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METTL3-mediated m6A RNA methylation regulates dorsal
lingual epithelium homeostasis
Qiuchan Xiong1, Caojie Liu1, Xin Zheng 1, Xinyi Zhou1, Kexin Lei1, Xiaohan Zhang1, Qian Wang1, Weimin Lin1, Ruizhan Tong2,
Ruoshi Xu1✉ and Quan Yuan 1✉

The dorsal lingual epithelium, which is composed of taste buds and keratinocytes differentiated from K14+ basal cells, discriminates
taste compounds and maintains the epithelial barrier. N6-methyladenosine (m6A) is the most abundant mRNA modification in
eukaryotic cells. How METTL3-mediated m6A modification regulates K14+ basal cell fate during dorsal lingual epithelium formation
and regeneration remains unclear. Here we show knockout of Mettl3 in K14+ cells reduced the taste buds and enhanced
keratinocytes. Deletion of Mettl3 led to increased basal cell proliferation and decreased cell division in taste buds. Conditional Mettl3
knock-in mice showed little impact on taste buds or keratinization, but displayed increased proliferation of cells around taste buds
in a protective manner during post-irradiation recovery. Mechanically, we revealed that the most frequent m6A modifications were
enriched in Hippo and Wnt signaling, and specific peaks were observed near the stop codons of Lats1 and FZD7. Our study
elucidates that METTL3 is essential for taste bud formation and could promote the quantity recovery of taste bud after radiation.
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INTRODUCTION
The lingual epithelium consists of non-taste epithelium and taste
epithelium. The non-taste epithelium covers a large proportion of
the tongue’s surface. In mice, fungiform papillae (FFP), surrounded
by mechanosensory filiform papillae (FLP), are distributed in the
front part of the dorsal lingual epithelium1. The single circumval-
late papilla (CVP) in mice, containing numerous taste buds, is
located in the midline of the posterior lingual epithelium, whereas
singular FFP houses only one taste bud2.
The taste system is mediated by the taste buds and innervated

sensory neurons. Murine taste buds contain 50–100 elongated
epithelial cells, which can be categorized into several types (types
I, type II, and type III)3. Through different specific receptors, taste
buds can detect five taste qualities: bitter, salt, sweet, sour, and
umami (savory)4–6. Dysgeusia is common in patients undergoing
head and neck radiotherapy7–9. Some patients may recover from
taste dysfunction after some months or years, but a small minority
of patients may suffer from permanent taste loss10,11. Loss of taste
buds after radiation is caused by natural taste cell death and the
interruption of taste cell replenishment8.
Previous studies using lineage tracing indicate that basal cells

expressing cytokeratin 5 (K5 or Krt5) and K14 are progenitors of
both non-taste epithelium and taste epithelium in mice12. Taste
buds undergo continuous turnover, with an average life span of
10–14 days, while the non-taste epithelium takes 5–7 days to be
renewed13,14. In non-taste epithelium, K5/K14+ basal progenitors
differentiate into K13+ (KRT13) keratinocytes, which make up the
suprabasal epithelial layers of the FLP and FFP15,16. K5/K14+ basal
progenitors can also generate new cells into taste buds,
subsequently developing into mature taste cell types1. Type I
cells resemble glia and are the most abundant cells present in

taste buds. However, the specific function of type I cells remains
elusive17,18. Some researchers regard type I cells as salt detector4.
Type II cells can transduce different signals by detecting bitter,
sweet, and umami tasting stimuli, whereas type III cells can
transduce sour flavors19–21. These three different cell types can be
identified via distinctive markers: type I cells express ecto-ATPase,
NTPdase2; type II cells express α-gustducin, phospholipase Cβ2;
and type III cells express NCAM and SNAP-2522–24.
As the most abundant mRNA modification, N6-

methyladenosine (m6A) regulates mRNA fate, including stability,
splicing, transport, localization, and translation25–28. Importantly,
the m6A modification is a reversible and dynamic process. Recent
studies have demonstrated that the m6A modification can be
catalyzed by an RNA methyltransferase complex, which consists of
methyltransferase-like 3 (METTL3), Wilms tumor 1-associated
protein (WTAP), METTL14, and other proteins. This modification
can be removed by m6A eraser proteins, including alkylation
repair homolog protein 5 (ALKBH5) and fat mass and obesity-
associated protein (FTO)29–33. Over the past few years, METTL3, the
most important component of the RNA methyltransferase
complex, has been reported to play critical functions in embryonic
development, stem cell differentiation, and tumor progres-
sion28,34–39. However, the role of m6A modification in lingual
epithelial homeostasis remains elusive.
Here, our group generated an epidermis-specific Mettl3 knock-

