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Isolate sets partition benefits 
community detection of parallel 
Louvain method
Hang Qie, Shijie Li*, Yong Dou, Jinwei Xu, Yunsheng Xiong & Zikai Gao

Community detection is a vital task in many fields, such as social networks, and financial analysis, 
to name a few. The Louvain method, the main workhorse of community detection, is a popular 
heuristic method based on modularity. But it is difficult for the sequential Louvain method to deal with 
large-scale graphs. In order to overcome the drawback, researchers have proposed several parallel 
Louvain methods (Parallel Louvain Method, PLM), which suffer two challenges: (1) latency in the 
information synchronization and (2) communities swap. To tackle these two challenges, we propose 
a graph partition algorithm for the parallel Louvain method. Different from existing graph partition 
algorithms, our graph partition algorithm divides the graph into subgraphs called isolate sets, in which 
vertices are relatively decoupled from others, and the PLM computes and synchronizes information 
without delay and communities swap. We first describe concepts and properties of isolate sets. In the 
second place, we propose an algorithm to divide the graph into isolate sets, which enjoys the same 
computation complexity as the breadth-first search. Finally, we propose the isolate-set-based parallel 
Louvain method, which calculates and updates vertices information without latency and communities 
swap. We implement our method with OpenMP on an 8-cores PC. Experiments on 18 graphs show that 
our parallel method achieves a maximum 4.62 × speedup compared with the sequential method, and 
outputs higher modularity on 14 graphs.

Nowadays, Web technologies, which are bases of various tasks including social networks, financial analyses and 
so on, have greatly facilitated scientific research and folks’ daily life1–6.

An emerging difficulty in Web-technology-based tasks lies in dealing with graph network data, undoubtedly, 
which are much more complicated than traditional structured data such as lists and matrices.

Community detection, whose aim is to cluster vertices in the graph into communities, is one of the founda-
tional graph algorithms7–9.

According to the density of vertices in the graph, community detection divides closely connected vertices 
into the same communities.

An interesting finding is that the community detection algorithm is an optimization algorithm with “com-
munity quality”as the objective function.

According to different objective functions, many kinds of community detection methods are proposed 10–12, 
among which the Louvain method is a heuristic method based on modularity.

Louvain method was proposed by Blondel et al. of Louvain University in 200813.
This method has become increasingly popular owing to its ability to detect high modularity community 

partitions in a fast and memory efficient manner14.
And it has been widely utilized in plenty of applications due to its rapid convergence properties, high modu-

larity, and hierarchical partitioning15.
However, with the growth of networks sizes, the scales of graphs are consequently increasing, which means 

that it may be highly time-consuming for the Louvain method; therefore, many researchers have proposed 
parallel Louvain algorithms16,17.

Every coin has two sides: the introduction of parallelization indeed accelerates Louvain but also brings 
implementation troubles.

Generally speaking, two major difficulties exist in PLMs: one is the latency in the synchronization of vertices 
information, and the other is the vertices swap.

To be specific, the first one is the latency in the synchronization of vertices information in the process of 
parallel computing.
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In the serial Louvain method, all vertices in the graph are accessed sequentially, and the calculation and 
synchronization of vertices are carried out in sequence.

The calculation of each vertex is based on the latest information of the formerly calculated vertex.
In the PLMs, the parallel computing vertices have waiting time for other related vertices to synchronize 

information.
This latency would delay the convergence of PLMs, and reduce the modularities of graphs;
As for the second difficulty, when two different vertices move to each other’s community after calculation, 

the vertices swap occurs18–24.
After the vertices swap, few mergers between the vertex happens, and the community structure remains.
The exchanged vertices only affect the community labels without improving the modularity of the community.
Therefore, the vertices swap in the computing process will also hurt the convergence of the method.
Most existing PLMs deal with the first difficulty in two ways: one is synchronizing information by compare 

and swap (CAS) vertices information in hash tables15, the other one is using “ghost”vertices (or virtual vertices) 
between subgraphs in different process25. These two existing solutions do not remove the latency entirely and 
have additional calculation and memory overheads.

And these existing PLMs deal with the second problem by labeling scheme, which reduces the modularity 
of PLMs.

