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Abstract

Increasing literature has linked COVID-19 to peripheral nervous system (PNS) dis-

eases. In addition, as we move from the pandemic to the vaccination era, literature

interest is shifting towards the potential association between COVID-19 vaccines

and PNS manifestations. We reviewed published literature on COVID-19, COVID-19

vaccines and PNS manifestations between 1 January 2020 and 1 December 2021.

For Guillain-Barré syndrome (GBS), isolated cranial neuropathy (ICN) and myositis

associated with COVID-19, the demographic, clinical, laboratory, electrophysiological

and imaging features were included in a narrative synthesis. We identified 169 studies

on COVID-19-associated complications, including 63 papers (92 patients) on GBS,

29 papers (37 patients) on ICN and 11 papers (18 patients) on myositis. Additional

clinical phenotypes included chronic inflammatory demyelinating polyneuropathy,

vasculitic neuropathies, neuralgic amyotrophy, critical care-related complications, and

myasthenia gravis. PNS complications secondary to COVID-19 vaccines have been

reported during randomized clinical trials, in real-world case reports, and during

large-scale surveillance programs. These mainly include cases of GBS, Bell's palsy,

and cases of neuralgic amyotrophy. Based on our extensive review of the literature,

any conclusion about a pathophysiological correlation between COVID-19 and PNS

disorders remains premature, and solely supported by their temporal association,

while epidemiological and pathological data are insufficient. The occurrence of PNS

complications after COVID-19 vaccines seems limited to a possible higher risk of

facial nerve palsy and GBS, to a degree that widespread access to the ongoing vacci-

nation campaign should not be discouraged, while awaiting for more definitive data

from large-scale surveillance studies.
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1 | INTRODUCTION

An increasing body of literature, including cohort studies,1-9 has linked

COVID-19 to the development peripheral nervous system (PNS) dis-

eases. However, findings are divergent due to methodological differ-

ences and largely variable sample sizes. Few studies used a

prospective design8,10 and focused on defined diagnoses rather than

symptoms alone.5 Some studies relied on self-administered question-

naires and others on hospital records, and in some cases, the diagnosis

was not confirmed by neurologists.8 Individual diagnoses were not

always supported by laboratory, electrodiagnostic (EDX), and pathol-

ogy findings. As a result, PNS involvement was quite variable, ranging

from 1.3% to 9.5% of cases4,8 if individual diagnoses were considered

(eg. neuropathy, myopathy, etc.), and up to 70.2% if individual symp-

toms were included (eg. myalgia, paresthesia, etc.).3

In a very large retrospective cohort including 1760 COVID-19

patients from a single epidemic hotspot (Bergamo, Italy),6 31 patients

were diagnosed with PNS diseases (1.8%), including Guillain-Barré

syndrome (GBS; 17 cases), critical illness myopathy and neuropathy

(nine cases), brachial plexopathy (two cases), and polyneuropathy

(three cases). In a very large prospective cohort from another epi-

demic hotspot (New York, USA),8 there were 59 cases of PNS involve-

ment among 4491 hospitalized COVID-19 patients (1.3%) including

neuropathy (35 cases), myopathy (21 cases), and GBS (three cases).

Here, we present a comprehensive narrative on 169 studies publi-

shed between 1 January 2020 and 1 December 2021 on PNS involve-

ment. Our main aims were investigating the association between

COVID-19 and PNS diseases and understanding whether COVID-19

had any clinically meaningful impact on clinical presentation, diagno-

sis, and therapeutic approaches. Furthermore, as we are moving from

the pandemic to the vaccination era, we provide an overview of the

potential association between COVID-19 vaccines and PNS diseases

discussing the findings reported so far.

2 | METHODS

Given the extent and heterogeneity of the topics reviewed in this

paper, we aimed to provide a synthetic albeit comprehensive narrative

on the published literature. However, our approach was not meant to

be systematic, as commonly defined by Cochrane and PRISMA state-

ments. A systematic approach has been attempted in the past, during

the early and later stages of the pandemic, but on GBS cases only.11,12

The data we extracted therefore were not incorporated in a meta-

analysis, but were instead the basis for our expert opinion

commentaries.

We searched MEDLINE through PubMed, Web of Science and

Cochrane library databases, and Google Scholar database. The search

strategy included the terms (“Coronavirus” OR “Coronavirus disease”
OR “novel coronavirus” OR “Severe acute respiratory syndrome coro-

navirus 2” OR “COVID-19” OR “nCoV 2019” OR “SARS-CoV-2” OR

“Long COVID” OR “COVID vaccine” OR “BNT-162b2” OR

“Pfizer” OR “mRNA-1273” OR “Moderna” OR “Ad26.COV2.S" or

“Johnson&Johnson” OR “ChAdOx1” OR “AstraZeneca” OR

“Vaxzevria”) AND (“peripheral nervous systems" or “PNS” or

“Guillain-Barré syndrome” OR “GBS” OR “Miller Fisher syndrome”
OR “MFS” OR “acute inflammatory demyelinating polyneuropathy”
OR “AIDP” OR “acute motor axonal neuropathy” OR “AMAN” OR

“acute motor sensory axonal neuropathy” OR “AMSAN”, OR “chronic
inflammatory demyelinating polyneuropathy”, OR “CIDP”, OR “nerve”
OR “neuropathy” OR “cranial neuropathy” OR “Bell's palsy” OR “neu-
ritis” OR “vasculitis” OR “polyneuropathy” OR “multineuritis” OR

“neuralgic amyotrophy “OR “Parsonage Turner Syndrome” OR

“plexus” OR “small fiber neuropathy” OR “dysautonomia” OR “pos-
tural orthostatic tachycardia syndrome” OR “POTS” OR “muscle” OR

“myopathy” OR “myositis” OR “dermatomyositis” OR “myasthenia

gravis" OR “MG” OR “neuromuscular junction” OR “critical illness
myopathy” OR “critical illness polyneuropathy”.

