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ABSTRACT

Chinese tongue sole (Cynoglossus semilaevis) is an
economically important marine fish species with a
ZZ/ZW sex determination mechanism, which can be
influenced by temperature. Alternative splicing (AS)
is an important mechanism regulating the expression
of genes related to sex determination and gonadal
differentiation, but has rarely been reported in fish. In
this study, to explore the molecular regulatory
mechanisms of sex determination and gonadal
differentiation, we combined isoform and RNA
sequencing (Iso-Seq and RNA-Seq) to perform
transcriptome profiling of male and female gonads in
C. semilaevis. In total, 81883 and 32341 full-length
transcripts were obtained in males and females,
respectively. A total of 8279 AS genes were
identified, including 2 639 genes showing differential
AS (DAS) between males and females. Many
intersecting DAS genes and differentially expressed
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genes (DEGs) were enriched in the meiotic cell cycle
pathway, and genes related to gonadal
differentiation, such as esrrb and wtfa, were found to
have sex-specific isoforms. Thus, this study revealed
AS events in the gonadal transcriptomes of male and
female C. semilaevis, described the characteristics
of active transcription in the testes, and identified
candidate genes for studying the regulatory
mechanisms of AS during gonadal differentiation.
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INTRODUCTION

Alternative splicing (AS) is a ubiquitous mechanism for
regulating gene expression that allows the generation of
multiple mRNAs from a single gene. During this process,
RNA-binding proteins (RBPs) can influence the recognition
efficiency of splicing complexes at splicing sites and thus
modulate AS (Witten & Ule, 2011). Types of AS are
categorized as skipped exons (SEs) (particularly exon
removal), mutually exclusive exons (MXEs) (only one of two
exons is retained after splicing), alternative 5'/3’ splice sites
(A5SSs, A3SSs) (affecting boundaries between introns and
exons), and retained introns (RIs) (Baralle & Giudice, 2017).
AS can increase the diversity of mRNA and protein isoforms
and alter the expression of gene isoforms. For example,
90%—95% of human genes undergo AS, and approximately
37% of genes generate multiple protein isoforms (Kim et al.,
2014; Pan et al, 2008). AS can also change translation
reading frames to regulate gene expression, known as
nonsense-mediated decay (NMD) (Isken & Maquat, 2008). In
addition, the A5SSs and A3SSs of mRNA untranslated
regions (UTRs) can affect the stability, localization, and
translation efficiency of mRNAs (Licatalosi & Darnell, 2010).
Thus, due to its ability to enrich different types of mRNA,
further functional analysis of AS is necessary.

AS plays an important role in sexual development and
gonadal differentiation in teleosts. In Chinese tongue sole
(Cynoglossus semilaevis), the ovarian germ-cell-specific vasa
gene has three isoforms in the gonad, including vas-s, which
shows sexually dimorphic expression during early gonadal
differentiation (Wang et al., 2014). Another germ-cell-specific
gene, factor in the germline alpha (figla), expresses two
isoforms, figla_tv1 and figla_tv2, which are separately
expressed in the oocytes of female and germ cells of
pseudomale testes (Li et al., 2016). Knockdown of figla_tv2 in
pseudomale testes significantly up-regulates the expression of
two steroid hormone-coding genes, suggesting the
involvement of figla_tv2 in spermatogenesis via regulation of
steroid hormone synthesis (Li et al., 2016). In Nile tilapia,
SRY-box containing gene 30 (sox30) is expressed exclusively
in the gonads, and its four AS-generated isoforms are
expressed at different stages of gonadal differentiation, thus
showing clear sexual dimorphism (Han et al.,, 2010). In
seabream, four progesterone receptor gene (pgr) variants are
co-expressed in the ovary, among which two isoforms show
differential expression under gonadotropin and estrogen
stimulation, suggesting that ovarian progestin responsiveness
may be regulated by AS of pgr mRNA during early oogenesis
(Zapater et al., 2013). Thus, AS appears to be a universal
regulatory mechanism of sexual development and gonadal
differentiation in teleosts.

