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OBJECTIVE

To examine the effects of sleep traits on glycated hemoglobin (HbA1c).

RESEARCH DESIGN AND METHODS

This study triangulated evidence across multivariable regression (MVR) and one-
(1SMR) and two-sample Mendelian randomization (2SMR) including sensitivity
analyses on the effects of five self-reported sleep traits (i.e., insomnia symptoms
[difficulty initiating or maintaining sleep], sleep duration, daytime sleepiness,
napping, and chronotype) on HbA1c (in SD units) in adults of European ancestry
from the UK Biobank (for MVR and 1SMR analyses) (n = 336,999; mean [SD] age
57 [8] years; 54% female) and in the genome-wide association studies from the
Meta-Analyses of Glucose and Insulin-Related Traits Consortium (MAGIC) (for
2SMR analysis) (n = 46,368; 53 [11] years; 52% female).

RESULTS

Across MVR, 1SMR, 2SMR, and their sensitivity analyses, we found a higher fre-
quency of insomnia symptoms (usually vs. sometimes or rarely/never) was asso-
ciated with higher HbA1c (MVR 0.05 SD units [95% CI 0.04–0.06]; 1SMR 0.52
[0.42–0.63]; 2SMR 0.24 [0.11–0.36]). Associations remained, but point estimates
were somewhat attenuated after excluding participants with diabetes. For other
sleep traits, there was less consistency across methods, with some but not all
providing evidence of an effect.

CONCLUSIONS

Our results suggest that frequent insomnia symptoms cause higher HbA1c levels
and, by implication, that insomnia has a causal role in type 2 diabetes. These find-
ings could have important implications for developing and evaluating strategies
that improve sleep habits to reduce hyperglycemia and prevent diabetes.

Experimental studies have shown that reducing sleep duration or interrupting sleep
results in increased insulin resistance and higher plasma glucose levels (1). System-
atic reviews and meta-analyses of prospective studies (2) have consistently found
that both shorter and longer sleep durations are associated with higher risk of type
2 diabetes (T2D) (2). Observational studies have also shown that insomnia (3), day-
time napping (4), and chronotype (evening preference) (5) are associated with
higher T2D risk. However, causal relations are unclear from these data because of
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the potential biases from residual con-
founding (e.g., from physical activity
and diet) and reverse causality (e.g.,
from nocturia and neuropathic pain).
Mendelian randomization (MR) analy-

sis, which uses genetic variants as
instrumental variables to appraise causal
effects of exposures on outcomes, is less
prone to confounding or reverse causal-
ity than conventional observational mul-
tivariable regression (MVR) (6). MR has
different sources of bias relative to MVR;
therefore, consistency in the results from
these two methods increases confidence
when assessing causality (7). Recently
published two-sample MR (2SMR) stud-
ies found little consistent evidence of
causal effects of sleep duration on T2D
and/or related glycemic traits (8,9). Prior
MR studies have suggested that insom-
nia might causally increase T2D risk
(10,11), but they did not assess whether
insomnia influences glycemic levels in the
general population. These prior studies
had limited statistical power and potential
for weak instrument bias (12). Understand-
ing the impact of sleep traits on glycemic
levels in the general population could
have profound public health implica-
tions for the prevention of diabetes.
Our aim was to explore effects of

sleep traits (e.g., insomnia (10), sleep
duration (13), daytime sleepiness (14),
daytime napping (15), and chronotype
(16)) on average glycemic levels assessed
by glycated hemoglobin (HbA1c) (main
outcome) and on glucose (secondary
outcome) in the general population.

RESEARCH DESIGN AND METHODS

Study Overview
We assessed relations between sleep
traits and measures of glycemia using
traditional observational epidemiology:
cross-sectional observed confounder-
adjusted MVR and 1SMR within the UK

Biobank (UKB) (n = 336,999), and 2SMR
using genome-wide association studies
from the Meta-Analyses of Glucose and
Insulin-Related Traits Consortium (MAGIC)
(n = �46,000) (17,18). Importantly, we
undertook extensive sensitivity analyses,
including novel methods assessing the
robustness of 1SMR to bias by unbal-
anced horizontal pleiotropy, weak instru-
ments, and winner’s curse (19).