From the existing PLMs, we find that the above two major difficulties of latency of synchronization and 
vertices swap are related to the topology of the graph.

In the PLMs, the difficulty of vertices swap is related to the parallel computing of adjacent vertices.
What is more, the latency of information synchronization is not only caused by parallel computing of the 

adjacent vertices, but also by the vertices with common adjacent vertices.
In order to improve the efficiency of parallel computing without additional overhead, the parallel computing 

vertices are expected to decouple from their adjacent vertices and the vertices with common adjacent vertices.
In order to solve the bottlenecks of synchronization latency and vertex swap in the parallelization of Louvain 

method, we propose a novel graph partition algorithm of isolate sets partition algorithm, which divides adjacent 
vertices and vertices with common adjacent vertices into a series of subgraphs.

Therefore, the vertices in an isolate set are relatively independent in parallel computing, and cannot swap 
with each other.

Then we propose a PLM based on the isolate sets. It should be noted that our method requires undirected 
graphs.

We divide the graph network into subgraphs called isolate sets. Using properties of isolate sets, vertices in 
the same isolate set can be computed and synchronized without latency and without additional overheads. And 
vertices in the same isolate set are unable to swap communities naturally. Our methods are implemented on 
an 8-cores personal, and extensive experiments show that the proposed parallel method achieves a speedup of 
4.62× compared to the sequential Louvain method, and meanwhile our method improves the modularity of 
communities in most cases.

The main contributions of this paper can be summarized as follows:

•	 The definition and certain properties of the isolate set are proposed. Especially the vertices in isolate sets have 
properties of relative independence, which is the base of our method.

•	 An algorithm for dividing graphs into isolate sets is given, and its computation complexity is equivalent to 
breadth-first search. Our partition algorithm might be not only used in parallel Louvain methods but also 
implemented on other parallel graph algorithms.

•	 Isolate-set-based parallel Louvain method (IPLM) is proposed. Experiments show our method is scalable 
with higher modularity than existing PLMs on the shared memory architecture.

Results
This section employs 18 frequently used graphs. The experiment mainly shows the modularity and speedup of 
our method. The experimental results on popular datasets and analyses are reported as below.

Experimental environment.  The hardware platform used in the experiment is a single-node personal 
PC with i9-9900K and 32G memory. The experiment machine runs the windows server 2019 standard version 
operation system. Experimental programs all use the cl compiler of Visual Studio 2017 without optimized com-
pilation instructions. Every graph dataset is tested 3 times, and the average is used.

We test two parallel Louvain methods including isolate-set-based PLM and hash-table-based PLM. The 
sequential method for the test is the sequential Louvain method of C++ program on the personal webpage of 
Louvain method’s author Vincent D.Blondel13. The benchmark of the test is the parallel Louvain methods adapted 
from the parallel Louvain method based on hash tables15.

Datasets.  The graph datasets are from the KONECT project of the University of Koblenz’Landau26, the 
SNAP project of Stanford University27, and the datasets of the laboratory for Web Algorithmics28. The datasets 
details are as follows Table 1.

Comparison with PLM of HashTable method.  In the aspect of information synchronization and com-
munities swap, the benchmark is hash-table-based PLM. We compare with the existing research15 that uses hash 
tables to organize vertices and edges and synchronize information. However, the method of Que et al.15 worked 
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on the Power7-based supercomputer Blue Gene/Q (a Power7-IH system and a massively parallel machine). 
Huge distinctions in the processor architecture and operation system exist between Blue Gene/Q and x86 per-
sonal computer. Therefore, we implement both their hash-table-based PLM and our isolate-set-based PLM 
method in the x86 environment. And we compare the speedup on the same graph datasets of LiveJournal and 
Wikipedia. The experiment results are shown in the Figs. 1 and 2.

Table 1.   Details of datasets.