The Chinese tongue sole is an economically important and
sexually dimorphic marine species, with females showing
faster growth than males. As such, sex determination and
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gonadal differentiation in this species have become important
areas of research. However, while genes related to sex
determination and gonadal differentiation have been
investigated, few studies have explored the mechanisms
underlying differences in gene expression in female and male
gonads, especially AS of key genes during gonadal
differentiation. To perform a comparative transcriptomic
analysis of expression and AS regulation between Chinese
tongue sole females and males, we combined PacBio isoform
sequencing (Iso-Seq) and short-read RNA sequencing (RNA-
Seq) to generate a comprehensive transcript dataset of the
gonads after differentiation. Abundant differentially expressed
genes (DEGs) and genes with differential alternative splicing
(DAS) were obtained. Based on enrichment analysis, DAS in
DEGs was related to mRNA splicing and germ cell
development. Our results provide a foundation and potential
candidate genes for further research on the mechanisms
underlying differential expression between the ovary and testis
of C. semilaevis.

MATERIALS AND METHODS

Ethics statement

All animal procedures followed the principles of the Guide for
the Care and Use of Laboratory Animals at the Chinese
Academy of Fishery Sciences and were approved by the
Institutional Animal Care and Use Committee (IACUC) of the
Yellow Sea Fisheries Research Institute (CAFS) (Qingdao,
China)(Approval No.: YSFRI-2022016).

Sample collection of C. semilaevis

In this study, a batch of healthy Chinese tongue sole (at 6
months post-fertilization (mpf)) was sampled from Laizhou
Mingbo Co., Ltd. (Yantai, Shandong, China). The gonads were
collected and immediately frozen in liquid nitrogen and stored
at —80 °C for RNA extraction. The caudal fins were collected
and stored in ethanol for genetic sex identification.

Histological observation

The collected gonadal tissues were fixed in 4%
paraformaldehyde (PFA) at 4 °C overnight, then soaked in
10 mmol/L phosphate-buffered saline (PBS) (Solarbio
Science, China) for 1 h. The fixed samples were dehydrated
through a series of graded ethanol concentrations, embedded
in paraffin blocks, and cut into 6 uym sections. The sections
were fixed on slides and stained with hematoxylin-eosin
(Solarbio Science, China). The slides were photographed with
a Leica DM4000 B light microscope (Leica Microsystems,
Germany).

Genetic sex identification

Genomic DNA was extracted from the fins using the phenol-
chloroform method. Genetic sex was identified by polymerase
chain reaction (PCR) amplification of sex-specific simple
sequence repeat (SSR) markers (Liu et al., 2014).

Total RNA extraction

Total RNA was isolated from each gonad sample using TRIzol
reagent (Thermo Fisher Scientific, USA) according to the
manufacturer's instructions. RNA sample quality was
measured with an Agilent 2100 Bioanalyzer (Agilent, USA).
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RNA-Seq and data processing

The libraries of three females (F1-F3) and three males
(M1-M3) were sequenced on the BGISEQ-500 platform. Raw
reads were filtered using SOAPnuke v1.4.0 (Chen et al., 2018)
and Trimmomatic v0.36 (Bolger et al., 2014) with default
parameters to remove adapters, low-quality reads with more
than 5% unknown nucleotides, and reads with more than 20%
low-quality bases. The filtered clean data were subsequently
mapped to the C. semilaevis genome (NCBI Cse_v1.0) with
HISAT2 (v2.1.0) (Kim et al., 2019) and aligned with the
reference transcript sequence using Bowtie2 (v2.2.5)
(Langmead & Salzberg, 2012) to remove ribosomal RNA
(rRNA) sequences and annotate genes.