out mouse model and found that METTL3 was an essential RNA
methyltransferase that regulated lingual epithelium progenitor
differentiation and was crucial for taste bud development.
Moreover, overexpression of Mettl3 promoted taste bud recovery
from radiation injury. We also discovered a mechanistic pathway
by identifying downstream target genes and signals.
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RESULTS
Deletion of Mettl3 in epidermal progenitors leads to taste bud
defects
As previously described, basal progenitors develop into taste cells
(K8) and differentiated keratinocytes (K13) (Fig. 1a)15,16,40. To
explore whether deletion of Mettl3 affected taste bud develop-
ment, we crossed Mettl3fl/fl mice28 with K14-Cre transgenic mice to
conditionally delete Mettl3 from epithelium basal progenitors. K14-
Cre;Mettl3fl/fl mice were viable and born at Mendelian’s ratio. Most
of them survived by postnatal day 4 (P4), and few could survive by
P7. We also generated the K14-Cre;tdTomato;Mettl3fl/fl mice, in
which K14+ cells and their daughter cells were labeled with
tdTomato fluorescence, and confirmed that METTL3 was largely
abolished within Tomato+ cells in the CVP (Fig. 1b).
Because of their short lifespan, we sacrificed K14-Cre; Mettl3fl/fl

mice at P4 to explore whether taste bud differentiation was affected.
Compared to control CVPs, the taste buds in mutant CVPs could not
be recognized by hematoxylin and eosin (H&E) staining (Fig. 1c). K8
is a marker of differentiated taste bud cells40. Immunofluorescence
staining revealed that the number of K8+ cells in the CVP was
significantly decreased (Fig. 1d). We also observed a reduced
number of type II cells (marked by gustducin) and type III cells
(marked by SNAP25) in mutant CVP (Fig. 1e, f). Consistent with the
taste bud loss phenotype, the innervated areas (marked by PGP9.5)
of mutant CVP were remarkably reduced (Fig. 1g).

Deletion of Mettl3 leads to abnormal keratinization of lingual
epithelium
We then examined whether METTL3 regulated keratinization of the
lingual epithelium. Scanning electron microscopy (SEM) showed that
epithelial-specific Mettl3 deletion caused morphological abnormal-
ities in FLP at P4 (Fig. 2a). Excessive keratinized fragments were
observed on the surface of the tongue epithelium in mutant mice
(Fig. 2a). H&E staining showed that the thickness of the epithelium
was increased and the cell alignment was irregular compared to that
of control mice (Fig. 2a). Quantitative analysis of epithelium
thickness showed that the entire epithelium thickness of the
mutants was almost double that of the controls (Fig. 2e). This
observation was confirmed by immunofluorescence staining of
PAN-CK and K13 cells (Fig. 2b, c, f, g). Although there was no obvious
difference in the appearance of FFP by SEM, the number of K8+

taste cells in FFP decreased in the mutant mice (Fig. 2d).

Deletion of Mettl3 increases basal cell proliferation but decreases
cell proliferation around taste buds
Transcription factor p63 is a crucial regulator of epidermal
development and marks basal stem cells41. We noted that the
number of P63+ cells in the CVP increased in the mutants (Fig. 3a).
According to immunofluorescence results for P63 and 5-ethynyl-
2′-deoxyuridine (EdU), the proliferation of P63+ cells in mutant
CVP was more active than in control mice (Fig. 3a). Consistent
results were observed in the FLP analysis (Fig. 3b). Deletion of
Mettl3 led to an increase in the number of P63+ cells and
promoted the proliferation of basal cells (Fig. 3b). In contrast, cell
proliferation around taste buds reduced in Mettl3 knockout mice
(Fig. 3c). Deletion of Mettl3 did not affect apoptosis of taste or
non-taste cells (Fig. 3d, e).