Dataset Vetices Edges Average degree

Gowalla-edges 196,591 950,327 9.6681

Amazon0302 262,111 899,792 6.8658

com-dblp.ungraph 317,081 1,049,867 6.6221

amazon.ungraph 334,863 925,872 5.5299

Amazon0312 400,727 2,349,869 11.7280

Amazon0601 403,394 2,443,408 12.1142

Amazon0505 410,236 2,439,437 11.8928

web-Google 875,713 4,322,051 9.8709

com-youtube.ungraph 1,134,890 2,987,624 5.2650

soc-pokec-relationships 1,632,803 22,301,964 27.3174

as-skitter 1,696,415 11,095,298 13.0808

com-orkut.ungraph 3,072,441 117,185,083 76.2814

cit-Patents 3,774,768 16,518,947 8.7523

com-lj.ungraph 3,997,962 34,681,189 17.3494

enwiki-2013 4,206,785 101,355,853 48.1868

soc-LiveJournal1 4,847,571 43,110,428 17.7864

orkut-groupmemberships 8,730,857 327,036,519 74.9151

wikipedia-link-en 12,082,987 375,535,932 62.1595

Figure 1.   Speedup on dataset LiveJournal. The speedup of our method is higher than hash-table-based method 
with 8 threads.

Figure 2.   Speedup on dataset wikipedia. Our method has an obviously higher speedup than the hash-table-
based method.
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Our method has better performance on the dataset Wikipedia. As shown in Table 2, in the dataset wikipedia, 
the graph is covered by 1327 isolate sets. While 90% of vertices are included in the first 13 isolate sets (0.98% of 
all isolate sets), the remaining 1314 isolate sets contain only 10% vertices of the graph. By contrast, the dataset 
LiveJournal is covered by 450 isolate sets and 90% of vertices are included in the first 17 isolate sets (3.78% of all 
isolate sets). Obviously, vertices in LiveJournal are connected stronger, which affects the efficiency of our method.

On the dataset LiveJournal, our method has a little lower speedup than hash-table-based method with 2 
threads, because this graph has less edges (34,681,189) than others. On this graph, the hash-table-based method 
has less waiting time for information synchronization, while the isolate-set-based method needs more time on 
the partitioning graph. However, the increasing threads reduce more computation time on our method than the 
hash-table-based one. And the speedup of our method is higher than hash-table-based method with 8 threads.

On the dataset Wikipedia, our isolate-set-based method has an obviously higher speedup than the existing 
method. Because the graph dataset Wikipedia has a large number of edges of 101,355,853. Hash-table-based 
method requires more waiting time to synchronize and update information. However, the latency in the infor-
mation synchronization is reduced in our method, which enlarges the speedup of our method dramatically.

As shown in the Figs. 3 and 4, in our method, the time occupation of isolate sets partition is about 3.3% on 
LiveJournal and 6.0% on Wikipedia, respectively. Our partition algorithm costs less time on partitioning and 
consequently reduces much time on the information synchronization.

In the perspective of the community detection modularity, our method deals with the communities swap by 
properties of isolate sets. Restriction vanishes on the movement of vertices in our method, which indicates that 
the method has more searching spaces. Therefore, our method outputs higher modularity than other methods 
such as the sequential Louvain method and hash-table-based PLMs. The comparisons of the original Louvain 
method, hash-table-based method, and our method are shown in the Fig. 5.

Experiments on extended graph datasets.  Speedup experiments.  The improvement on the speedup 
of our method on extended graph datasets is shown in the Fig. 6.

We implement hash-table-based method and our isolate-set-based method on 18 graph datasets(including 
the dataset LiveJournal and Wikipedia). These datasets have vertices from 196,591 to 12,082,987, and edges 
from 899,792 to 375,535,932. Our method presents a higher speedup than hash-table-based method on 17 graph 
datasets. The exception is the dataset web-Google, on which our method has 2.14× speedup and is lower than the 
hash-table-based method of 2.66× . On the dataset Wikipedia-link-en, our method obtains 4.62× speedup with 8 
threads (the best case). In contrast, the speedup is 1.22× with hash-table-based method. What’s more, the average 
speedup of our method on these 18 datasets is 2.69× , which is higher than hash-table-based method of 1.78×.

Experiments of the modularity.  The final community detection performance of our method on extended graph 
datasets is shown in Table 3.