We restricted our search to peer-reviewed studies, published in

English, and importantly, to papers published between 1 January

2020 and 1 December 2021.

2.1 | Pathophysiological insights into PNS
involvement

The causal association between COVID-19 and nervous system mani-

festations has been solely inferred from their temporal co-occurrence.

Two patterns have been described: (a) neurological complications

occurring together with COVID-19 symptoms and suggesting a direct

viral mechanism (“para-infectious" hypothesis), such as neuroinvasion;

(b) neurological complications developing after the initial infectious

symptoms and supporting indirect mechanisms (“post-infectious"
hypothesis), likely immune-mediated.

The ability of SARS-CoV-2 to invade the nervous systems has

been conjectured based on the known neuroinvasive capabilities, both

in vivo and in vitro, of SARS-CoV and MERS-CoV, with whom the eti-

ological agent of COVID-19 (ie, SARS-Cov-2) has 79.5% and 50%

gene homology, respectively.13 Given the early occurrence of anosmia

and ageusia, one hypothesis is that olfactory, trigeminal, or gustative

terminals could be entry routes for the virus, which could then spread

to the central nervous system (CNS) through retrograde axonal trans-

port and trans-synaptic transfer.14 Lower cranial nerves could be addi-

tional entry points, causing early lower brain stem involvement and

possibly explaining some peculiar features of COVID-19, such as hyp-

oxia out-of-proportion to dyspnea and the frequent occurrence of

syncope.15 Alternative mechanisms of neuroinvasion that could apply

both to the CNS and PNS include entry through circulating immune

cells, infection of the vascular endothelium or crossing of the blood-

brain barrier or of the blood-nerve barrier.14 A wealth of studies,

including case reports and case series16 (Tables 1 and 2), failed to iso-

late SARS-CoV-2 genome from the cerebrospinal fluid (CSF) of

patients with either CNS or PNS diseases. More recently, a systematic

literature review on CSF testing in patients with COVID-19 found that

17 out of 304 reviewed cases had a positive SARS-CoV-2 PCR in the

CSF.17 However, a subsequent large multicenter study that tried to
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characterize the CSF profile of COVID-19 patients with neurological

involvement demonstrated negative SARS-CoV-2 CSF PCR in 76 out

76 samples.18 Overall, these data seem to suggest that direct invasion

of the CSF is very unlikely, if occurring at all, and positive cases are

more likely to represent contamination rather than a true infection.

Tissue invasion can however occur albeit negative CSF studies. A

meta-analysis on brain autopsy findings from 20 papers and

184 COVID-19 patients found evidence of SARS-CoV-2 brain inva-

sion in 53.5% and 27.7% of cases by RT-PCR and immunohistochem-

istry, respectively.19 Viral proteins have been found in cranial nerves

originating from the lower brainstem and in isolated cells of the

brainstem.20 Viral particles compatible with SARS-CoV-2 have been

identified by electron microscopy in olfactory bulb and frontal lobe

tissue.21,22 The clinical significance of such findings remains unclear,

as it does not correlate with neuropathological evidence of neuronal

damage or neuroinflammation nor, importantly, with the occurrence

of neurological symptoms.20 In a series of muscle and nerve speci-

mens from 35 patients who died from COVID-19, Suh et al did not

find any evidence of viral invasion by SARS-CoV-2 nucleocapsid

immunohistochemistry (IHC), although the authors speculate that viral

RNA may have been cleared from muscle and nerve tissue before

death, given the specimens were collected post-mortem.23 In a series

of post-mortem diaphragm muscle specimens from 26 critically ill

patients with COVID-19, four patients (15.4%) had evidence of viral

invasion by RT-PCR, and the authors suggest that ACE-2 expressed at

the myofiber membrane could provide an entry point for SARS-CoV-

2.24 In situ hybridization localized the RNA to inside the sarco-

lemma.24 These data suggest that although possible, the direct

invasion mechanism is not a universal phenomenon, and its clinical

significance remains unclear.

The “post-infectious” immune-mediated hypothesis is supported

by evidence that COVID-19 causes a proinflammatory state due to

the release of multiple cytokines, such as IL1, IL6, and TNF, as well as

immune-cell hyperactivation.14 The umbrella term “cytokine storm”
has been used to describe this phenomenon, although its appropriate-