Overexpression of Mettl3 promotes taste bud recovery after
irradiation
Next, we investigated whether Mettl3 overexpression could
prevent lingual epithelial disorders. To this end, we generated
K14-Cre driven Mettl3-tdTomato knock-in mice (K14-Cre;Mettl3KI/KI)
to conditionally overexpress Mettl3 in epidermal progenitor cells28.
As K14-Cre;Mettl3KI/KI mice did not exhibit a significant change in
taste bud and epithelium development, we challenged them with
15 Gy irradiation (Fig. 4a). Both knock-in and control mice
exhibited a severe loss of taste buds at 7 days post-irradiation

(dpi) (Fig. 4b, c), indicating that overexpression of Mettl3 could not
protect mice from epithelial injury due to irradiation. Notably, at
14 dpi, there were more recovered taste buds in the knock-in mice
(Fig. 4b, c). Furthermore, overexpression of Mettl3 increased the
proliferation of cells around taste buds at 7 dpi (Fig. 4d).

METTL3-mediated m6A RNA methylation regulates Hippo and Wnt
pathways
To explore the underlying mechanisms, we performed m6A RNA
immunoprecipitation sequencing (m6ARIP-seq) of the lingual
epithelium in K14-Cre; Mettl3fl/fl mice and their Mettl3fl/fl littermates
at P4. Consistent with previous reports28,42, m6A peaks shared a
common GGACU motif (Fig. 5a) and were enriched around the stop
codon (Fig. 5b). Gene pathway analysis revealed that the most
frequent changes involving m6A modifications after Mettl3 deletion
were enriched in the Hippo and Wnt signaling pathways (Fig. 5c).
Specific peaks were observed near the stop codons of the large

tumor suppressor kinase 1 (Lats1) and Frizzled class receptor 7 (Fzd7)
(Fig. 5d). The deletion of Mettl3 significantly decreased the
abundance of m6A modifications (Fig. 5d). Immunofluorescence
staining and western blot analysis confirmed reduced LATS1 and
FZD7 protein levels, respectively (Fig. 5e, f). Loss of METTL3 led to
increased nuclear localization of YAP and TAZ in the basal
epithelium (Fig. 5g, h). FZD7, a Wnt receptor, transduces signals
and activates the Wnt signaling pathway43,44. Immunofluores-
cence staining for β-catenin indicated that nuclear β-catenin
expression by K14-Cre; Mettl3fl/fl mice at P4 was significantly
decreased in terms of both taste and non-taste epithelia (Fig. 5i).
In addition, LEF1 expression was decreased in K14-Cre; Mettl3fl/fl

mice (Fig. 5j).

DISCUSSION
In recent years, many studies have reported a role for METTL3 in
stem cell differentiation. METTL3-mediated m6A modification
regulates the development of the hematopoietic system, sperma-
togenesis, and other organs45,46. Our research group also found
that m6A modification mediated by METTL3 plays a key role in
regulating the fate of bone marrow mesenchymal stem cells28. In
this study, we uncovered an essential role for METTL3 in lingual
epithelial homeostasis. METTL3 was widely expressed in the
lingual epithelium. Deletion of Mettl3 led to severe defects in taste
bud development and abnormal epithelial thickening. In addition,
overexpression of Mettl3 promoted taste bud recovery from
radiation damage. Furthermore, the Wnt and Hippo signaling
pathways may be responsible for the striking phenotypic defects
in taste buds and keratinizing epithelium.
The Wnt/β-catenin pathway is required for taste bud develop-

ment and taste cell renewal15,47,48. Basal cells with high expression
of β-catenin can give rise to taste cells, whereas lower levels of
β-catenin expression promote keratinocyte fate1,15. Conditional
β-catenin knockout in progenitor cells causes a decrease in taste
cells48. Here, we showed that the deletion of Mettl3 resulted in the
downregulation of β-catenin and LEF1, which led to defects in
taste cell development.
However, a study demonstrated that conditional knockout of