Full-length
processing
Four full-length transcriptome libraries were constructed by
using RNA samples from the gonads of each two females and
two males. Total RNA was enriched with oligo (dT) magnetic
beads and then reverse transcribed to produce cDNA using a
SMARTer™ PCR cDNA Synthesis Kit (Takara Bio, USA). The
full-length cDNA was amplified by PCR, and the BluePippin™
Size Selection System (Sage Science, USA) was then used
for size selection to generate four libraries (insert size of 1-10
kb). After selection, the full-length cDNA was amplified again
and end repaired, and SMRT sequencing adaptors were
ligated to the cDNA to produce the SMRT bell libraries. The
libraries were quantified using a Qubit RNA BR Assay Kit
(Thermo Fisher Scientific, USA). The library insert size was
checked with an Agilent 2100 Bioanalyzer, and sequencing
primers and polymerase were bound to the SMRT template in
appropriate proportions according to the PacBio calculator
sequencing results obtained from the PacBio Sequel platform
(Pacific Biosciences, USA). We first performed raw read
quality control and filtration, removing reads with low quality
and short length, and then generated circular consensus
sequences (CCSs) by filtering based on number of full passes
greater than zero and accuracy greater than 0.75. The CCSs
were classified and clustered using SMRT Link (v5.1.0)
software supported by Pacific Biosciences. For the clustered
CCSs, we performed alignment to the C. semilaevis genome
(NCBI Cse_v1.0) using GMAP software (v2017.06.20), and
the final transcriptome sequences were generated using
TOFU (v1.0) to remove redundant sequences. We annotated
the full-length transcriptome and identified novel transcripts by
matching the alignment results to the genome annotation file
with MatchAnnot (v1.0), and then used TransDecoder (v3.0.0)
to predict the open reading frames (ORFs) of full-length
transcripts.

transcriptome sequencing and data

Expression analysis

The sequences aligned by Bowtie2 were quantified by RSEM
(v2.2.5), and gene expression levels were normalized using
the fragments per kilobase million (FPKM) method to eliminate
the influence of sequencing depth and gene length.
Differential expression analysis of normalized gene expression
was performed using DEseq2 (v1.30.1) (Love et al., 2014),
with fold-change=2 and adjusted P (g-value)<0.05 indicating
significant DEGs.

DAS analysis

We utilized the Ir2rmats pipeline (v0.1) to integrate SMRT
long-read and RNA-Seq short-read data, thus generating a
new gene annotation file. Clean RNA-Seq reads were then
aligned to the genome using STAR (v2.5.3a) (Dobin et al.,
2013), resulting in an alignment file for each sample. The
newly generated annotation and alignment files for each
sample were fed into rMATS (v4.1.0) (Shen et al., 2014) for
AS analysis, whereby short reads were used to compare
differences in reads per kilobase million (RPKM) in specific
regions of the transcripts derived from each gene. For each
AS event, rMATS calculated percentage of exon inclusion
(IncLevel) for each sample across the biological triplicates and
detected differential IncLevel (IncLevelDifference) between the
two sexes. The DAS events were screened and categorized
using summary.py in rMATS based on a IncLevelDifference
absolute value greater than 0.1 and false discovery rate (FDR)
of less than 0.05. The splicing event categories included SEs,
A5SSs, A3SSs, MXEs, and Rls.

Functional analysis of differential AS genes

Gene Ontology (GO) enrichment analysis was performed
using Metascape (https://metascape.org). Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis was
performed based on annotation results from the alignment of
C. semilaevis protein sequences in the KEGG database
(https://lwww.genome.jp/kegg/).

Visualization of AS events

Sashimi plots of AS events were generated using
rmats2sashimiplot (v2.0.3). RNA-Seq and full-length transcript
structures were viewed and visualized in Integrative Genomics
Viewer (IGV) (v2.8.13) (Robinson et al., 2011).