ness for COVID-19 is still debated.25 In the lung, this has been linked

to the progression towards acute respiratory distress syndrome

(ARDS).25 This mechanism has been proposed for other systemic com-

plications of the disease, such as skin vasculitis, Kawasaki-like syn-

drome, myocarditis, and hemophagocytic lymphohistiocytosis.25

Similar to other systems, vasculitis may affect cerebral small vessel

causing stroke.26 In the PNS, individual reports of multiplex

mononeuropathy suggested possible vasculitis that, however, could

not be confirmed due to the lack of neuropathological data.27-30

The isolation of pathogenic anti-neuronal antibodies (eg, anti-con-

tactin-associated protein 2),31 has been invoked as a proof of the

immune-mediated mechanism underlying post-COVID-19 myelitis

and encephalitis.14 Although uncommon in our review (Table 1), the

presence of disease-specific antibodies, such as anti-ganglioside anti-

bodies has been observed in post-COVID neuropathies. The shared

pathogenetic hypothesis is that the molecular mimicry between

SARS-CoV-2 surface proteins and self-antigens may lead to the pro-

duction of autoantibodies targeting neuronal antigens or nodal/

paranodal proteins in the CNS and PNS, respectively. Although there

is clinical evidence that some of the high-affinity SARS-CoV-

2-neutralizing antibodies cross-react with human self-antigens, includ-

ing self-antigens found in the CNS, their ability to cross the brain- or

nerve-blood barrier has not been demonstrated.32 By using in silico

analysis, Keddie et al demonstrated that there is no linear homology

between SARS-CoV-2 proteins and any axonal or myelin surface pro-

teins, thus, making the molecular mimicry hypothesis unlikely.33

An alternative immune-mediated hypothesis has been proposed

by Suh et al.23 The authors conducted a post-mortem histopathologi-

cal study on the psoas muscle and femoral nerve of 35 patients who

died of severe COVID-19 compared to 10 critically-ill patients who

were negative for SARS-CoV-2 but died during the COVID-19 pan-

demic.23 They observed overexpression of the major histocompatibil-

ity complex-1 (MHC-1) in the muscle specimens of 25 out of

35 COVID-19 patients as opposed to only one control; nine out of

35 nerve specimens showed evidence of inflammation as perivascular

and/or endoneural inflammatory cells, whereas no evidence of neuri-

tis was seen among controls. Finally, they observed abnormal expres-

sion of myxovirus resistance protein A (MxA) in the capillaries of nine

muscles and seven nerve biopsies, as opposed to only one control

muscle biopsy. The authors suggest that muscle and nerve damage

may be secondary to the release of inflammatory cytokines, and more

specifically of type 1 interferon, which is normally part of the protec-

tive response towards viral infection, but when overexpressed, can

cause abnormal expression of MxA. The overexpression of this type

1 interferon-induced protein has been observed in endothelial cells

and surrounding dermal and epidermal tissues in dermatomyositis,

systemic lupus erythematosus, and has been associated with some

dermatologic complications of COVID-19, such as chilblain-like

lesions.34 However, there are multiple limitations to this study, such

as the inclusion of a selected group of critically ill patients, the role of

comorbid diseases and medications, specifically COVID-19 therapies

(hydroxychloroquine, remdesevir, tocilizumab, immune checkpoint

inhibitor), the lack of clinical data (such as at the time of collection;

whether the psoas or the femoral nerve were clinically affected), of a

neurologic exam, and limitations derived from the histological tech-

niques used (specimens were fixed in formalin and no frozen nor plas-

tic sections were available).

An additional effect of uncontrolled systemic inflammation is the

occurrence of coagulopathy resulting mainly, although not exclusively,

in venous thromboembolic events.35 In the CNS, this has been linked

to an increased incidence of stroke in specific epidemiological scenar-

ios, while its significance for PNS complications remains unclear.

Some of the neuropathies secondary to COVID-19 in our review

could be secondary to thrombotic mechanisms, but much needed

pathological data remain unavailable.

2.2 | Guillain-Barré syndrome

We identified 63 publications and 92 patients,36-98 including 51 case

reports, 11 case series, and one single cross-sectional study reporting
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GBS in concomitance or after COVID-19. Interestingly, two cases

clustered in the same family, either representing a chance finding, an

expression of common antecedent COVID-19, or unknown heritable

factors.85 Table 1 summarizes our results.

Three cohorts of consecutive COVID-19 patients presenting with

GBS have been published in Italy (30 cases),99 Spain (11 cases),100 and

UK (25 cases, including 13 “definite” and 12 “probable COVID-19”).33

We did not include these additional 66 cases in Table 1 as the clinical

information were not available for individual cases. These cohorts

were considered for comparison purposes.

All continents except Australia were represented, with the major-

ity of publications coming from Europe (37 out of 63) and remaining

from Asia (13), North America (10), Africa (two) and South America

(one). Strikingly, some significant COVID-19 hotspots, such as South

America, were under-represented possibly as an effect of publication

bias. Large global surveillance studies will be necessary to understand

whether the epidemiology of GBS related to COVID-19 has distinc-

tive features, including geographical clustering, as seen during the Zika

pandemic.101

The clinical features of COVID-19 are detailed in Table 3. The

majority of patients (75 out of 92) were diagnosed by positive RT-

PCR testing on nasopharyngeal swab, with only a few diagnoses

(13 out of 92) relying on positive serology (IgG and/or IgM). Fever and

cough were the two most common presenting symptoms (64.3% and

66.7%, respectively), with only few (3.4%) patients being asymptom-

atic on presentation. Approximately 9% of patients developed ARDS

requiring invasive ventilation. Increased inflammatory markers and/or

lymphocytopenia were the most common laboratory findings (96.9%

of cases, 62 out of 64 patients where this information was available).

Chest imaging showed ground-glass opacities (GGO) in 75% of cases

(48 out of 64). Therapeutic choices reflected initial uncertainties

regarding the most effective regimen, with hydroxychloroquine being

the preferred medication in 43.4% of treated patients followed by

antivirals other than remdesevir in 32.5% cases. The overall outcome

of the respiratory disease was positive with the majority of patients

(75.6%) being asymptomatic upon discharge. In only two cases (3.4%),

a fatal outcome was attributed to COVID-19 and respiratory-related

complications.