UKB
For our confounder-adjusted MVR and
1SMR analyses, we used data on UKB
participants. Between 2006 and 2010,
the UKB recruited 503,317 participants
age 40–69 years (5.5% response rate
from 9.2 million adults), providing socio-
demographic and lifestyle data, includ-
ing sleep traits, as well as nonfasting
blood samples for HbA1c, nonfasting
glucose, and genotyping. We included
336,999 successfully genotyped White
British participants in the final analy-
sis (Supplementary Fig. 1 and Supple-
mentary Material). The UKB has received
ethical approval from the U.K. National
Health Service National Research Ethics
Service (London, U.K.) (ref. 11/NW/0382).

We assessed associations between
HbA1c/glucose (outcomes) and seven
self-reported sleep traits (exposures):
insomnia symptoms frequency (partici-
pants were asked, “Do you have trouble
falling asleep at night or do you wake
up in the middle of the night?”; usually
vs. sometimes or rarely/never); total
24-h sleep duration (reported in whole
hours), short sleep duration (#6 vs. 7
or 8 h), and long sleep duration ($9
vs. 7 or 8 h); daytime sleepiness
(“Never/rarely,” “Sometimes,” “Usually,”
and “All of the time”) and daytime nap-
ping (never/rarely, sometimes, or usu-
ally, where category increase reflects
more frequent sleepiness/napping);
and chronotype (definitely a morning

person, more a morning than evening
person, do not know, more an evening
than morning person, and definitely
an evening person, where category
increase reflects a tendency toward
greater evening preference). Those
who responded “do not know” or
“prefer not to say” were treated as
missing data for all traits, except for
chronotype, where “do not know” was
treated as an intermediate category
(Supplementary Material).

MAGIC
For 2SMR analyses, we obtained sex-com-
bined meta-analysis summary statistics of
genetic variants related to HbA1c (n =
46,368) (mean [SD] age 53 [11] years;
52% female) (17) and fasting glucose (n =
46,186) (mean [SD] age 52 [13] years;
56% female) (18) from participants of
European descent without diabetes.

Genetic Variants
In 1SMR and 2SMR analyses, we used
genetic variants identified from genome-
wide association studies (GWAS) of
seven self-reported sleep traits passing
the GWAS multiple testing P value
threshold (<5 * 10�8) (10,13–16)
(Supplementary Table 1).

Statistical Analyses
UKB HbA1c data were right skewed, and
units (mmol/mol) differed compared
with MAGIC (%). Therefore, we natural
log transformed the HbA1c levels in the
UKB and then converted them into SD
units (HbA1c: 1 SD = 0.15 log mmol/
mol). For 2SMR, we also presented
results in SD units of the summary
data from MAGIC (1 SD = 0.53%; �6
mmol/mol). Thus, for all analyses
(MVR, 1SMR, and 2SMR), we esti-
mated the mean difference in HbA1c
SD between groups for binary
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exposures and per category increase
for categorical exposures. For binary expo-
sures, in MVR and 1SMR, we estimated
the average difference in outcome when
everyone in the population of interest
experienced the exposure (assuming 100%
exposure prevalence) compared with
when no one experienced the exposure
(assuming 0% exposure prevalence) (20).

MVRModel

We considered the following potential
confounders in the MVR model: base-
line age, sex, smoking, alcohol intake,
Townsend residential area deprivation
score, education (International Standard
Classification of Education code), vig-
orous physical activity level, diagnosed
sleep apnea (ICD-10 code obtained
from the Hospital Episode Statistics
data), and BMI (Supplementary Material
provides references supporting our ass-
umption that these are plausible causes
of both sleep traits and glycemic varia-
tion). We also adjusted for population
stratification (21) in the MVR analyses by
including the top 40 genetic principal
components of ancestry and UKB assess-
ment center. We ran two MVR models. In
model 1, the main model, we adjusted
for covariates (above), top 40 genetic
principal components, and assessment
center (referred to as MVR in Figs. 1–4).
In model 2, we additionally adjusted for
BMI because of uncertainty as to whether
BMI is a confounder or a mediator on the
causal pathway between sleep traits and
glycemia.

1SMR

We applied unweighted allele scores, gen-
erated as the total number of adverse
sleep trait–increasing alleles present, for
each participant (evening preference
alleles for chronotype) (Supplementary
Table 1). Two-stage least squares instru-
mental variable analyses were performed
with adjustment for assessment center
and 40 genetic principal components to
minimize confounding by population strat-
ification (21), as well as baseline age, sex,
and genotyping chip to account for known
confounders and reduce random varia-
tion (referred to as 1SMRmain in Figs.
1–4) (Supplementary Material).

