonia) or too broad (e.g., bronchitis), 

only one respiratory episode counted as two episodes by the computable phenotype 

algorithms, and narrow criteria such as the requirement for asthma diagnosis and medication 

at each visit. Calibration of definitions can resolve these types of errors.

3. Human error.—If the patient was not labeled by the physician as having asthma when 

they met criteria or they were labeled as an asthma patient without meeting diagnostic 

criteria, we considered that a human diagnostic error.

4. Implementation.—The final major error type was due to the keyword rules of the 

PheKB computable phenotype, which only included ‘asthma’ and ‘wheezing.’ As applied to 

our healthcare system, the rules would require modifications such as searching roots, using 

ontology/concept mappings, avoiding negation, and extracting selectively within the chart to 

improve performance (e.g., excluding the ‘family history’ section and/or only including the 

‘history of present illness’ section). More advanced tools such as advanced NLP algorithms 

or data warehousing can resolve these types of errors.

The most common type of error leading to false positive across both algorithms (and 

the majority of CAPriCORN’s false positive labels) were due to “definition” errors - 

not excluding diagnoses that could confound the presentation, diagnosis, and/or treatment 

of asthma (e.g., musculoskeletal disease, immune system dysfunction). The majority of 

the PheKB false positives were due to “implementation” errors that erroneously included 

text (e.g., family history of asthma). The majority of both the CAPriCORN and PheKB 

algorithms’ false negatives were due to information located within documentation from 

scanned or outside records (Figure 1).

DISCUSSION

To date, there is no singular approach to asthma case identification from the EHR; previous 

efforts to do so demonstrate a range of findings, with positive predictive values from 27–

100%.12,23,27–35 Computable phenotypes that rely on ICD codes are vulnerable due to 

dependence on correct diagnosis by a healthcare provider. Our findings demonstrate the 

CAPriCORN and PheKB asthma computable phenotypes as applied to pediatric patients 

in the UCLA Health System had decreased performance. As the comparison between the 

PheKB and CAPriCORN algorithms demonstrate, the performance is difficult to generalize 

across populations and institutions. Notably, both the PheKB and CAPriCORN algorithms 

were designed for identifying ideal candidates for downstream asthma research by not 

including ambiguous cases.
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While an F1-score of 90% for the CAPriCORN rule results in our system is reasonable, 

it is below the level observed by Pacheco et al and Afshar et al. While the CAPriCORN 

algorithm was designed for generalizability and validated across institutions in the Chicago 

area, its lower-than-expected performance on the UCLA population, particularly in terms 

of sensitivity, demonstrate that there is a generalization gap for the CAPriCORN algorithm. 

Contributing factors were likely due to a more realistic performance metric using a larger 

cohort of >1,000 pediatric patients, as well as institutional differences in data collection and 

warehousing. Arguably, these results may be acceptable depending on the application of the 

computable phenotype - whether recruiting, genomic-phenomic research, decision support, 

quality improvement, or other applications - and the need to balance true/false positive 

and negative rates. However, without contextualization of the computational phenotype’s 

primary objective and evaluation, appreciating its proper utility can be difficult.

Clinical Implications

Furthermore, the significant difference in performance of the PheKB algorithm on our 

population compared to the population in Pacheco et al illustrates the problems of applying 

algorithms at cross-purposes to their intended application. The PheKB algorithm is used 

as part of a wider effort to identify candidate patients for GWAS studies24. Compared 

to CAPriCORN, PheKB’s rules are more restrictive. The difference is demonstrated in 

two ways. First, PheKB’s lower sensitivity but higher specificity illustrates PheKB’s 

stricter rules, whereas CAPriCORN’s rules were broader to generalize across institutions 

with divergent clinical practice. Second, the relatively low Cohen’s Kappa between the 

CAPriCORN and PheKB algorithms illustrate divergence in who these algorithms consider 

as having asthma - CAPriCORN recognizing those patients who may only have one 

diagnosis documented, while PheKB uses text-based identification that does not rely on 

capture via ICD coding.