The clinical features of GBS patients with COVID-19 are detailed

in Table 1. The mean age of onset was 55.2 ± 17.3 years (median

58, range 11-94 years) with a bimodal age distribution showing the

highest peak in the 50 to 75 age group (61 out of 92, 66.3%) and a

second lower peak in the 15–35 age group (12 out of 92, 13%). These

figures are comparable to meta-analysis on the broader GBS popula-

tion102 and to the three COVID-19/GBS cohorts mentioned

above.33,99,100

Among COVID-19/GBS cases, there was a male preponderance

with an M:F ratio of 1.6 (57:35), within the range reported for non-

COVID-19 GBS (1.78, 95% CI 1.36-2.33),103 but lower than what

reported in the Italian and UK cohorts (2.75 and 4.0,

respectively).33,99

In all except three cases,37,71,79 the neurologic manifestations

followed COVID-19 symptoms or diagnosis, with a median time

interval of 13 days (mean 12.2 ± 8.3 days, range from 8 days before

to 33 days after COVID-19), similar to the findings from the UK and

Spanish cohort (median 12 and 10 days, respectively),33,100 but strik-

ingly lower than the Italian cohort (median 23 days).99 Overall, this

time lag suggests a post-infectious process, and is similar to what

reported in up to 70% of post-infectious GBS cases in pre-COVID

era.104,105 More specifically, this temporal pattern is similar to GBS

cases following various viral infections (ie, EBV, CMV, HEV, and influ-

enza A), but different from Zika-related GBS, where neurological

symptoms occur after a shorter time interval with a median of

7 days.101

The diagnosis of GBS was based on the Brighton criteria, with all

except four cases reaching level 1 or 2 of diagnostic certainty. All GBS

phenotypes were represented, with 70.7% of patients (65 cases) pre-

senting with a classic sensorimotor onset. Miller-Fisher syndrome

(MFS), including incomplete subtypes, represented 10.9% of cases

(10 patients). GBS variants were diagnosed in 18.4% of cases

(17 patients). Among them, the most common was pure motor GBS

(eight cases) and bifacial weakness with paresthesia (four cases). The

most common presenting symptom was lower limb weakness (57.6%,

53 out of 92 cases), followed by sensory symptoms (52.2%;

48 patients including two cases with sensory ataxia). Cranial nerve

involvement was described in 16.3% of cases (15 patients). Overall,

these clinical features are similar to what seen for GBS in the general

population106 and in the COVID-19 cohorts.33,99,100 Few patients had

an onset with atypical clinical features such as: unilateral facial

palsy,68,71 involvement of the vestibulocochlear cranial nerves (clini-

cally and on neurophysiological and imaging studies),84 dysautonomia

preceding motor symptoms,97 and syndrome of inappropriate anti-

diuretic hormone secretion (SIADH).49,88

Respiratory failure related to neuromuscular weakness rather

than COVID-19 occurred in 32.1% of patients reported in Table 1

(26 cases), whereas 21.7% of patients required invasive ventilation

(20 patients). These figures are comparable to the 25% reported in

the literature for GBS in the general population,104 and in the COVID-

19/GBS cohorts (range 17%-28%).33,99,100 Autonomic dysfunction

occurred in 19.4% of GBS cases (14 cases), but diagnostic methods

and severity of dysautonomia were largely variable among studies.

This variability has been observed in larger population studies for

non-COVID-19 GBS as well.104 Filosto et al found higher rates of

hypotension in their COVID-19/GBS cohort when compared to a con-

trol GBS cohort, but this finding may likely reflect a higher proportion

of critically ill patients requiring intensive care unit (ICU) admission

(50% vs 17.6%).99 In the Spanish COVID-19/GBS cohort100 the ICU

admission rate was 36.4%, which is similar to the 36.7% we found

among cases reviewed in Table 1.

The most common electrophysiological diagnosis was AIDP

(59.8%, or 55 out of 92 total cases) with axonal variants (AMAN and

AMSAN) being reported in 18.5% cases (17 out of 92). This distribu-

tion reflects the epidemiology of non-COVID-19 GBS, where axonal

variants are relatively uncommon in Europe and North America, which

contributed to the majority of cases in our review. Among the

14 patients from Asia or South America and for whom an
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TABLE 3 Clinical, laboratory, and imaging features of COVID-19 in patients with GBS

ADIP AMSAN AMAN Mixed NA All GBS

References [36-75] [57,67,76-79,98] [67,80-82,97] [83-85] [65,71,82,85-96] [36-97]

No. of patients % (n/total) 59.8 (55/92) 13.0 (12/92) 5.4 (5/92) 3.3 (3/92) 18.5 (17/92) 100 (92/92)

COVID-19 RT PCR % (n)

Positive 81.8 (45) 90.9 (10) 100.0 (4) 100.0 (2) 100.0 (14) 88.2 (75)

Negative 18.2 (10) 9.1 (1) 0 0 0 11.8 (11)

COVID-19 serology % (n)

+IGG 16.4 (9) 16.7 (2) 0 0 0 12 (11)

+IGM 0 0 0 0 0 0

+IGG & +IGM 1.8 (1) 0 20 (1) 0 0 2.2 (2)