Ctnnb1 in the epidermis led to FLP and FFP developmental defects
and thinner epithelium, which did not match our phenotype49. In
our study, β-catenin expression was extremely low after Mettl3
knockout, whereas the lingual epithelium was thickened. This
finding reminded us that different mechanisms regulate the non-
taste epithelium. METTL3-mediated m6A modification has been
identified as the most abundant mRNA modification that regulates
biological processes in mRNA27,50. Deletion of Mettl3 reduces the
m6A peaks of many mRNAs, which changes their fate choices. The
m6ARIP-seq analysis of the lingual epithelium showed that m6A
modifications were mainly enriched in the Hippo and Wnt
signaling pathways (Fig. 5c). LATS1 is a crucial kinase that
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Fig. 1 Deletion of Mettl3 in epidermal progenitors leads to taste bud defects. a A schematic of basal progenitor cell differentiation.
bMETTL3 staining in circumvallate papillae from mice pups at P4. c H&E staining of taste buds (red arrow) in circumvallate papillae of P4 mice.
d Staining and quantification of K8+ cells in circumvallate papillae (n= 8 biological replicates, P < 0.001 by unpaired two-tailed Student’s
t-test). e, f Expression of GNAT3 and SNAP25 and the indicated quantification (n= 8 biological replicates, P < 0.001 by unpaired two-tailed
Student’s t-test). g Detection of PGP9.5 in circumvallate papillae. Integrated density of PGP9.5 per trench profile (n= 8 biological replicates,
P < 0.001 by unpaired two-tailed Student’s t-test). Dotted lines in b, d, e, f, and g indicate basal lamina. Scale bar: 20 μmol·L−1
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Fig. 2 Deletion of Mettl3 leads to abnormal keratinization of lingual epithelium. a P4 K14-cre; Mettl3fl/fl mice displayed abnormal filiform papilla
and keratinized fragments (red arrow), assayed by SEM. Scale bar: 50 μmol·L−1. Deletion of Mettl3 caused the epithelium thickening, as
revealed by H&E staining. Scale bar: 20 μmol·L−1. b The detection of PAN-CK indicates epithelial thickening in mutant mice. Scale bar:
20 μmol·L−1. c Increased expression of keratinocyte markers K13 in K14-cre; Mettl3fl/fl mice. Scale bar: 20 μmol·L−1. d Decreased expression of
taste bud markers K8 and quantification of K8+ cells in K14-cre; Mettl3fl/fl fungiform papillae section (for each condition n= 8 biological
replicates, P < 0.001 by unpaired two-tailed Student’s t-test). Scale bar: 20 μmol·L−1. Dotted lines in a, b, and c indicate the basal lamina.
e Quantitative analysis of entire epithelium thickness, P < 0.001 by unpaired two-tailed Student’s t-test. f Quantitative analysis of PAN-CK+

epithelium thickness, P < 0.001 by unpaired two-tailed Student’s t-test. g Quantitative analysis of K13+ epithelium thickness, P < 0.001 by
unpaired two-tailed Student’s t-test)
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Fig. 3 Deletion of Mettl3 increases basal cell proliferation but decreases cell proliferation around taste buds. a Immunofluorescence for P63
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phosphorylates and inactivates the transcriptional coactivators
YAP and TAZ51–53. In our study, we found that loss of METTL3
reduced the m6A modification of LATS1 and further inhibited the
Hippo pathway, resulting in abnormal proliferation of keratinizing
epithelium.

Another area for investigation is how METTL3 regulates cellular
physiological functions and pathological progression through m6A
modification. A number of studies have elaborated on the role of
RNA m6A modifications in alternative splicing42,45. A recent study
also pointed out that m6A methylation regulates an array of
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chromosome-associated regulatory RNAs (carRNAs) to globally
tune chromatin state and gene transcription54. In some studies,
METTL3 and m6A modifications have been shown to enhance
mRNA stability to promote cell proliferation37,55. m6A has been
shown to promote mRNA translation in certain cell types56,57. In
our previous study, the deletion of Mettl3 slowed down the
translation of target proteins and further inhibited downstream
signaling28. m6A modifications are important and function
depending on the cellular context. Thus, we did not further
investigate mRNA metabolism in this study.
Dysgeusia is common and significant in patients after receiving

head and neck radiotherapy. A previous study found that radiation
interrupts the renewal of taste bud cells by inhibiting the
proliferation and differentiation of basal progenitor cells, resulting
in taste bud injury in mice8. In subsequent studies, they found that
activation of the Wnt/β-catenin signaling pathway promotes the
recovery of taste cells from radiation58. To determine the function
of METTL3 in radiation-induced gustation dysfunction, conditional
Mettl3 knock-in mice were exposed to radiation and analyzed for
taste bud maintenance and recovery. We found that over-
expression of Mettl3 promoted taste bud recovery from radiation
damage by increasing the proliferation of taste bud progenitor
cells. Interestingly, overexpression of Mettl3 did not protect taste
buds from radiation injury.
In conclusion, we elucidated that METTL3 was an essential