Gene expression validation by quantitative real-time PCR
(qRT-PCR)

To verify splicing regulator expression based on RNA-Seq
data, eight candidate genes potentially involved in gonadal
differentiation were selected. Primers for the selected genes
were designed based on the longest mRNA sequences
generated from the C. semilaevis genome sequence
(Supplementary Table S1). The RNA-Seq samples of each
group were employed for cDNA synthesis using a PrimeScript
RT Reagent Kit with gDNA Eraser (TaKaRa, Japan). qRT-
PCR was performed using a QuantiNova SYBR Green PCR
Kit (Qiagen, Germany). Total gRT-PCR volume (20 pL)
contained 10 L of 2xSYBR Green PCR Master Mix, 2 pL of
QN ROX reference dye, forward and reverse primers (each at
0.7 ymol/lL), and 1 pL of cDNA. PCR amplification was
performed using a StepOnePlus Real-Time PCR system
(Thermo Fisher Scientific, USA) under the following
conditions: 95 °C for 2 min, followed by 40 cycles at 95 °C for
5 s and 60 °C for 10 s, with final collection of the fluorescence
signal of the dissolution curve. The PCR assays were
performed in triplicate. The [B-actin gene was used as an
internal reference gene. The relative expression levels of eight
genes were measured using the 2722¢t equation. The t-test
was used for assessment of significance, and P<0.05 was
considered statistically significant.
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RESULTS

Histological observations of gonadal differentiation

At 6 mpf, the ovarian cavity and seminal lobules were
observed in the ovary and testis, respectively, indicating
completion of gonadal differentiation. In the ovary, oocytes
were orderly distributed along the ovarian lobules, with few
oogonia (Figure 1A). In the testis, many seminal vesicles were
wrapped around the testis periphery and filled with sperm.
Germ cells, including spermatogonia, spermatocytes, and
spermatozoa, were observed in the seminal lobules
(Figure 1B).

AS events in gonads

To fully characterize AS in the gonads, we performed Iso-Seq
and RNA-Seq to obtain full-length transcripts and their relative
expression levels. We identified 32 341 and 81 883 transcripts
in the ovary and testis, with mean transcript lengths of 1 670
and 2 301 bp, respectively. In total, 9 957 and 14 258 genes
were annotated, respectively. Among those transcripts, we

A

identified 1 321 (ovary) and 4 038 (testis) novel transcripts,
which were shorter in length than known transcripts in the
gonads (Supplementary Figure S1A, B). Furthermore, 6 648
and 11 088 genes showed AS in the ovary and testis,
respectively (isoform number=2) (Figure 2A). The ratio of male
to female genes increased with isoform number, indicating
that genes expressed in the testis had more isoforms than
those in the ovary, which was especially true for genes with
more than 10 isoforms (1 878) (Figure 2A). AS events were
predicted using short RNA-Seq reads, resulting in 21 325 AS
events in the gonads (Figure 2B). The SE, A5SS, A3SS, MXE,
and RI splicing types accounted for 70.47%, 6.07%, 7.98%,
4.98%, and 10.49% of all splicing events, respectively.

Enrichment analysis of DAS genes between females and
males

In total, 8 279 AS genes were identified in females and males.
After filtering (]IncLevelDifference|>0.1 and FDR<0.05), 2 639
genes showing DAS were obtained (Supplementary Table
S2). The SE, A5SS, A3SS, MXE, and RI slicing types

Figure 1 Light microscope images of C. semilaevis gonads at 6 mpf

A: Cross-section of ovary at different magnifications (left bar: 10 pm; right bar: 50 pm). B: Cross-section of testis at different magnifications (left bar:
10 um; right bar: 50 ym). OC, ovarian cavity; OL, ovarian lobule; OG, oogonium; OO, oocyte; SL, seminal lobule; SV, seminal vesicle; SG,

spermatogonium; SC, spermatocyte; SZ, spermatozoa.
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of splicing events in gonads of C. semilaevis.