As shown in Table 3, our method obtains the highest modularity on the 14 of total of 18 datasets. The sequen-
tial Louvain method obtains the highest modularity on 2 datasets. On the datasets amazon.ungraph and web-
Google, the modularity of isolate-set-based method is lower than the sequential method by 0.01%. Among the 

Table 2.   Long tail of isolate sets. 1 Num of isolate sets covering 80% vertices. 2Num of isolate sets covering 90% 
vertices.

Dataset Vetices Edges Average degree Num of isolate sets Num of isolate sets1 Num of isolate sets2

wikipedia 12,082,987 375,535,932 62.1595 1327 3 13

com-lj 3,997,962 34,681,189 17.3494 450 9 17

Figure 3.   Time breakdown on dataset LiveJournal. The time occupation of isolate sets partition is about 3.3% 
with 17 iterations, and the time of information synchronization is about 55.2%.
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Figure 4.   Time breakdown on dataset wikipedia. The time occupation of isolate sets partition is about 6.0% 
with 13 iterations, and and the time of information synchronization is about 41.2%.

Figure 5.   Modularity comparison.

Figure 6.   Speedup on extended graph datasets
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datasets, com-dblp, amazon, and com-orkut have the ground-truths. We compare the NMI of the three methods 
on these datasets. The results show that there is a slight difference between these three methods.

However, on the datesets as-skitter and com-lj.ungraph, our methods’ improvements are respectively 4.60% 
and 4.76% than the sequential method. What’s more, our method can improve the quality of community detec-
tion in most cases.

Discussion
To further accelerate Louvain method of community detection method, we propose the definition of isolate sets 
in a graph, and prove several useful properties of the isolate sets.

Additionally, a graph partition algorithm is proposed, which partitions vertices of a graph into a series of 
isolate sets.

We propose a parallel Louvain method based on the isolate set partition algorithm. The isolate-set-based 
PLM takes advantage of the properties of the isolate set to synchronize and update information efficiently in 
parallel computing without latency.

After the first stage of the Louvain method, two vertices belonging to different communities join the com-
munities that the other vertex is in, which is called community swap.

In the sequential Louvain method, only one vertex is computed and moved at a time. By contrast, several 
vertices are moved at the same time in PLMs. Existing studies solved the problem by the minimum label heuristic 
method, which restricts the direction of movement of vertices and decreases the search space. In our method, 
because of the properties of isolate sets, the vertices and their neighbors fail to fall in the same isolate set. A 
vertex and its neighbor cannot be moved at the same time. Therefore, the community swap problem is avoided.

Our method requires no extra computation and memory overhead and increases the searching spaces of the 
method and improves the quality of community detection.

The limitation of our method is that partitioning isolate sets needs extra time. And we will improve the 
efficiency of the partition algorithm.

To verify the efficiency of our method, we use 18 graph datasets and conduct comparisons with state-of-the-
art methods. The experiments results show that our method obtains 4.62 × speedup on the personal computer 
with 8 threads and improves the modularity of communities detection in most cases. However, our method 
degrades a little on a small graph, because the partition algorithm occupies a constant time.

Theoretically, the method depends on the statistical mode of degrees of vertices in the graph, which means 
the majority of vertices are connected strongly or weakly. When most vertices are connected strongly, the “tail” 
of the distribution of isolate sets is long, and there are plenty of isolate sets containing few vertices.

In the future, we will improve the efficiency of our method algorithm and implement our method on multicore 
architecture for community detection on large-scale graphs.

Methods
We observe that the two challenges mentioned in the last section are related to the topology of the graphs.

The parallel computing vertices are expected to be relatively independent of each other, and the relatively 
independent vertices reduce the latency in synchronization and thus avoid communities swap.

Table 3.   Modularity of extended graph datasets. Significant values are in bold.