regulator of lingual epithelial homeostasis by regulating m6A
modification. Deletion of Mettl3 in the epidermis reduced the
expression of LATS1 and FZD7 and further blocked downstream
pathways, which led to taste bud defects and epithelial
thickening. In addition, overexpression of Mettl3 promoted taste
bud recovery from radiation damage by increasing the prolifera-
tion of taste bud progenitor cells.

MATERIALS AND METHODS
Mice
Mettl3fl/+ and Mettl3KI/+ mice were generated using the CRISPR-
Cas9 system, as described previously28. K14-Cre transgenic mice
were kindly provided by Dr. Demeng Chen from Sun Yat-sen
University (Guangzhou, China). Rosa26-tdTomato mice were
purchased from the Jackson Laboratory (Cat No:007905, Pennsyl-
vania, USA). Mettl3fl/fl and Mettl3KI/KI mice were crossed with K14-
Cre transgenic mice to generate K14-Cre; Mettl3fl/fl mice and K14-
Cre; Mettl3KI/KI mice. By mating Mettl3fl/fl mice with K14-Cre;
tdTomato mice, we obtained K14-Cre; tdTomato; Mettl3fl/fl mice.
All mice had a C57BL6/J background. The genotypes of transgenic
mice were identified as previously described28.
All mice were housed in specific pathogen-free (SPF) facilities

with a 12-hour light-dark illumination cycle. All studies performed
on mice were approved by the Subcommittee on Research and
Animal Care (SRAC) at Sichuan University.

Tissue preparation
After anesthesia with xylazine (10 mg·kg−1) and ketamine
(80 mg·kg−1), mice were perfused transcardially with normal
saline and 4% paraformaldehyde (PFA) in 0.1 mol·L−1 phosphate
buffer. Tongues were dissected from the mandible and fixed in 4%
PFA overnight at 4 °C. For frozen sections, tissues were transferred
to 20% sucrose in 0.1 mol·L−1 phosphate buffer overnight at 4 °C.
The samples were embedded in OCT compound (Sakura Finetek,
Torrance, USA) and cryosectioned to 12 µm. For paraffin sections,
the samples were dehydrated in graded ethanol and xylene and
then embedded in 5-µm-thick paraffin sections using a microtome
(Leica, RM2255, Wetzlar, German).

Histology and immunofluorescence
For hematoxylin and eosin (H&E) staining, the paraffin sections
were de-waxed using graded xylene solutions. Staining was

performed according to the manufacturer’s instructions (Solarbio
Science and Technology, Beijing, China).
For immunohistochemistry, paraffin sections were prepared by

the above procedures, microwaved in sodium citrate buffer, and
incubated with primary and secondary antibodies (Boster
Biological Technology, Wuhan, China). Finally, the sections were
developed using the AEC (3-amino-9-ethylcarbazole) Staining Kit
(Boster Biological Technology, Wuhan, China).
For immunofluorescence, cryosections were thawed at room

temperature (26 °C), rehydrated in 0.1 mol·L−1 phosphate-buffered
saline and microwaved in sodium citrate buffer. After incubation
with the primary antibody, the sections were incubated with Alexa
Fluor-labeled secondary antibodies (Jackson Laboratory,
Pennsylvania, USA).

Antibodies
The following antibodies were used: rabbit anti-METTL3 (1:200;
Abcam, Cat No: ab195352), rabbit anti-KRT8 (1:200; Abcam, Cat No:
ab53280), goat anti- gustducin (1:100; Aviva Systems Biology, Cat
No: OAEB00418), rabbit anti-PGP9.5 (1:500, Thermo Fisher, Cat No:
480012), rabbit anti-SNAP25 (1:100; Proteintech, Cat No: 14903-1-
AP), mouse anti- PAN-CK(1:100, Thermo Fisher, Cat No: MA1-
82041), mouse anti-KRT13 (1:200; Abcam, Cat No: ab16112), rabbit
anti-p63 (1:300; Abcam, Cat No: ab53039), mouse anti-LATS1
(1:100; Santa Cruz Biotechnology, Cat No: sc-398560), mouse anti-
YAP (1:200; Santa Cruz Biotechnology, Cat No: sc-101199), mouse
anti-TAZ (1:100; Santa Cruz, Cat No: sc-293183), rabbit anti-FZD7
(1:1 000 for western blot; Abcam, Cat No: ab64636), rabbit anti-
β-catenin (1:250; Proteintech, Cat No: 51067-2-AP), rabbit anti-
LEF1 (1:200; Abcam, Cat No: ab137872).