accounted for 48.16%, 8.83%, 8.98%, 6.97%, and 27.06% of
AS events, respectively (Figure 3A). KEGG enrichment
analysis of these genes was performed (Supplementary
Tables S3-S7), and a Venn diagram of the top 30 pathways of
each type showed that the spliccosome and mRNA
surveillance pathways were shared among the five types of
DAS genes (Figure 3B). We also identified several other
enriched pathways involved in gametogenesis, such as oocyte
meiosis, basal transcription factors, and cell cycle. SEs were
mainly found in the oocyte meiosis pathway. Structural
maintenance of chromosomes protein 1B (LOC103379931,
smc1b) and pgr-like (LOC103391230) contained sex-specific
exons (Supplementary Figure S2A, B). In the basal
transcription factor and cell cycle pathways, the Rls of these
genes mainly occurred in males. In addition, TATA box-
binding protein-like 2 (LOC103381809, tbpl/2), transcription
initiation factor TFIID subunit 9 (LOC103395620, taf9),
transcription initiation factor 1IA subunit 1 (gtf2a), and TFIIH
subunit XPD (ercc2) exhibited male-specific introns
(Supplementary Figure S2C, D; Figure 3C, D). In the cell cycle
pathway, male-specific RIs were also found in meiosis-specific
stromal antigen 3 (stag3), cyclin-dependent kinase 7 (cdk7),
and stromal antigen 2 (LOC103395545, stag?) (Figure 3E, F;
Supplementary Figure S2E).

Effect of AS on gene expression

There were 5 077 intersecting genes between the 8 279 AS
genes and 13 444 DEGs (Figure 4A). We counted the number
of DEGs showing AS and found that SEs were the dominant
AS type (Figure 4B). The proportions of differentially
expressed AS genes containing SEs, A5SSs, A3SSs, MXEs,
and Rls were 61.53%, 57.75%, 61.55%, 61.53%, and 57.22%,
respectively (Figure 4C). More genes were up-regulated in
females than in males in all AS categories, except Rls
(Figure 4C). We also found that the expression levels of genes
showing AS events were higher than the expression levels of
genes not showing AS events (Figure 4D).

AS regulates expression of genes related to gonadal
differentiation
In total, 1 112 DEGs were screened from 2 639 DAS genes

(Figure 5A). The network of enriched GO terms is shown in
Figure 5B. Meiotic cell cycle-related GO terms, such as
meiotic cell cycle process and homologous recombination,
were enriched (Supplementary Table S8).

A total of 25 genes related to gonadal differentiation were
identified (Figure 5C). We focused on two genes in particular:
i.e., steroid hormone receptor ERR2 (esrrb), which encodes a
protein similar to the estrogen receptor that functions as a
transcription factor (Festuccia et al., 2018), and WT1
transcription factor a (wt1a), which is involved in urogenital
development (Perner et al.,, 2007). Our results showed that
esrrb was significantly up-regulated in the ovary compared
with the testis (g-value<0.01), and a female-specific 4th exon
existed, which was missing in males (Figure 5D). In the testis,
wt1a was markedly expressed (g-value<0.01) and an intron
between the 9th and 10th exons was specifically retained
(Figure 5E).

Role of splicing regulators in gonadal differentiation
Based on the enrichment results, we focused on the other
significantly enriched GO term, i.e., regulation of RNA splicing
(Figure 5B), which included 24 splicing regulator genes. These
genes showed different expression patterns between females
and males (Figure 6A). Certain genes were up-regulated in
females, including DEAH-box helicase 35 (dhx35), DEAH-box
helicase 8-like (LOC103381857, dhx8-like), serine/arginine-
rich splicing factor 1a (LOC103378294, srsfia), and splicing
factor U2AF 35 kDa subunit-like (LOC103391595, u2afi-like),
while certain other genes were up-regulated in males,
including transformer 2 beta homolog (fra2b), DEAD-box
helicase 5 (LOC103383782, ddx5), transformer 2 alpha
homolog (tra2a), and serine/arginine-rich splicing factor 1b
(LOC103395123, srsf1b).