�IGG or �IGM 3.6 (2) (IgM) 0 0 0 0 2.2 (2)

NA 81.8 (45) 83.3 (10) 80 (4) 100 (3) 100 (17) 85.9 (79)

Chest imaging % (n)

Positive 60 (33) 75 (9) 20 (1) 33.3 (1) 23.5 (4) 52.2 (48)

Negative 16.4 (9) 16.7 (2) 20 (1) 33.3 (1) 11.8 (2) 16.3 (15)

NA 23.6 (13) 8.3 (1) 60 (3) 33.3 (1) 64.7 (11) 31.5 (29)

COVID-19 symptoms % (n)

Fever 58.5 (31) 63.6.0 (7) 80.0 (4) 66.7 (2) 75.0 (12) 64.3 (56)

Dyspnea 22.6 (12) 45.5 (5) 20.0 (1) 66.7 (2) 12.5 (2) 25.3 (22)

Cough 67.9 (36) 81.8 (9) 40.0 (2) 66.7 (2) 56.3 (9) 66.7 (58)+

Headache 17.0 (9) 0 20.0 (1) 33.3 (1) 6.3 (1) 13.8 (12)

Other UR symptoms 13.2 (7) 9.1 (1) (1) 0 18.8 (3) 13.8 (12)

Myalgia 17.0 (9) 9.1 (1) 0 0 18.8 (3) 14.9 (13)

Anosmia and/or ageusia 32.1 (17) 18.2 (2) 0 0 25.0 (4) 26.4 (23)

GI 20.8 (11) 0 20.0 (1) 33.3 (1) 25.0 (4) 19.5 (17)

Other symptoms 7.5 (4) 0 0 0 0 4.6 (4)

Asymptomatic 5.7 (3) 0 0 0 0 3.4 (3)

COVID-19 labs % (n)

Inflammatory markers 62.5 (25) 77.7 (7) 50.0 (1) 0 45.5 (5) 59.4 (38)

Lymphocytopenia 32.5 (13) 66.7 (6) 50.0 (1) 50.0 (1) 217.3 (3) 37.5 (24)

Normal 20.0 (8) 0 50.0 (1) 50.0 (1) 45.5 (5) 23.4 (15)

COVID-19 ARDS % (n)

Yes 11.1 (6) 18.2 (2) 0 0 5.9 (1) 9.1 (9)

No 88.9 (48) 81.8 (9) 100 (4) 100 (3) 94.1 (16) 90.9 (80)

COVID-19 therapy % (n)

Steroids 14.3 (7) 16.7 (2) 25.0 (1) 0 6.7 (1) 13.2 (11)

Remdesevir 0 16.7 (2) 0 0 0 2.4 (2)

Other antivirals 36.7 (18) 50.0 (6) 0 0 20.0 (3) 32.5 (27)

Hydroxicloriquine 40.8 (20) 58.3 (7) 25.0 (1) 33.3 (1) 46.7 (7) 43.4 (36)

Antibiotics 16.3 (8) 33.3 (4) 50.0 (2) 0 13.3 (2) 19.3 (16)

None 46.9 (23) 16.7 (2) 25.0 (2) 66.7 (2) 33.3 (5) 40.9 (34)

COVID-19 outcome % (n)

Symptomatic 24.2 (8) 14.3 (1) 250. (1) 66.7 (2) 0 20.7 (12)

Asymptomatic 72.7 (24) 71.4 (5) 75.0 (3) 33.3 (1) 100 (11) 75.6 (44)

Death 3.0 (1) 14.3 (1) 0 0 0 3.4 (2)

Note: Percentages are observed cases/cases where the information is available, unless otherwise reported.

Abbreviations: AIDP, acute inflammatory demyelinating polyneuropathy; AMSAN, acute motor sensory axonal neuropathy; GBS, Guillain-Barré syndrome;

GI, gastrointestinal; UR, upper respiratory.
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electrophysiological diagnosis was reported, eight (57.1%) were diag-

nosed with an axonal variant, within the 30% to 65% range reported

in non-COVID-19 populations.104 In the UK and Italian COVID-19

cohorts, a higher than expected frequency of AIDP was noted,33,99

although it was statistically significant only in one study.99 This likely

reflected a higher than expected prevalence of axonal forms in their

GBS control cases (up to 41.2%; seven out of 17 cases).99

In a separate study on the same Italian COVID-19 cohort, the

electrophysiological features of AIDP were compared to non-COVID-

19 AIDP.107 Distinctive features among COVID-19 patients were

higher percentage of cases with absent F waves, which was attributed

to motor neuron hypoexcitability, and increased duration of distal

compound motor action potential (CMAP) without changes in distal

latencies, which was interpreted as conduction slowing within muscle

fibers. A major confounder in this study was that a large proportion of

COVID-19 AIDP patients had a critical illness, which in some of the

cases was due to the underlying lung infection.107

Laboratory testing disclosed albumin-cytological dissociation in

75.3% of cases, comparable to the 64% seen in the overall GBS

population,104 with some variability in possible relation to the timing

of CSF assay and clinical onset. This finding again supports a classical

post-infectious pathophysiology. No study reported CSF cell counts

above 50 cells, and none of the 47 CSF PCR studies tested positive

for SARS-Cov-2 genome, except for one patient in the Spanish

cohort.100 To date, the latter remains an isolated finding among publi-

shed literature.