2SMR

We conducted 2SMR analyses of sleep
traits with glycemic measures using the
summary associations between the gen-

etic instruments and sleep traits identi-
fied in the respective GWAS (10,13–15)
(sample 1) (Supplementary Table 1) and
estimates of the associations between
the genetic instruments and glycemic
measures (HbA1c and fasting glucose)
(17,18) from MAGIC (sample 2) using
the TwoSampleMR package in R (ver-
sion MRCIEU/TwoSampleMR@0.4.26)
(22). We used inverse variance–wei-
ghted regression under a multiplica-
tive random-effects model (weights are
equal to the inverse of variance of associ-
ations between single nucleotide polymor-
phisms [SNP] and outcome) (referred to
as 2SMRmain in Figs. 1–4) to obtain
causal effects of sleep traits on HbA1c and
fasting glucose (Supplementary Material).

Sensitivity Analyses
To account for the potential impact of
diabetes treatment and the effect of dia-
betes on HbA1c or glucose levels, we
repeated MVR and 1SMRmain analyses
in UKB participants after excluding those
with diabetes defined by the Eastwood
algorithm (23) and/or those with a base-
line HbA1c $48 mmol/mol ($6.5%).

Assessing MR Assumptions and Evaluating

Bias

MR analysis requires various assumptions
to be satisfied to estimate consistent
causal effects: that the genetic instru-
ment is robustly associated with the
exposure (instrument strength), that
there is no confounding between the
genetic instrument and outcome (inde-
pendence), and that the genetic instru-
ment influences the outcome exclusively
through its effect on the exposure (no
unbalanced horizontal pleiotropy). Both
1SMR and 2SMR analyses are vulnerable
to bias if these assumptions are violated,
and they can also be biased by winner’s
curse (24). Various steps were taken to
assess the MR assumptions and evaluate
bias, as outlined below.

Instrument strength was investigated
using the first-stage F statistic and R2 val-
ues in both 1SMR and 2SMR. For the
independence assumption, we restricted
analyses to self-reported European ances-
try and adjusted for principal components
to limit potential confounding of the
genetic instrument-outcome association
by population stratification. In 1SMR, we
examined associations between the allele
scores and variables potentially related
to HbA1c (smoking, alcohol, deprivation,

education, vigorous physical activity, sleep
apnea, and BMI) in the UKB to explore
violation of the no horizontal pleiotropy
assumptions. To assess potential bias
resulting from unbalanced horizontal plei-
otropy, we explored between-SNP hetero-
geneity using the Sargan test (25). To
further explore this potential bias in
1SMR, we applied a novel method that
allows bias introduced by weak instru-
ments (which would bias our results
toward the confounded results) (12) and
unbalanced horizontal pleiotropy to be
addressed in a one-sample setting using
2SMR approaches (19). This method
allowed us to report inverse variance–
weighted, MR-Egger, and least absolute
deviation regression (similar to the
weighted median) in our 1SMR analysis.
In Figs. 1–4, we refer to these as
1SMRsensitivity1, 1SMRsensitivity2, and
1SMRsensitivity3, respectively (Supp-
lementary Material).

Bias resulting from winner’s curse
can occur when the study in which the
genetic variants were identified is also
used to perform MR analysis (24), as in
our 1SMR analysis, in which the results
would be expected approach the null.
To minimize risk of weak instrument
bias, we used unweighted rather than
weighted allele scores (26). Further-
more, we identified subsets of genome-
wide significant SNP of some sleep traits
in other independent GWAS not includ-
ing UKB participants (Supplementary
Material).

In 2SMR, to explore directional hori-
zontal pleiotropy, we applied two pleiot-
ropy-robust MR methods: MR-Egger
and weighted median (in Figs. 1–4, we
refer to these as 2SMRsensitivity1 and
2SMRsensitivity2).

Additional Analyses

To rule out the potential reverse causal-
ity of any sleep traits with regard to
HbA1c, we conducted bidirectional MR
analyses (1SMR and 2SMR) (Supple-
mentary Material).

As noted above, it is unclear whether
BMI is a confounder or mediator in
associations between sleep traits and
HbA1c. Given that BMI is strongly asso-
ciated with HbA1c, we agreed that in
the context of any MR data supporting
causal effects of sleep traits on HbA1c,
if the gene allele score were related
to BMI, we would further explore this
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in multivariable MR (MVMR) (27)
(Supplementary Material).