To validate the RNA-Seq data, the expression levels of
eight genes, i.e., dhx35, dhx8-like, srsfla, u2afi-like, tra2b,
ddx5, tra2a, and srsfib, were measured by qRT-PCR
(Figure 6B). Their expression trend patterns were consistent
with the sequencing data.

DISCUSSION

While studies have implicated the involvement of AS in sex
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determination and gonadal differentiation in many species
(Carreira-Rosario et al., 2016; Cesari et al., 2020; Goémez-
Redondo et al., 2021; Kuravsky et al., 2011; Wang et al.,,
2014; Yu et al., 2021), knowledge on the regulatory
mechanisms of AS in gonadal differentiation remains limited.
Cynoglossus semilaevis is an economically important and
sexually dimorphic fish species, with females considered more
valuable than males in the aquaculture industry due to their
faster growth. Research on sexual development and gonadal
differentiation in C. semilaevis will provide theoretical support
for the development of a monosex fish breeding industry. In
this study, with the help of high-throughput sequencing
technology, we explored the different regulatory mechanisms
involved in gonadal differentiation in C. semilaevis mediated
by AS.

AS events were more extensive in C. semilaevis testis

Based on Iso-Seq analysis, the number of full-length
transcripts in the testis was 2.53 times higher than that in the
ovary (81 883/32 341), and more genes were transcribed in
the testis than in the ovary, indicating extensive and active
gene transcription in the testis, as reported in mammals and
birds (Soumillon et al., 2013). Here, many mRNAs were
transcribed and novel transcripts identified in the C. semilaevis
testes, consistent with previous study showing that the
permissive environment of chromatin in the testis facilitates
new genes, especially in spermatocytes and sperm cells
(Kaessmann, 2010). In addition to the active transcription of
genes in the testis, the average number of transcripts per
gene in the testis (5.74) was higher than that in the ovary
(3.25), thus reflecting more active AS in the testis. RNA-Seq
showed more up-regulated genes in the testis than ovary,
which may be related to the active transcription occurring in

this organ. In mammals, RIs and SEs are the most common
types of AS (Braunschweig et al., 2014; Kalsotra & Cooper,
2011). We identified 21 325 transcripts showing AS, with SEs
and Rls also found to be the most common splicing types in C.
semilaevis (accounting for 80.96%), thus suggesting
conservation of AS type in mammals and teleosts.

Differential SEs and RIs were found in gametogenesis-
related pathways

We compared DAS between the testis and ovary, with SEs
and RlIs again found to be the dominant DAS types (75.22%).
Genes containing SEs, such as smc1b and pgr-like, were
enriched in the oocyte meiosis pathway. The pgr gene is an
important ovulation gene in preovulation follicular granulosa
cells encoding the nuclear receptor transcription factor Pgr,
which plays a key role in regulating the hypothalamic-pituitary-
ovarian axis in reproduction (Natraj & Richards, 1993).
Several genes with differential Rls, including taf9, gtf2ait,
ercc2, and tbpl2, were enriched in basic transcription factor
pathways. In the testis, these genes all contained RI regions,
thus providing insight into the characteristics of Rls among
transcription factors in this organ. Tbpl2 plays a key role in
mouse oocyte development by regulating the transcription of
oocyte-expressed genes (Gazdag et al.,, 2009; Yu et al.,
2020). In fish, tbpl2 is indispensable for embryonic
development, but its role in germ cell development has not yet
been elucidated (Bartfai et al., 2004). AS in mouse meiotic
spermatocytes favors RlIs (Naro et al.,, 2017). In our study,
most differential RIs observed in the gonads originated in the
testis, and some genes, such as stag2, stag3, and cdk7, were
enriched in the cell cycle pathway. Both stag2 and stag3 are
components of the cohesion complex, which is necessary for
sister chromatid cohesion (Nasmyth et al., 2000). STAG2 is
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gonadal differentiation (log,FC>0 indicates up-regulated gene in females, log,FC<O0 indicates up-regulated gene in males). D, E: RNA-Seq reads,
exon junction reads, and RNA-Seq read coverage of esrrb and wt7a. Lower box represents gene structure. Gray box indicates differentially spliced
region. Arrows indicate direction of gene transcription.