Testing for autoantibodies was performed in 44 patients and it

was positive in six, including two patients with anti-GM1 (one AMAN

and one mixed electrophysiology),81,95 one classic GBS with anti-

GM292 and another with anti-GD1a.108 Finally, one patient with clas-

sic presentation tested positive for anti-pan-neurofascin IgM84 and

had a severe course with early cranial and respiratory involvement.

Unexpectedly, among the 11 MFS cases only one tested positive for

anti-GD1b93 and none for anti-GQ1b, as compared to 90% positivity

in non-COVID-19 MFS patients.104 The same finding was reported in

the UK cohort.33

Brain and spine MRI were performed in 28 and 31 cases. Com-

mon findings, although present in less than 30% of cases, included

enhancement of cranial nerves, spinal nerve roots, and cauda equina.

Far from being specific to COVID-19, these findings added diagnostic

certainty to GBS diagnosis.

The initial concern that intravenous immunoglobulin (IVIG) might

impair the humoral immunity towards SARS-CoV-2 prompted some

clinicians to prefer plasmapheresis (PEX) as first-line therapy. How-

ever, there was no report of clinical deterioration after IVIG, which

was the preferred treatment in 81.3% of cases (74 patients). This was

the same approach reported in the GBS/COVID-19 cohorts.33,99,100

The data on clinical outcomes were scarce among published cases.

For example, Filosto et al based the good response to treatment in

85% of cases on the clinical impression only, which was comparable

to non-COVID-19 GBS cases (ie, 94%).99

GBS disability scores upon discharge are reported in Table 1. Not

all the studies reported this score, and when possible, we

reconstructed the outcomes based on the clinical descriptions. Over-

all, 43.1% (19 patients) had poor outcome (GBS disability score

[DS] ≥ 3). In the UK and Italian cohort, between 40% and 50% of

COVID-19 GBS cases had a poor outcome, similar to what found in a

non-COVID-19 population used as control.33,99 However, these per-

centages are higher than the 20% reported in the literature for the

general GBS population.104,108 The mortality rate among COVID-19/

GBS cases was 6.5% (Table 1), similar to reports in the general popula-

tion.105 No deaths related to GBS and neuromuscular weakness were

reported in the three cohort studies.33,99,100

Overall, based on our extensive review of published literature,

GBS phenotype among COVID-19 patients did not show distinctive

features. This conclusion was also reached by the UK cohort study.33

Few clinical findings, such as frequent need for ICU stay99,100 and

invasive ventilation,33 and possibly more severe disability outcomes

(Table 1), could suggest that COVID-19 may be a negative prognostic

factor for GBS.

Whether Sars-CoV-2 may be an etiologic agent/trigger remains

to be determined. The three large studies that were designed to

address this specific question reached contradictory conclusions. In

UK,33 GBS incidence was reported to have fallen during the pandemic,

possibly because reduced social contacts and/or increased hand

hygiene had decreased the circulation of other etiologic agents, such

as C. Jejuni or respiratory viruses. The same finding was reported in

Singapore.109 The Spanish study involved 61 emergency departments

during the first 2 months of the pandemic and showed that GBS inci-

dence was 0.15% in patients with COVID-19 and 0.02% in those

without.100 This apparent excess of GBS among COVID-19 cases was

due to a decrease of incidence among the non-COVID-19 population,

confirming the trend showed in UK and Singapore. Indeed, the num-

ber of GBS cases recorded in March to April 2020 was the same of

that in the same months of 2019 (23 vs 21).100 In Northern Italy,

between March and April 2020, a 2.6-fold increase in the incidence of

GBS with 3.3-fold decrease in non-COVID-19 cases was reported.99

However, this finding should be interpreted with caution because

there was an overlap in the confidence intervals between the two

incidences due to the small number of non-COVID-19 GBS cases and

the short period of observation. Similarly, one retrospective study108

from another region in North-Eastern Italy reported 3.5 cases/month

in March to April 2020 compared to the expected rate of 0.67 cases/

month that reflected an increase from four to eight GBS cases in

6 months. However, none of the patients tested positive for Sars-

Cov-2 at the nasopharyngeal swab, and only one was reported with

positive serum and CSF serology, thus, arguing against an etiological

correlation.

Larger and longer case-control studies and surveillance data from

multiple geographic regions will ultimately be able to prove any epide-

miological association between COVID-19 and GBS. In this regard, a

recent international prospective cohort study by the International

GBS Outcome Study consortium enrolled incident GBS cases between

30 January 2020 and 30 May 2020 and found no increase in patient

recruitment during the pandemic.110 A higher prevalence of COVID-

19 was noted among GBS cases when compared to the general
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population, but this could have been secondary to substantial recruit-

ment bias.110

2.3 | Cranial neuropathies

Isolated or multiple cranial neuropathies not associated with poly-

neuropathy or other neurological disorders have been reported

(Table 2).93,96,111-134 These included suspected bilateral olfactory

neuropathy,111,112 optic neuropathy,113,114 oculomotor neuropathy

either isolated96,115,116,135 or associated with multiple cranial

neuropathies,93,128 unilateral117-124 or bilateral facial nerve palsy,125-127

sensorineural hearing loss,129-131 and lower cranial nerve impair-

ment.132-134 Facial nerve palsy was the most commonly reported with

20 cases, followed by isolated oculomotor nerve neuropathy. With few

exceptions,114,135 all cases were painless.