Data and Resource Availability
R scripts for the main and sensitivity anal-
yses are available on GitHub at https://
github.com/jamesliu0501/sleeptraits_
glyacemic_MRproject.git. For statisti-
cal code relating to the individual-
level data analysis in the UKB, please
contact the corresponding author at
ieu_james.liu@bristol.ac.uk. Summary
data on glycemic traits were downloaded
from MAGIC at www.magicinvestigators.
org.
Two patients with T2D, under the

care of M.K.R., helped develop the origi-
nal idea for this research, and these dis-
cussions highlighted the importance of
potential reverse causality and con-
founding in MVR analyses and hence
the need to explore the research ques-
tions with additional methods as men-
tioned above. Participants in the UKB
are regularly updated about research
undertaken in the study through news-
letters and invitations to meetings
where scientists using UKB data present
their results. The results of this research
will be similarly disseminated to study
participants, relevant stakeholders, and
the broader public as appropriate.

RESULTS

Baseline Characteristics
Among the 336,999 participants, mean
(SD) age was 56.9 (8.0) years, and 54%
were female (Table 1); 4.6% of partici-
pants had diabetes, 3% had an HbA1c
value $48 mmol/mol, and 0.5% had
diagnosed sleep apnea; 28% reported
experiencing insomnia symptoms usu-
ally; mean sleep duration was 7.2
(1.1) h; 3% reported daytime sleepi-
ness usually; 5% reported daytime
napping usually; 24% reported having
a definite morning chronotype; and
8% reported having a definite evening
chronotype. Median (interquartile)
HbA1c was 35 (33, 37) mmol/mol in
individuals without diabetes and 50
(43, 59) mmol/mol in those with dia-
betes; corresponding nonfasting glu-
cose levels were 4.9 (4.6, 5.3) mmol/L
and 6.6 (5.3, 9.0) mmol/L.
Participants in this study were older

and less likely to be female when com-
pared with those who were excluded (n =
165,631) in the whole UKB cohort (age

Table 1—Baseline characteristics of the participants included in final analyses of
the UKB (n = 336,999)

Variable Data

Age, years 56.9 (8.0)

Female sex 54

Townsend deprivation index �1.58 (2.93)

Diabetes defined by Eastwood algorithm 4.6

HbA1c $48 mmol/mol 3

Diagnosed sleep apnea 0.47

BMI, kg/m2 27.4 (4.8)

Smoking
Current 10
Former 35

Alcohol intake*
Daily 21
One to four times a week 51
One to three times a month 11
Never/occasionally 17

Education (ISCED code)
College or university degree/NVQ, HND, HNC, or equivalent 48
Other professional equivalent (e.g., nursing, teaching) 12
A levels/AS levels or equivalent 5
O levels/GCSE or equivalent/CSE or equivalent 17
None of the above 17

Days of vigorous physical activity per week†
0–1 52
2–3 30
4–7 18

Insomnia symptoms
Never/rarely or sometimes 72
Usually 28

24-h sleep duration, h 7.2 (1.1)

Short sleep duration (#6 h) 26

Long sleep duration ($9 h) 10

Daytime sleepiness
Never/rarely 77
Sometimes 20
Usually 3
All of the time 0.01

Daytime napping
Never/rarely 57
Sometimes 38
Usually 5

Chronotype
Morning 24
More morning than evening 33
Do not know 10
More evening than morning 25
Evening 8

HbA1c, mmol/mol/log HbA1c
All (n = 321,078) 35 (33, 38)/3.57 (0.15)
With diabetes (n = 14,980) 50 (43, 59)/3.94 (0.24)
Without diabetes (n = 306,098) 35 (33, 37)/3.55 (0.12)

Glucose, mmol/L/log glucose
All (n = 293,838) 4.9 (4.6, 5.3)/1.61 (0.17)
With diabetes (n = 13,601) 6.6 (5.3, 9.0)/1.95 (0.39)
Without diabetes (n = 280,237) 4.9 (4.6, 5.3)/1.60 (0.14)

Data are presented as %, mean (SD), or median (IQR). AS, first year of full A level; CSE, Cer-
tificate of Secondary Education; GCSE, General Certificate of Secondary Education; ISCED,
International Standard Classification of Education; HNC, Higher National Certificate; HND,
Higher National Diploma; NVQ, National Vocational Qualification. *Alcohol intake was catego-
rized and adjusted as follows: daily, one or four times a week, once or twice a week, one to
three times a month, occasionally, and ever (details in Supplementary Material). †Physical activ-
ity was categorized and adjusted in days from 0 to 7 (details in Supplementary Material).
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56.9 vs. 55.8 years; 54% vs. 56%
female). Included participants were
less likely to be diagnosed with sleep
apnea, less deprived, and less likely to
smoke (Supplementary Table 2).