Datasets

Modularity (NMI)

Sequential Louvain method Hash-table-based method Isolate-set-based method

Amazon0302 0.8998 0.8969 0.9017

Amazon0312 0.8720 0.8677 0.8759

Amazon0505 0.8664 0.8713 0.8765

Amazon0601 0.8691 0.8721 0.8776

as-skitter 0.8132 0.8312 0.8506

cit-Patents 0.8114 0.8102 0.8136

amazon.ungraph 0.9262 (0.1240) 0.9248 (0.1182) 0.9261 (0.1240)

com-dblp.ungraph 0.8203 (0.1345) 0.8155 (0.1301) 0.8211 (0.1345)

com-lj.ungraph 0.7163 0.7204 0.7504

com-orkut.ungraph 0.6614 (0.0633) 0.6987 (0.0645) 0.6567 (0.0627)

com-youtube.ungraph 0.7103 0.6909 0.7189

Gowalla-edges 0.6889 0.6839 0.7115

soc-LiveJournal1 0.7284 0.7287 0.7558

soc-pokec-relationships 0.6895 0.7122 0.7166

web-Google 0.9777 0.9768 0.9776

orkut-groupmemberships 0.3071 0.3042 0.3138

enwiki-2013 0.6534 0.6304 0.6605

wikipedia-link-en 0.3618 0.3817 0.3706
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Therefore, we propose an isolate sets partition algorithm, which divides the graph to isolate sets.
The vertices in the same isolate set are relatively independent, which means that they have no common 

adjacent vertices. And our partition method has a computation complexity equivalently to the breadth-first 
search (BFS).

Definition and properties of isolate sets.  In order to help to propose and describe our isolate partition 
algorithm, we give several definitions and lemmas. We define the dependency set, isolate set29–32, and maximum 
isolate set. Based on the definitions, we prove that the maximum isolate set is non-unique and that an undirected 
graph can be covered by a series of maximum isolate sets.

Definition 1  Given an undirected graph network G(V, E), ∀v ∈ G , N+(v) = {v} ∪ N(v) . The set N+ is defined 
as the dependency set of vertex v.

In a graph G(V, E), the union of a vertex v and the neighborhoods of v( N(v)) is defined as the dependency 
set of vertex v. Obviously, the dependency set of vertex v consists of vertex v and all adjacent vertices of vertex v.

Definition 2  In a graph network G(V,  E), s ⊆ V  is called an isolate set, if ∀vi , vj ∈ s and vi  = vj , 
N+(vi) ∩ N+

(

vj
)

= ∅.

In a graph network G(V, E), the set s is a subset of V. Vertices vi and vj are arbitrary two vertices in the set s, 
and sets N+(vi) and N+

(

vj
)

 are the dependency sets of vi and vj . If the intersection of these two dependency sets 
is empty set, the subset s is called an isolate set of graph G.

According to Definition 2, intersections of the dependency sets of vertices in an isolate set are empty.
Sometimes, the isolate set is similar to the independent set, in which the vertices have no common edges. 

What distinguishes is that two arbitrary vertices in an isolate set have no common adjacent vertices. Especially, 
the sets of the single vertex are isolate sets.

Definition 3  Given an undirected graph network G(V, E), s is an isolate set of G. ∀vj ∈ G − s , ∃vi ∈ s , 
N+(vi) ∩ N+

(

vj
)

�= ∅ , the isolate set s is defined as an maximum isolate set of graph G.

In a graph G(V, E), s is an isolate set of G. Two arbitrary vertices vj ∈ G − s and the vertex vi ∈ s exist, which 
cannot make the intersection of these two dependency sets N+(vi) and N+

(

vj
)

 empty set. The isolate set s is 
an maximum isolate set of the graph G. That is to say, there is no vertex in set G − s that can be divided to the 
isolate set s.

Lemma 1  The maximum isolate set is non-unique. Except for the graph G(V, E) including one vertex, the maximum 
isolate set of G is unique, and the isolate set of G is V.

Proof 1  Suppose there is a graph G including 2 vertices at least, and the isolate set s is the only maximum isolate 
set of G. There is an arbitrary vertex v located in the complementary set of graph G ( ∀v ∈ G − s ). The vertex v 
forms a set s∗ containing itself ( s∗ = {v} ). According to the Definition 2, the set s∗ is another isolate set of graph 
G. Hence, if the set s∗ is a maximum isolate set, it conflicts with the former assumption that the maximum isolate 
set is unique. If the set s∗ is not a maximum isolate set, there must be a maximum isolate set including the set s∗ , 
which is different from the set s and also conflicts with the assumption. 	�  �

Lemma 2  Given an undirected graph G(V, E), ∃si ⊂ G ( si is isolate), 
⋃n

i si = G(V ,E).