Olfactory dysfunction (ie, anosmia or hyposmia) is an early and

frequent symptom of COVID-19, reported by up to 80% of patients

within the first 5 days of the disease.136,137 One hypothesis is that

Sars-CoV-2, similar to Sars-CoV, can invade the olfactory bulb causing

neuronal death or dysfunction. Few reports have shown isolated

involvement of the olfactory bulbs by magnetic resonance imaging

(MRI) contrast enhancement,111 T2 MRI hyperintensity,138 or leuko-

cytic infiltrate and axonal damage on brain autopsy.112 Evidence that

these symptoms may be transitory in the majority of patients has

suggested a competitive mechanism on the olfactory receptors rather

than a permanent cell damage.137 For yet unknown reasons, olfactory

symptoms are strongly associated with gustatory dysfunction (ie,

ageusia or dysgeusia).136

We identified two literature reports of isolated optic neuropa-

thy.113,114 An inflammatory mechanism was hypothesized based on

MRI contrast enhancement in one case and evidence of papillitis and

uveitis in the other one. The large ALBACOVID cohort in Spain

reported a clinical diagnosis of optic neuropathy in 1 out of

841 patients.2 Few studies have demonstrated retinal abnormalities.

Optical coherence tomography (OCT) changes have been described in

a series of 11 COVID-19139 but, interestingly, without any clinical cor-

relate. Other subtle retinal abnormalities have been described, includ-

ing larger retinal vein diameters and vascular lesions.140-142

The facial nerve has attracted much interest given the frequent

occurrence of gustatory symptoms among COVID-19 patients.

Reports of severe unilateral dysgeusia leading to the diagnosis of ipsi-

lateral facial palsy however remain isolated.68,117,128 A retrospective

study conducted during the first wave of COVID-19 in a single town

in Northern Italy reported an increased incidence of Bell's palsy com-

pared to the same period of 2019 (7.1 vs 4.1 cases per 100 000

inhabitants, RR 1.73).143 The clinical phenotypes were largely compa-

rable between the two periods and no differences were reported in

the response rates to steroid treatment. A key limitation was that the

majority of patients with COVID-19 were diagnosed clinically and not

based on molecular testing. Another study found an unusually large

cluster of six cases of Bell's palsy in a pediatric population, but the

association with COVID-19 was only clinically presumed as all cases

either tested negative or were not tested at all for Sars-CoV-2.144 A

prospective study conducted in Turkey reported a higher than

expected seroprevalence of COVID-19 (i.e. IgM and/or IgG positivity)

among otherwise asymptomatic patients presenting with isolated uni-

lateral facial palsy.145

Auditory complications have been described in COVID-19

patients, with reports of sudden onset of unilateral129,130 or bilat-

eral131 sensorineural hearing loss. In one case,131 a likely inflammatory

pathophysiology was suggested by MRI contrast enhancement of the

ipsilateral cochlea and temporal bone. These findings were not con-

firmed by another MRI study.129 A larger survey among severe

COVID-19 survivors found self-reported change in hearing and/or tin-

nitus in 16 out of 138 adults (13.2%) at 8 weeks after hospital

discharge.146

Three case of hypoglossal nerve neuropathy have been

reported.132-134 All occurred unilaterally and were temporally related

with either endotracheal intubation or prone positioning, suggesting a

iatrogenic etiology.

Based on available evidence, any direct etiological association

between COVID-19 and cranial neuropathies seems inconclusive.

Larger and longer case-control studies will be needed to address any

causal link.

2.4 | Chronic inflammatory demyelinating
polyneuropathy and other neuropathies

Because GBS patients reported in Table 1 were not prospectively

followed up, it is unclear whether some of them were in fact acute-

onset chronic inflammatory demyelinating polyneuropathy (CIDP),

which is reported in up to 5% to 16% of patients in pre-COVID-19

studies.147

In our literature review, we did not find any report linking

COVID-19 to a new diagnosis of CIDP.

The potential of COVID-19 to precipitate CIDP has been pro-

posed in few reports. One case reported a 69-year-old man with a

6-year history of CIDP on multiple immunosuppressive and immuno-

modulatory treatments who developed a clinical exacerbation in con-

comitance with COVID-19.148 This presentation was unusual for this

patient due to a more severe and extended phenotype that included

respiratory failure, tetraparesis and cranial nerve involvement. The

authors noted serum IL-6 elevation and wondered if this could be a

mechanism involved in CIDP exacerbation. The outcome was positive

with almost complete clinical and electrophysiological recovery after

two cycles of IVIG. A single additional report149 similarly described a

more severe clinical picture after COVID-19 with need for mechanical

ventilation, however with relatively good prognosis after IVIG.

The above-mentioned case series on femoral nerve biopsies of

35 COVID-19 patients showed evidence of neuritis in 9 cases, of

whom 4 also had myositis.23 The main histological findings were peri-

vascular inflammation in 6 patients, endoneural infiltrates in 1, and

both perivascular and endoneural inflammatory cells in 2. Cell infil-

trates were mainly CD68-positive histiocytes. None had signs or
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symptoms of GBS. However, no clinical data supported these findings,

and some of the neuritis cases had comorbid conditions (diabetes)