Associations of Sleep Traits With
HbA1c and Glucose Levels

There was consistent evidence across all
analyses that more frequent insomnia
symptoms (usually vs. sometimes or
rarely/never) resulted in higher HbA1c
levels (MVR 0.05 [95% CI 0.04–0.06]
SD units; 1SMRmain 0.52 [0.42–0.63];
2SMRmain 0.24 [0.11–0.36]); results
of sensitivity analyses accounting for
weak instrument bias, unbalanced hori-
zontal pleiotropy, and winner’s curse
were consistent with the 1SMRmain and
2SMRmain results (Fig. 1). With exclusion
of participants with diabetes and those

with HbA1c $48 mmol/mol, results of
MVR and 1SMR were attenuated but
remained consistent with those of the
main analyses (Supplementary Table 3).
After accounting for BMI in MVMR, the
results were consistent with those of the
main analyses (Supplementary Table 4).
More frequent insomnia symptoms
were associated with higher nonfast-
ing glucose levels in the MVR and
1SMRmain analyses, whereas the
positive associations were weaker
and consistent with the null in 1SMR
pleiotropy-robust sensitivity and in
all 2SMR analyses (Supplementary
Table 5).

Longer 24-h sleep duration, treated
as a continuous variable, was associated
with lower HbA1c levels in the MVR
(�0.006 [95% CI �0.010 to �0.003] SD
units) and 1SMRmain analyses (�0.11
[�0.15 to �0.07]), but were close to

the null in the 1SMR pleiotropy-robust
sensitivity analyses; 2SMR analyses did
not support a strong causal effect (Fig.
2). The inverse associations in MVR and
1SMRmain persisted after excluding par-
ticipants with diabetes and those with
HbA1c $48 mmol/mol (Supplementary
Table 3).

In the MVR analysis, both short (#6 h)
and long sleep duration ($9 h), treated
as binary variables, were associated with
higher HbA1c when compared with having
a normal 7–8 h per day sleep duration
(short sleep 0.06 [95% CI 0.05–0.07] SD
units]; long sleep 0.08 [0.07–0.09]). How-
ever, in the 1SMRmain analysis, there
was evidence that short sleep duration
increased HbA1c (0.33 [0.15–0.50]) and
that long sleep duration reduced HbA1c
(�0.50 [�0.99 to �0.01]). The corre-
sponding 1SMR pleiotropy-robust sensitiv-
ity analyses showed a similar direction

Figure 1—Associations of insomnia symptoms with HbA1c in observational MVR analysis, 1SMR in the UKB, and 2SMR in MAGIC. Data are SD incre-
ment (95% CI) in HbA1c comparing those usually experiencing insomnia vs. sometimes or rarely/never. MVR was adjusted for sex, age, assessment
center, 40 genetic principal components, smoking, alcohol intake, Townsend deprivation, education, sleep apnea, and physical activity. 1SMRmain,
1SMRsensitivity1, 1SMRsensitivity2, and 1SMRsensitivity3 were equivalent to two-stage least square, inverse variance–weighted (IVW), MR-Egger,
and least absolute deviations regression in 1SMR, respectively. 2SMRmain, 2SMRsensitivity1, and 2SMRsensitivity2 were equivalent to IVW,
weighted median, and MR-Egger regression in 2SMR, respectively. 1-SD HbA1c in the UKB is 0.15 log mmol/mol; 1-SD HbA1c in MAGIC is 0.53% (�6
mmol/mol).
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but with wide CIs. The 2SMR estimates
did not support any associations of short
sleep duration with HbA1c but indicated
that longer sleep was associated with
lower HbA1c (Fig. 2). After excluding par-
ticipants with diabetes and those with
HbA1c $48 mmol/mol, the positive asso-
ciations of short sleep with HbA1c
remained, but the associations of long
sleep with HbA1c were attenuated toward
the null (Supplementary Table 3). For
nonfasting glucose, longer 24-h sleep
duration and short and long sleep were
all positively associated with glucose lev-
els in MVR, whereas 1SMR, 2SMR, and all
their sensitivity analyses did not consis-
tently support causal effects (Sup-
plementary Table 5).
MVR and 1SMRmain showed that

more frequent daytime sleepiness (MVR
0.086 [95% CI 0.079–0.093] SD units;
1SMRmain 0.14 [0.02–0.27]) and day-
time napping (MVR 0.087 [0.081–0.093];
1SMRmain 0.09 [0.03–0.14]) were associ-
ated with higher HbA1c levels, although
1SMR sensitivity analyses, including those
exploring winner’s curse and weak instru-
ment bias, and all 2SMR analyses were
not supportive of causal effects (Fig. 3).
Excluding participants with diabetes and

those with HbA1c $48 mmol/mol, the
MVR estimates remained, but the main
1SMR estimates were attenuated toward
the null (Supplementary Table 3). There
was limited evidence of a causal effect of
daytime sleepiness or daytime napping
on glucose (Supplementary Table 5).