Proof 2  Given an undirected graph G(V, E), we can find a series of isolate sets {si} . The graph G can be covered 
with union of these isolate sets.

Suppose the graph G cannot be covered with the union of isolate sets 
⋃n

i si , and a vertex v0 ∈ G −
⋃n

i si.
According to the Lemma 1, we divide the vertex into a new isolate set sn+1 = {v0} . The union of isolate set 

⋃n+1
i si covers the graph G, which conflicts with the former assumption. Therefore, we can find a series of isolate 

sets si to cover the graph G. 	�  �

Theorem 1  For ∀vi ∈ G(V ,E) and ∀vj ∈ N+(vi) , there exists a set Bi = N+(vi) ∪
⋃

j N
+(vj) , ∀vk ∈ G − Bi , where 

vi and vk are in the same isolate set.

In an undirected graph G(V, E), an arbitrary vertex vi and the neighborhood vertices vj are included in the 
set N+(vi) . The adjacent vertices of vj are included in the set N+

(

vj
)

 . The union of set N+(vi) and sets N+
(

vj
)

 
admits set Bi . And an arbitrary vertex vk in the complementary set of G ( vk ∈ G − Bi ) is in the same isolate set 
as the vertex vi.

Proof 3  In an undirected graph G(V, E), vertex vi is an arbitrary vertex in isolate set si . According to the Defini-
tion 2, vertices vj ( vj ∈ N+(vi) , the neighborhood vertices of vi ) are not in the isolate set si . And the adjacent 
vertices of vj (vertices in N+(vj) ) are not in the isolate set si , either due to that these vertices and the vertex vi have 
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common adjacent vertices of vj . The set Bi is union of the set N+(vi) and the set N+
(

vj
)

 . Then, all the vertices 
are in the set Bi , in which the vertices either are adjacent vertices of vi or have common adjacent vertices with vi . 
Therefore, an arbitrary vertex in complementary set of G ( G − Bi ) is in the same isolate set si with the vertex vi . 	
� �

The Lemmas 1 and 2 indicate that the maximum isolate sets can be found by the graph search algorithm. And 
we propose an algorithm for partitioning the graph into maximum isolate sets.

Isolate sets partition algorithm.  According to the definition of isolate sets, in an isolate set the neigh-
borhood of a vertex are totally different from the neighborhood of another vertex, which means that these ver-
tices have been decoupled. The decoupling vertices can be parallelly computed without waiting for information 
synchronization, and the vertices cannot swap with each other in the movement. Therefore, the latency in the 
information synchronization is reduced without computing and memory overhead. At the same time, the com-
munities swap is avoided.

According to the Lemma 2, an undirected graph can be divided into several isolate sets. The union of these 
isolate sets contains the whole vertices. In the first stage of the Louvain method, isolate sets are computed serially, 
and then vertices in the same isolate set are calculated in parallel to accelerate the Louvain method. However, 
the intersection of these isolate sets may not be empty. Such a fact means these isolate sets may share the same 
vertices, which are computed more than one time, unreasonably.

This part proposes a novel graph partition algorithm based on breadth-first search. Our algorithm enjoys 
the advantage of the avoidance of the repeat computation for the intersections. The algorithm divides the whole 
vertices of an undirected graph to several isolate sets. The union of these isolate sets covers vertices V of the graph 
G, and the intersections of these sets are empty, that is, we find s1, s2, s3, · · · , sn ⊂ G(V ,E) such that 

⋃

i si = V  
and 

⋂

i si = ∅ . The pseudocodes are displayed in Algorithm 1. 

Our algorithm contains 3 steps:
In the first step, the set N is initialized with vertices set V. In other words, the set N includes all vertices in 

the graph.
In the second step, we search an isolate set si from the set N.
Firstly, a set N ′ is initialized with the set N.
Secondly, the two-level breadth-first search is implemented from an arbitrary vertex vj in the set N ′ . After 

searching, these searched vertices form the set B. That is to say, the set B is the union of adjacent vertices of vj 
and the neighbor vertices of adjacent vertices of vj.

Thirdly, the vertex vj is moved into the isolate set si , and the other vertices in the set B are moved out of the 
set N ′ . These three processes are implemented repeatedly until the set N ′ is an empty set.