required to repair DNA damage through homologous Furthermore, stag3 is a meiosis-specific gene expressed in
recombination in the S/G2 phase (Kong et al., 2014). the gonads and plays an important role in gametogenesis and
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Figure 6 Gene expression and validation of splicing regulators in gonads of C. semilaevis
A: Expression of splicing regulators in gonads. Heatmap showing relative expression (Z-score) of splicing regulators between male and female
gonads. B: qRT-PCR validation of gene expression of splicing regulators in gonads. ns: No significance; : P<0.05;": P<0.01;™: P<0.001.

fertility (Garcia-Cruz et al., 2010). The protein encoded by
cdk7, which is a member of the cyclin-dependent protein
kinase (CDK) family and the catalytic subunit of CDK-activated
kinase (CAK), is also involved in RNA polymerase |l-mediated
RNA transcription (Shiekhattar et al., 1995).

Rl genes were more up-regulated in testis compared to
other AS types

A total of 61.32% (5 077/8 279) of the identified AS genes
were differentially expressed in the gonads (Figure 4A), thus
illustrating the close regulatory relationship between AS and
gene expression. Our results showed that Rl genes were
more up-regulated (higher average expression) in the testis
compared to other AS-type genes, which may be related to
the process of meiosis in the testis. Recent studies on mouse

testes have shown that meiotic intron-retaining transcripts
(IRTs) are exclusively localized in the nucleus (possibly for
later use) and show higher stability than other spliced
transcripts (Naro et al., 2017). Thus, the up-regulation of RI
genes in the testis of Chinese tongue sole may result from IRT
storage. The effect of RIs on gene expression has also been
illustrated by the down-regulation of non-physiologically
relevant transcripts. For example, the steady-state expression
levels of IRTs in mature neurons are significantly lower than
that in murine embryonic stem cells during cell differentiation
(Braunschweig et al., 2014).

AS may regulate differential expression of genes related
to fish gonadal differentiation
Based on our results, 25 genes related to gonadal
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differentiation regulated by AS were screened, including esrrb
and wtfa. The esrrb gene is known to encode estrogen-
related receptor b, which belongs to the NR3B subgroup
(Tremblay & Giguére, 2007). Furthermore, esrrb is a
transcription factor related to the self-renewal of embryonic
stem (ES) cells, and esrrb knockout embryos die by
embryonic day 10.5 (E10.5) (Luo et al., 1997). As an important
regulatory gene, esrrb also maintains the stemness of
trophoblast stem cells (Latos et al., 2015). In addition, esrrb is
involved in the proliferation of gonadal germ cells, with esrrb
loss leading to a decrease in germ cell number (Mitsunaga et
al., 2004). Our results showed that esrrb transcripts were
highly expressed in the ovary of Chinese tongue sole and
contained a female-specific exon (4th exon of esrrb). The role
of esrrb in maintaining cell stemness suggests it may play a
role in the development of ovarian germ cells. The Wilms’
tumor suppressor gene wt7 encodes a zinc-finger transcription
factor and plays an essential role in the development of the
urogenital system in mice and humans (Morrison et al., 2006;
Smolen et al., 2004). Two wt1 paralogs, wtfa and wt1b, are
found in fish. Both wt7a and wt7b are important in zebrafish
kidney development (Bollig et al., 2006). Furthermore, wt1a
plays crucial roles in kidney development and sex
determination in Nile tilapia, with wtfa knockdown in the
kidneys resulting in developmental failure and non-expression
of sex-determining genes in the gonad (Jiang et al., 2017).
The retention of the 9th intron of the wt7a transcript in the
Chinese tongue sole testis may promote wt7a expression in
this organ.