Evening preference was associated
with higher HbA1c levels in MVR (0.008
[95% CI 0.006–0.011] SD units) and
1SMRmain (0.022 [0.004–0.039]). How-
ever, these results were attenuated and
included the null in all 1SMR pleiotropy-
robust sensitivity analyses (including
accounting for winner’s curse) and in
2SMR analyses (Fig. 4). MVR and
1SMRmain estimates included the null
when excluding participants with diabe-
tes and those with HbA1c $48 mmol/
mol (Supplementary Table 3). MVR and
1SMRmain estimates indicated evening
preference was associated with higher
glucose levels, whereas the 1SMR sensi-
tivity analyses and 2SMR estimates did
not support an association (Supplementary
Table 5). Most of the MVR estimates of
sleep traits with HbA1c and glucose
were attenuated to some extent after
adjusting for BMI (Supplementary Tables
3 and 5).

A detailed description of approaches
used to test MR assumptions can be
found in the Supplementary Material.

CONCLUSIONS

Across different study designs and their
sensitivity analyses with different ass-
umptions, we found consistent evidence
that frequent insomnia symptoms inc-
rease HbA1c levels. Evidence supporting
causal effects of other sleep traits on
HbA1c and glucose levels was weaker
and less consistent.

Comparison With Other Studies
Our findings support previous observa-
tional (3) and MR (10,11) studies show-
ing that insomnia is associated with
higher T2D risks. Here, we extended
these findings by showing an effect of
frequent insomnia symptoms on HbA1c
in the wider population and after
excluding people with diabetes. The
finding that insomnia was more strongly
linked to hyperglycemia than other
sleep traits is in keeping with previous
observational data (28). The mecha-
nisms underlying insomnia symptoms
with increasing HbA1c are unclear. They
could include mediation by depression,

Figure 2—Associations of sleep duration traits (24-h sleep duration, short sleep duration, and long sleep duration) with HbA1c in observational
MVR analysis, 1SMR in the UKB, and 2SMR in MAGIC. Data are SD increment (95% CI) in HbA1c in relation to differences in sleep duration traits
(per hour increase in sleep duration, sleep duration#6 vs. 7–8 h, sleep duration$9 vs. 7–8 h). MVR was adjusted for sex, age, assessment center,
40 genetic principal components, smoking, alcohol intake, Townsend deprivation, education, sleep apnea, and physical activity. 1SMRmain,
1SMRsensitivity1, 1SMRsensitivity2, and 1SMRsensitivity3 were equivalent to two-stage least square, inverse variance–weighted (IVW), MR-Egger,
and least absolute deviations regression in 1SMR, respectively. 2SMRmain, 2SMRsensitivity1, and 2SMRsensitivity2 were equivalent to IVW,
weighted median, and MR-Egger regression in 2SMR, respectively. 1-SD HbA1c in the UKB is 0.15 log mmol/mol; 1-SD HbA1c in MAGIC is 0.53% (�6
mmol/mol).
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anxiety, bipolar disorders, or alterations
of sleep physiology (29), with the
genetic correlations between insomnia
and depression-related traits being
stronger than those seen with other
sleep-related traits (10). Several hor-
mones that sleep disturbance may
influence (e.g., evening cortisol, night-
time growth hormone, ghrelin), together
with possible influences on brain glucose
utilization, alterations in the sympatho-
vagal balance, and proinflammatory pro-
cesses, may also be relevant (30).Whether
these hypothesized mechanisms are causal
requires further exploration.

With regard to 24-h sleep duration
and short and long sleep, prior 2SMR
studies (8,9) found limited evidence of
causal effects of these exposures on
HbA1c, glucose, or T2D. Our MVR esti-
mates suggest a U-shaped association
between sleep duration and HbA1c/glu-
cose levels, which is consistent with pre-
vious observational studies (2). However,
our MR estimates strengthen previous
null MR findings (8,9). The discrepancies
between the MVR and MR estimates
are likely to be explained by con-
founding. For example, health status
(e.g., baseline chronic diseases) was
not accounted for in our study or

previous studies using MVR models.
This might influence both sleep dura-
tion and glycemic levels.