When the set N ′ becomes an empty set, the isolate set si is found out.
In the third step, the vertices in the isolate sets are moved out of the set N. And the same operation as step 2 

and step 3 is implemented alternatively until the set N becomes an empty set. When the set N is empty, we get 
the desired non-intersected isolate sets whose union keeps all vertices.

What surprised is that our algorithm enjoys quite low computation complexity from the experimental obser-
vation. Although it is quite hard to prove such a phenomenon rigorously, several explanations may help the 
understanding: Let m be number of the edges and n be the number of vertices, respectively. In the process of 
generating an isolate set, all the edges in the graph are traversed by breadth-first search only once. And the ver-
tices of the graph are traversed by breadth-first search once. The computation complexity of this part is equal to 
the breadth-first search, which is O(n+m) . Then the traversed vertices are moved once, which has the computa-
tion complexity of O(n). The computation complexity of generating an isolate set is O(2n+m) . These steps are 
implemented iteratively, the total computation complexity of our partition algorithm is O(k(2n+m)) , where k is 
the iteration number of the algorithm. In the experiments, we found that k is always small. Therefore, the isolate 
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set partition algorithm does not degrade to the breadth-first search algorithm too much in the perspective of 
computation complexity. How to bound k theoretically will be left as future work.

Isolate‑set‑based parallel louvain method.  According to the timing of information synchronization, 
prior works on synchronization latency indicate two types: non-real-time synchronization and real-time syn-
chronization.

The non-real-time synchronization method utilizes the former information to implement the calculation and 
does not synchronize vertices information immediately after vertices calculation.

Many PLMs with a non-real-time method have been proposed, among which different synchronization 
opportunities are selected. Therefore, the latencies of these methods are different.

In some studies, the vertices information is updated at the end of stage 1 of the Louvain method, and the 
latency is the entire iteration time.

The speedup of these methods is from 3 to 6 × based on OpenMP14 and 12× based on GPUs33.
To reduce the delay of synchronization, in some studies25,34–38, the graph is partitioned into subgraphs. During 

an iteration, information is updated when a subgraph has finished computing.
The real-time synchronization method was proposed by Que et al.15. They utilize thread-safe hash tables to 

manage the vertices’information.
Parallel computing vertices in different threads read and update information in the hash table in parallel 

by Compare and Swap (CAS) operations, which guarantees the updated information is accessed to the other 
vertices (threads).

This work achieves a speedup of 49.8× in the“Giant Blue” supercomputer.
Naim et al.39 use two hash tables to manage the vertices information and communities information, which 

is different from the previous studies.
The authors implement their method on GPUs, and their work ultimately reaches the highest speedup of 

270× on several medium graphs.
However, the hash tables have massive storage overhead and computation overhead, which is unaffordable 

for personal computers.
Moreover, the hash-table-based methods cannot eliminate the latency entirely, and it is difficult for hash-

table-based methods to deal with large complex graphs on personal computers, which usually have less memory 
than supercomputers.

Information synchronization and vertices movement.  In the first stage of Louvain method, every vertex is 
traversed. When traversed, the vertex utilizes information about itself and its neighbors for the calculation to 
update. Unfortunately, latency always exists in the updating, which limits the power of parallelism. Among the 
current PLMs, one popular methodology uses the hash tables, in which vertices’ information is organized by 
hash tables. When different vertices utilize and update the information of the same vertex at the same time, 
the CAS operation (compare-and-swap is an atomic instruction) guarantees the correct operation sequence of 
writing first and then reading. The computed information can be used to update other vertices. In this way, the 
vertices are computed parallelly.

Nevertheless, two bottlenecks trouble hash tables synchronizing information. The first one is that hash tables 
need additional memory and computation overhead. On a graph with hundreds of millions of vertices, methods 
based on hash tables require huge memory, which may overdrive personal computers’ memory. The second one 
is that the likelihood of collision increases. When several parallel computing vertices modify the information of 
the same location, a significant waiting time is needed for completing these operations.

What’s more, state-of-the-art PLMs deal with the communities swap by minimum label heuristic method. 
The minimum label heuristic method labels communities and utilize the notation to guide vertices movements, 
which restricts vertices movements and decreases the modularity of community detection.