Regulation
regulators
Many splicing regulators in the gonads undergo sex-specific
splicing. For example, in Caenorhabditis elegans, ~18% of
splicing regulators are subject to AS during development
(Barberan-Soler & Zahler, 2008). In Drosophila gonads,
splicing regulators control cell type-specific splicing through
sex- and stage-specific isoforms (Gan et al., 2010). Recent
studies have shown that splicing regulators contribute to cell
differentiation. Many splicing regulators are highly expressed
in undifferentiated spermatogonia, indicating the active
expression of splicing regulators and control of multiple
processes by AS during cell differentiation (Liao et al., 2021).
Splicing regulators, such as srsfla, srsfib, and u2af1, can
modulate mRNA splicing. For example, the arginine/serine-
rich domain of srsfl can bind to U1 small nuclear
ribonucleoprotein (snRNP) and help U1 snRNP to bind to the
5'-splice site containing pre-mRNA (Kohtz et al., 1994). In our
study, two srsf1 paralogs were found in the gonads of
Cynoglossus semilaevis, i.e., srsfia and srsf1b, which showed
different expression patterns. The DEAH/DEAD-box helicase
family members dhx35, dhx8, and ddx5 function as adenosine
triphosphate (ATP)-dependent RNA helicases (Bourgeois et
al., 2016). In addition to its involvement in the splicing
regulation of pre-mRNA, ddx5 plays a role in gonadal
differentiation and is a novel androgen receptor-interacting
protein (Clark et al., 2008). Furthermore, ddx5 and ddx17 are
master regulators of the estrogen and androgen signaling
pathways and affect steroid hormone synthesis by regulating
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the transcription and splicing of genes up- and downstream of
estrogen and androgen (Samaan et al., 2014). Recent
research has also shown that ddx5 is expressed in zebrafish
gonads and most ddx5-deficient females develop into fertile
males, with only a small proportion developing into infertile
females, suggesting that ddx5 is essential for oocyte
maturation (Sone et al., 2020). In addition, ddx5 also impacts
male fertility, not only regulating the expression of cell cycle
genes in spermatogonia but also regulating the proper splicing
of genes required for spermatogenesis (Legrand et al., 2019).
In the present study, ddx5 was highly expressed in the testes,
indicating that ddx6 may also be involved in regulating
testicular germ cell development and male fertility. We also
found that tra2a and tra2b were expressed at significant levels
in the testes and may play important roles in
spermatogenesis. The Drosophila melanogaster homolog,
tra2, is essential for female sexual differentiation and male
spermatogenesis (Amrein et al., 1988). In medaka (Oryzias
latipes), tra2a and tra2b have been detected in the germ cells
of both sexes prior to sex differentiation, and may therefore be
involved in this process (Shiraishi et al., 2004). The tra2
homolog (Mntra-2a) found in the oriental freshwater prawn
(Macrobrachium nipponense) is highly expressed in the
gonads of both sexes, mainly in oocytes and spermatocytes,
and may play an important role in embryonic development and
early gonadal development (Wang et al., 2019).

CONCLUSIONS

By sequencing the transcriptome of C. semilaevis, we
revealed extensive transcription and novel gene generation in
the testis. SEs and Rls were the most common types of AS in
fish gonads, consistent with findings in mammalian and bird
gonads, suggesting that splicing is conservatively regulated
across species. The DAS genes identified between the testis
and ovary of C. semilaevis were primarily related to RNA
splicing activity, indicating differential effects of sex-specific
regulation of AS on gonadal differentiation. Notably, we
observed differential Rls in mitosis- and meiosis-related genes
in the testis, suggesting that AS may also participate in the
regulation of testicular germ cell development. Moreover, we
identified several sex-specific isoforms related to gonad and
germ cell development, which will facilitate research on the
functions of spliced isoforms. In conclusion, AS in the gonads
participates in sexual development by regulating splicing of
sex-related genes and splicing regulators implicated in
gonadal differentiation. Coordinated regulation of AS and
splicing regulators contributes significantly to gonadal
differentiation.
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