As part of precision medicine efforts, there is a call for standardized, automated, and 

portable approaches to identify patient cohorts for integration of genomic and EHR data.36 

Central data repositories such as PheKB are expanding, but do not enforce standardized 

methods or model design principles for computable phenotype development and validation. 

This study demonstrates the need for more consistent thinking about the application of 

computable phenotypes, the different purposes that they could be used, and their issues 

of generalizability and transportability. In 2015, Mo et al. published a ten-component 

recommendation for computable phenotype representation models (PheRMs) using 21 

eMERGE phenotype rules; however, asthma was not one of the computable phenotypes 

studied.3

Based on the error groupings as seen in Appendix Tables 4 and 5, recommendations for 

revisions of errors that lead to false negatives generally aim towards a broader definition of 

asthma from a clinical perspective, while recommendations for revisions of errors that lead 

to false positives generally aim towards improving data capture and provenance.

From the perspective of a computable phenotype, the functional definition of asthma 

as commonly practiced in a healthcare setting may need to be expanded or adapted to 

accommodate for datapoints or features in forms more typically captured in an EHR. For 
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instance, longitudinal use of certain asthma medications is a sufficient but not a necessary 

criterion of asthma - some asthma patients may not frequently use their medication for 

it to appear more than once on their charts. The particular demands of a computable 

phenotype that makes it different from a phenotype defined functionally is an area of 

ongoing interrogation. Also, there is inherent uncertainty surrounding the reliability of 

included features. For example, computable phenotypes that use ICD codes rather than 

specific asthma symptoms or labs rely on accurate physician diagnosis of the condition. 

Another example is the inaccuracy induced by the usage of a text-based feature, as seen in 

the PheKB algorithm.

Asthma in particular is challenging to model because of the complex diagnostic criteria 

that includes clinical symptoms, underlying inflammation and airflow limitation, showing 

phenotypic variation and overlap of other conditions. While pulmonary function testing 

is encouraged to determine airflow limitation, it is not routinely performed in practice.37 

Accommodating population and institutional differences across populations is an important 

consideration when making design choices for computable phenotypes for asthma.

Limitations

Limitations to our study include that ambiguity does exist when determining a true asthma 

case, which may impact the reference standard to a degree. In addition, the final subset of 

patients we analyzed were what we determined to be unambiguous cases and were from a 

pre-existing cohort of patients with at least one ICD code related of asthma so the proportion 

of positive asthma cases in our final analysis set (~25%) is higher than what we would 

expect to see in the actual population. Also, the removal of ambiguous cases stemmed from 

one of the original goals of comparing the performance of the two algorithms. Measuring 

the performance on cases that even human reviewers found ambiguous would not give 

a meaningful metric as to whether the algorithms performed “correctly” on those cases. 

However, the study of such ambiguous cases in the context of automated phenotyping 

algorithms is of interest and will be examined in our future work. The mapping of ICD-9 

to ICD-10 codes may also have affected our results. We did not have duplicate review 

of all cases and reviewers were not blinded to the results of the computable phenotypes, 

although they were instructed to not take it into consideration and provide an explanation for 

their label determination. Computable phenotypes are inherently limited by the availability 

of data within the system and human design. False positive identification of asthma cases 

occurs if all exclusion diagnoses are not taken into consideration. The performance of both 

computable phenotypes also faltered due to inability to incorporate detailed free-text. Use 

of text as a phenotype feature would require more powerful natural language processing 

methodologies. In addition, computable phenotypes that use an ICD code as a rule will not 

be able to identify missed or incorrectly diagnosed cases.

CONCLUSIONS

To understand how a computable phenotype for asthma might be built, two computable 

phenotypes were validated via comprehensive chart review. Through clinicians’ reviews, 

we identified four major categories of errors for the CAPriCORN and PheKB algorithms. 
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Design decisions in a standardized asthma computable phenotype will affect performance 

across different populations and clinical environments such that multiple optimal 

configurations exist depending on the functional goal of the computable phenotype and 

that trade-offs will need to be considered. There is room to improve existing computable 

phenotypes if such algorithms are to reach a level of performance acceptable to common 

clinical implementation. Future considerations to identify asthma cases in the EHR include 

natural language processing and predictive algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of errors by type FP=False Positive
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Table 1.