To this end, we propose a parallel Louvain method based on isolate sets. Vertices in the same isolate set are 
decoupled. In our method, the parallel computing vertices are in the same isolate set. That is to say, these vertices 
have completely different neighbors. The parallel computing vertices in an isolate set can synchronize information 
in time without memory and computation overhead. In the first stage of the Louvain method, the computation 
of these vertices utilize information of their neighbor vertices without waiting for other vertices synchronization. 
After computation, these vertices update their information, which has no influence on other parallel computing 
vertices. Because of the properties of isolate sets, the vertices and their neighbors fail to fall in the same isolate 
set. A vertex and its neighbor cannot be moved at the same time. Therefore, the communities swap is avoided.

An example is shown in the Fig. 7. Vertices 3, 6, and 9 belong to isolate set s1 , which are computed parallelly. 
The computation of vertex 3 requires the information of vertices 7 and 8. The computation of vertex 6 requires 
the information of vertices 1, 2, and 5. The computation of vertex 9 requires the information of vertex 4. The 
parallel computations of vertices 3, 6, and 9 are independent of each other. After computing, these three vertices 
synchronize information to their neighbor without waiting, because the neighbor vertices are occupied by these 
three vertices exclusively. And the movement target of vertex 3, 6, and 9 is one of its neighbor vertices, which are 
not in the parallel computing vertices. The communities swap is avoided.

We implement our method in OpenMP and C++ program language. Due to the shared memory programming 
of OpenMP, vertices in an isolate set are forked to different threads, and these threads carry out calculations and 
information synchronization independently. 
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Implementation of the algorithm.  From the definition, traversing these isolate sets is equal to traversing all the 
vertices. The existing PLMs traverse the vertices in order of their index. Different from the existing Louvain 
methods, our method traverses the vertices in order of the isolate sets. Our method computes vertices in the 
same isolate set parallelly. During the parallel computing of vertices, the information is synchronized in time, 
and the vertices are moved parallelly. In this way, the method utilizes the property of isolate sets to automatically 
synchronize information in an isolate set and update community information without relying on other informa-
tion synchronization methods, such as hash tables. Therefore, all vertices in the graph are computed without 
latency and communities swap in the first stage of Louvain method.

The isolate-set-based parallel Louvain method involves three stages and the pseudocodes are displayed in 
Algorithm 1:

The first step is to partition the graph into a series of isolate sets. These isolate sets can cover all the vertices 
in the graph, and the intersection of these isolate sets is an empty set.

The second step is to iteratively traverse these isolate sets and calculate the community information of the 
vertices. The first time of the second stage of the method being executed, the communities’ information of all 
vertices needs to be initialized, and each vertex in the graph is divided into a different community. After the 
initialization is completed, these isolate sets are traversed in turn. When the isolate set is traversed, the vertices 
in this isolate set are computed parallelly. After computation, these vertices are moved in parallel to the com-
munities of their largest �Q , and synchronize their information. Then this stage is implemented iteratively until 
the modularity of the entire graph no longer changes.

The third step is to restructure the graph, which merge vertices belonging to the same community into a new 
vertex, according to the updated vertices information. After the second stage of calculation, the vertices in the 
graph are moved to the neighbor vertices of the largest increase in modularity. And the communities information 
of vertices has been changed. The vertices belonging to the same community are merged into a new vertex, and 
the edges between these vertices are ignored. The edges between different communities are reserved.

These three steps are applied alternatively on the reconstructed graph until the modularity no longer changes 
or the change of modularity is less than a certain threshold. The threshold tthreshold is a small quantity, which 
improves the robustness of the algorithm and ensures that the algorithm ends properly. What’s more, the thresh-
old avoids the extreme cases where all communities are merged into one community. And the final community 
detection result is obtained.

Figure 7.   Isolate set. One of the isolate sets in the example is set s, which contains vertices v3 , v6 and v9 . The sets 
N

+
v3

 , N+
v6

 and N+
v9

 are dependency sets of vertices v3 , v6 and v9.
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Data availability
The datasets analysed during the current study are available in the SNAP repository, https://snap.stanford.edu/
data/index.html.
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