Skip to main content
. 2022 May 17;12:8137. doi: 10.1038/s41598-022-11549-2

Table 1.

Results comparing deep learning model with expert Surgeons.

Accuracy (SN %, SP %) RMSE (R2) M-S agreement:a success/failure M-S agreement:b blood loss
Ground truth

11 success

9 failures

Avg blood loss: 568 (range:20–1640)
Model

17/20 (85%)

(100, 66)

295 (0.74)
Expert cohort

55/80 (68.75)

(79, 56)

351 (0.70) 0.43 0.73c
Surgeon 1

13/20 (65%)

(73, 55)

306 (0.73) 0.34 0.74
Surgeon 2

14/20 (65%)

(81, 55)

335 (0.66) 0.43 0.66
Surgeon 3

14/20 (65%)

(81, 55)

423 (0.65) 0.43 0.65
Surgeon 4

14/20 (65%)

(81, 55)

329 (0.74) 0.43 0.72

SN: sensitivity; SP: specificity; M-S: model-surgeon.

aKappa coefficient.

bInter-class coefficient.

cInter-Surgeon Agreement: Success/Failure = 0.95, Blood-Loss: 0.72.