Our findings suggest that previous
observational estimates (31,32) linking
evening preference and daytime napping
with hyperglycemia are also potentially
influenced by confounding, because we
found no convincing evidence of a
causal effect, and previous MR find-
ings are inconsistent (16,33).

Strengths and Limitations
Key strengths of this study are 1) the
comparison of results from different
methods with differing key sources of
bias (7); 2) the range of MR sensitivity
analyses performed, including applying
novel methods accounting for biases
resulting from unbalanced horizontal
pleiotropy, weak instruments, and win-
ner’s curse in a one-sample study (19);
and 3) the use of large cohorts.

MVR analyses are susceptible to resid-
ual confounding. For example, sleep
apnea is a plausible confounder (34), but
we were only able to adjust for physi-
cian-diagnosed sleep apnea. This means
that participants with undiagnosed sleep
apnea would be treated as not having
this condition, which would not be fully

accounted for. The MVR analysis used
cross-sectional data. It is possible that
HbA1c levels could influence sleep
through mechanisms including neuro-
pathic pain and nocturia. However, we
explored this potential reverse causality
using bidirectional 1SMR and 2SMR and
found no evidence of an effect of HbA1c
on insomnia symptoms (Supplementary
Table 6). Because a diabetes diagnosis
and use of diabetes medication could
alter glycemic levels, we performed sub-
sequent analyses excluding these individ-
uals, which attenuated the estimates.
The attenuation of the association
between insomnia and HbA1c might
be because this association is some-
what stronger in those with diabetes.
However, much larger samples than
those currently available would be
needed to test a different magnitude
of association between those with
and without diabetes (i.e., an interac-
tion between diabetes status and
insomnia in relation to HbA1c). It
should also be noted that while there
was some attenuation, statistically the
results with and without those with
diabetes included were consistent (the
95% CI overlap considerably). In addi-
tion, we cannot rule out the possibility

Figure 3—Associations of daytime sleepiness and daytime napping with HbA1c in observational MVR analysis, 1SMR in the UKB, and 2SMR in
MAGIC. Data are SD increment (95% CI) in HbA1c in relation to higher frequencies of daytime sleepiness or daytime napping. MVR was adjusted for
sex, age, assessment center, 40 genetic principal components, smoking, alcohol intake, Townsend deprivation, education, sleep apnea, and physi-
cal activity. 1SMRmain, 1SMRsensitivity1, 1SMRsensitivity2, and 1SMRsensitivity3 were equivalent to two-stage least square, inverse variance–
weighted (IVW), MR-Egger, and least absolute deviations regression in 1SMR, respectively. 2SMRmain, 2SMRsensitivity1, and 2SMRsensitivity2
were equivalent to IVW, weighted median, and MR-Egger regression in 2SMR, respectively. 1-SD HbA1c in the UKB is 0.15 log mmol/mol; 1-SD
HbA1c in MAGIC is 0.53% (�6 mmol/mol).
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that excluding/restricting people with
diabetes could introduce collider bias
(35), although the effect is uncertain.
All sleep traits used were self-

reported, so they might have been sub-
ject to measurement error. Because par-
ticipants would not know their value for
the genetic IV, any such error would
be expected to be random in relation
to our outcomes, which would be
expected to bias toward the null. For
the majority of our MR analyses, the F
statistics and R2 suggested that weak
instrument bias (12) was unlikely to be
substantial (Supplementary Tables 1
and 7). This is supported by the consis-
tency of results in sensitivity analyses,
which explored potential bias resulting
from weak instruments. We found that
some of the genetic instruments were
associated with risk factors for HbA1c

(Supplementary Table 8), which could
violate the MR assumptions through
horizontal pleiotropy. This was particu-
larly the case for the insomnia symp-
toms genetic instrument, which has
been shown to be associated with
some HbA1c risk factors (36). These
associations might reflect vertical pleiot-
ropy, in which they are part of the
causal path from frequent insomnia
symptoms to HbA1c (e.g., the allele
score might be associated with BMI
because frequent insomnia symptoms
result in higher BMI). Such vertical plei-
otropy would not bias our causal esti-
mates. The associations might also
highlight specific horizontal pleiotropic
paths. However, for insomnia, sensitivity
analyses in both 1SMR and 2SMR,
except Sargan tests, suggested no
direct (unbalanced) horizontal pleio-

tropy (Supplementary Tables 3 and 5).
Additionally, MVMR did not support
BMI resulting in horizontal pleiotropy,
because results were consistent with
the main analysis results.