Rules derived from the CAPriCORN and PheKB algorithms to identify patients with asthma as applied to the 

UCLA Health System Clinical Data Warehouse.

CAPriCORN PheKB

At least 2 encounters At least 2 encounters

Ages 5–17 years old Ages 5–17 years old

Visit 1: Asthma-related diagnosis AND

Visit 2: Asthma-related diagnosis OR an asthma medication
a Visit 1 &2: ≥1 asthma-related medication

a
 AND diagnosis OR

≥=3 visits in 1 year (separate calendar days) with “wheezing” or “asthma” 
documented in the note

No exclusion criteria
b

No exclusion criteria
b

Asthma-related diagnosis = ICD-9 code 493.* and/or ICD-10 code J45.*

a
Asthma medication detail in Appendix Table 2

b
Exclusion criteria detail in Appendix Table 3
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Table 2.

Demographics of pediatric asthma patients included in the study

Demographics Total (n=1365) Asthma (n=375) No Asthma (n=990) p-value

Age (avg/sd) 11.9 / 3.86 11.43 / 3.69 11.37 / 3.93

Female 623 148 475 0.1 15

Male 742 227 515 0.163

Race

Asian 111 44 67 0.016

Black 77 33 44 0.010

White 621 170 451 0.998

Other 556 128 428 0.063

Ethnicity

Hispanic/Latino(a) 268 65 203 0.498

Not Hispanic/Latino(a) 775 245 530 0.035

Unknown 322 65 257 0.013
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Table 3.

a) CAPriCORN 2×2 table (n=1365), original

Asthma (+) Asthma (−)

CAPriCORN (+) 334 (TP) 37 (FP)

CAPriCORN (−) 41 (FN) 953 (TN)

b) CAPriCORN 2×2 table (n=1980), balanced

Asthma (+) Asthma (−)

CAPriCORN (+) 867 (TP) 37(FP)

CAPriCORN (−) 123(FN) 953 (TN)

c) PheKB 2×2 table (n=1365), original

Asthma (+) Asthma (−)

PheKB (+) 274 (TP) 133 (FP)

PheKB (−) 101(FN) 857 (TN)

d) PheKB 2×2 table (n=1980), balanced

Asthma (+) Asthma (−)

PheKB (+) 687 (TP) 133 (FP)

PheKB (−) 303(FN) 857 (TN)

e) PPV/NPV/Sensitivity/Specificity/F measure, original

N=1365 PPV (95% CI) NPV (95% CI) Sensitivity (95% CI) Specificity (95% CI) Fl-measure

CAPriCORN 90.0%(85.5%-92.3%) 95.8%(93.3%-96.2%) 89.0%(82.7%−90.7%) 96.2%(94.6%−97.1%) 89.5%(84.7%−90.2%)

PheKB 67.3%(62.8%-69.8%) 89.4%(86.3%−90.3%) 73.0%(67.7%-75.2%) 86.5%(83.9%−87.4%) 70.0%(65.7%−71.0%)

f) PPV/NPV/Sensitivity/Specificity/F measure, balanced

N=1980 PPV (95%CI) NPV (95%CI) Sensitivity (95% CI) Specificity (95% CI) Fl-measure

CAPriCORN 95.8%(94.4%-97.2%) 86.7%(85.1%−88.4%) 85.7%(83.9%-87.5%) 96.1%(94.8%-97.5%) 90.4%(89.2%−91.7%)

PheKB 83.1%(80.5%−85.7%) 73.1%(70.5%−75.8%) 69.4%(66.3%-72.5%) 85.4%(83.3%-87.6%) 75.4%(73.1%−77.8%)
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Table 4.

Categories of Error Type

Error Category CAPriCORN PheKB

Computational

Confirmatory history in text FN FN

Scanned or outside system notes FN FN

Definition

Exclusion diagnosis missed FP FP

Diagnosis excluded unnecessarily FN FN

Only 1 respiratory episode FP FP

Diagnosis plus medication requirement -- FN

Human error

Error related to diagnosis FN/FP FP

Implementation

Text -- FP

FN=false negative, FP=false positive
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