Irradiation
After anesthesia, the mice were covered with a custom-made lead
shield, leaving the head and neck exposed. The mice were
irradiated with 15 Gy in an X-ray irradiator (~1.25 Gy per min,
Accela, X-RAD 160). Irradiated mice were returned to their cages
for recovery.

TUNEL assay
To assess cell death, the TUNEL assay was performed using the In
Situ Cell Death Detection Kit TMR Red (Boster Biological
Technology, MK 1012-100, Wuhan, China). The sections were
digested with proteinase K for 5 min and then washed in tris-HCl
buffered saline three times. Sections were incubated with
labeling buffer for 2 h at 37 °C prior to TUNEL reactions. Labeling
buffer was prepared according to the manufacturer’s instructions.
After two washes, the sections were incubated in blocking
solution at room temperature for 30 min. The blocking solution
was then removed. The fluorescence probes were used to detect
cell death. Sections were counterstained with DAPI and imaged
using laser scanning confocal microscopy (LSCM; Olympus
FV3000, Tokyo, Japan).

EdU labeling
For EdU labeling, mice were injected with 25 µg of EdU per gram
of body weight and euthanized after 1 h. Tongues were fixed
overnight in 4% PFA and embedded in paraffin. After de-waxing,
paraffin sections were incubated with the Click-iT EdU Imaging Kit
(Invitrogen, CA, USA).

SEM
Tongue samples were fixed in 4% PFA overnight and dehydrated
in a graded series of ethanol concentrations. Dehydrated samples
were then incubated in 50% hexamethyldisilazane (Sigma-Aldrich,
St. Louis, USA) for 20 min, followed by three solvent changes to
100% hexamethyldisilazane. After air-drying overnight, the
samples were sputter-coated with gold-palladium. Specimens
were examined and photographed using a SEM49.
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Western blot
The lingual epithelium was collected from four mice in each group
following previously described methods13. The tissues were lysed
in RIPA buffer (Pierce, Rockford, IL, USA). The sample was then
mixed with sample buffer containing 2% SDS and 1%
2-mercaptoethanol and heated at 95 °C for 5 min. The samples
were separated on 10% SDS–polyacrylamide gels and transferred
to polyvinylidene fluoride (PVDF) membranes using a semi-dry
transfer apparatus (Bio-Rad, CA, USA)59. Incubation with rabbit
anti-METTL3 (1:2 000; Abcam, Cat No: ab195352), rabbit anti-FZD7
(1:1 000; Abcam, Cat No: ab64636), rabbit anti-α-tubulin (1:2 000;
Proteintech, Cat No: 11224-1-AP) at 4 °C was conducted overnight,
followed by incubation with a horseradish peroxidase (HRP)-
conjugated secondary antibody (1:5 000, Cell Signaling Technol-
ogy, Cat No:7074). After washing, the blots were analyzed with
Immobilon Reagents (Millipore, Burlington, USA) using a gel
imaging system (Bio-Rad, CA, USA).

m6A MeRIP-Seq (m6A RNA immunoprecipitation sequencing)
Total RNA from the lingual epithelium was isolated using TRIzol
reagent13. mRNA was enriched from total RNA using Immobilon
Reagents (Millipore, Burlington, USA) and gel imaging systems
(Bio-Rad, CA, USA). The mRNA was then fragmented with ZnCl2
buffer. Immunoprecipitation was performed using an anti-m6A
antibody (1:100; Synaptic Systems, Cat No: 202003). Immunopre-
cipitated RNA was analyzed by high-throughput sequencing or RT-
qPCR, as previously described28,60.

Statistical analysis
All data are presented as means ± standard error. For comparison
between two independent groups, statistical differences were
analyzed using unpaired two-tailed Student’s t-test. Statistical
significance was set at p < 0.05.
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