While we explored consistency across
the three methods by focusing on the
point estimates, we acknowledge that
we had greater statistical power for the
MVR and 1SMR than the 2SMR. It
would be valuable to explore 2SMR
analyses with larger outcome sample
summary data. Furthermore, we cannot
be certain whether the effects repre-
sent specific relations of any sleep trait.
For example, there is modest genetic
overlap of insomnia symptoms with
sleep duration (e.g., effect estimates
of 15 of 78 loci predicting 24-h sleep
duration were attenuated by 15–25%
upon adjustment for insomnia (13);

Figure 4—Associations of chronotype (evening preference) with HbA1c in observational MVR analysis, 1SMR in the UKB, and 2SMR in MAGIC. Data
are SD increment (95% CI) in HbA1c in relation to having a higher category of evening preference.
MVR was adjusted for sex, age, assessment center, 40 genetic principal components, smoking, alcohol intake, Townsend deprivation, education,
sleep apnea, and physical activity. 1SMRmain, 1SMRsensitivity1, 1SMRsensitivity2, and 1SMRsensitivity3 were equivalent to two-stage least
square, inverse variance–weighted (IVW), MR-Egger, and least absolute deviations regression in 1SMR, respectively.
2SMRmain, 2SMRsensitivity1, and 2SMRsensitivity2 were equivalent to IVW, weighted median, and MR-Egger regression in 2SMR, respectively.
1-SD HbA1c in the UKB is 0.15 log mmol/mol; 1-SD HbA1c in MAGIC is 0.53% (�6 mmol/mol).
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14 of 49 sleep duration loci have been
found to overlap with insomnia (10).
However, there are no identical SNPs
predicting both insomnia symptoms
and 24-h sleep duration among the
SNPs in our analysis (Supplementary
Table 10).

The low participation rate in the UKB
(37) may cause selection bias (35) in
observational and MR analyses. Differ-
ent population sources were used in
the 2SMR design, which may be less
susceptible to selection bias, although
in general, our 2SMR estimates pro-
vided limited supporting evidence for
causality. Participants in all the study
designs were predominantly of Euro-
pean ancestry. Generalizing our findings
to other ethnicities requires further vali-
dation. Additionally, we acknowledge it
would be interesting to see whether
the effects of sleep traits on the under-
lying continuous traits of dysglycemia
also influence the risk of incident T2D.

Implications
Two approaches provide some insights
into the potential clinical significance of
our MR data, although we believe that
the true impact of insomnia interven-
tions on HbA1c will only be fully under-
stood through clinical trials.

First, our MR estimates suggest that
treating insomnia symptoms could have
a greater effect on reducing HbA1c than
a substantial degree of weight loss. For
example, a previous MR study sug-
gested that 1-SD reduction in BMI
would cause a 0.062% reduction in
HbA1c (Diabetes Control and Complica-
tions Trial [DCCT]–derived units �0.12
SD) (38). In our study, we estimated
that reducing insomnia symptoms from
usually to sometimes or rarely/never
would reduce HbA1c by between 0.24
and 0.52 SD units (�0.13% and 0.28%
DCCT units for 2SMRmain and 1SMRmain
analyses, respectively). This represents a
greater HbA1c reduction through a hypo-
thetical insomnia treatment than the
reduction expected in response to 1-SD
reduction in BMI (�5 kg/m2) (e.g., equiv-
alent to 14-kg weight loss in a person of
1.7-m average height).

Second, based on further analysis
(Supplementary Material), we estimate
that �27,300 (95% CI 26,800–27,500)

individuals with frequent insomnia
symptoms would be free from having
diabetes (HbA1c $48 mmol/mol) in the
U.K. if an effective intervention was
delivered to the 25 million adults
between 40 and 70 years of age (39).
This estimate is based on the 28% of
the population who reported usually
experiencing insomnia symptoms in the
UKB cohort, which is similar to the
recorded national surveys of the adult
population in the U.K. that range from 5
to 38% (40).

In conclusion, we present robust evi-
dence across MVR, 1SMR, and 2SMR
studies that frequent insomnia symp-
toms cause higher HbA1c. Lifestyle and/
or pharmacological interventions that
improve insomnia might therefore have
benefits in preventing T2D. Understand-
ing the mechanisms underlying the
effect of insomnia symptoms on hyper-
glycemia could help identify therapeutic
strategies or new drug targets for pre-
venting T2D.
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