and/or had received treatments (such as pembrolizumab) that could

have caused this presentation.23

Although COVID-19 has been linked to histologically confirmed

cutaneous vasculitis, Kawasaki-like vasculitis and possibly CNS

vasculitis,150 there are few evidences linking COVID-19 to vasculitic

neuropathies. An unusually large cluster of 11 multiplex mononeuritis

among 69 patients admitted for severe COVID-19 has been

reported.151 None of these patients showed clinical or electrophysio-

logical evidence of critical illness neuropathy/myopathy, and no focal

demyelination at entrapment sites was noted to point towards prone

positioning as a likely culprit. Electrodiagnostic studies demonstrated

axonal loss in the affected nerves. The authors found their data to be

consistent with a vasculitic pathogenesis, although no nerve pathol-

ogy was performed to confirm this hypothesis. Asymmetric sensory-

motor polyneuropathy has been reported in some COVID-19

patients.152,153 Given the association with necrotic skin lesions in one

of these cases, vasculitis was considered to be the most likely etiol-

ogy.152 Two cohort studies reported the occurrence of subacute poly-

neuropathy temporally related to COVID-19 that did not fulfill the

diagnostic criteria for GBS.4,6 However, no additional clinical and elec-

trodiagnostic data were provided to make a specific diagnosis. Histo-

logical studies would be necessary to confirm this association,

and more important to distinguish between true vasculitis and vasculi-

tis mimics—that is, vascular thrombotic disease—whose occurrence

may be more frequent in the setting of COVID-19 induced

hypercoagulability.

Reports of brachial plexopathy following COVID-19 and unrelated

to ICU stay or prone positioning are relatively scarce. One case of

painful brachial plexopathy occurring about 3 weeks after COVID-19

has been reported.154 This patient developed a purpuric rash on the

ipsilateral hand and forearm which was deemed to be induced by

thrombotic microvascular injury although no skin biopsy was per-

formed. The authors argued that the peculiar pattern of axonotomy

with sparing of some fascicles and severe denervation of other fasci-

cles within the same trunks and cords along with the dermatologic

findings suggested a thrombotic mechanism in the setting of COVID-

19-induced hypercoagulability. A picture more consistent with neural-

gic amyotrophy has been reported in four cases to date.27–30 Typical

symptoms of pain and shoulder or hand weakness started between

one to several weeks after COVID-19 onset. MRI findings included

T2-hyperintensity of ipsilateral cervical roots30 and increased T2 signal

of affected muscles likely secondary to denervation-related

edema,27,28 as would be expected for classic neuralgic amyotrophy. In

addition, all cases were moderately responsive to high-dose oral ste-

roids. Peculiar features reported in individual cases were bilateral bra-

chial plexus involvement,27 sparing of motor fibers29 and association

with a systemic immune-mediated process similar to multisystem

inflammatory syndrome.28

The potential of COVID-19 to cause small fiber neuropathy (SFN)

has been postulated based on the occurrence of autonomic dysfunc-

tion among COVID-19 patients presenting with GBS (Table 1). In one

of such cases, autonomic dysfunction in the form of profuse sweating,

constipation and erectile dysfunction preceded motor symptoms.97 In

the ALBACOVID registry, 2.5% of patients were diagnosed with auto-

nomic dysfunction.2 Although growing literature interest is directed

toward SFN in “long COVID” (see below), in our review we did not

find any additional literature report on isolated SFN being diagnosed

in the acute setting.

2.5 | Muscle and neuromuscular junction

Myalgia and asymptomatic CK elevation are common findings among

COVID-19 patients but do not correlate with clinical, elec-

trodiagnostic, or histologic evidence of muscle damage nor with the

severity of the underlying infection, and do not predict the subse-

quent development of myopathy.2

Rhabdomyolysis however may be more common in patients with

severe COVID-19; it may be a presenting symptom predicting worse

outcomes.155,156 Patients present with significant CK elevation, up to

33 000 UI in one study, and a spectrum of clinical findings, including

myoglobinuria, acute kidney injury, weakness, which is proximal, lower

limb-dominant, acute and symmetric and neurogenic respiratory fail-

ure requiring mechanical ventilation.

A clinical and laboratory diagnosis of myopathy has been reported

in 0.5% to 3.1% of patients with COVID-19 depending on the study

cohort.2,8 However, no electrodiagnostic or biopsy studies were avail-

able for the majority of patients. In the ALBACOVID cohort, the

occurrence of myopathy was predicted by longer ICU stay.2

Growing literature has reported the occurrence of myositis in the

setting of COVID-19 (Table 4).10,157-164 These include patients with

classic proximal myopathy,10,157-159,164 cases with marked bulbar

involvement,160 presentations consistent with dermatomyositis,161

including cases with amyopathic dermatomyositis and interstitial lung

disease.165,166 In the majority of cases, the diagnosis of myositis was

determined based on clinical presentation supported by laboratory

findings (ie, CK elevation, and, when available, myositis-specific auto-

antibodies) in the setting of a molecular diagnosis of viral (ie, SARS-

CoV-2) infection. In few patients, the diagnosis was confirmed by

muscle biopsy10,160 and/or muscle MRI.158,160,162 In one case, elec-

tron microscopy ruled out direct viral invasions as pathophysiological

mechanism of muscle damage.160 A dramatic case of limb ischemia

complicated by severe muscle injury, inflammation and compartment

syndrome was attributed to COVID-19-induced hypercoagulability.163

In a case series of COVID-19-associated paraspinal myositis,162

seven out of nine patients who underwent spine MRI for back pain,

lower extremity weakness, or lower extremity paresthesia were found

to have edema and enhancement of the paraspinal muscles (ie, erector

spinae and multifidus paraspinal muscles) at the lumbar level.

Although the clinical relevance of these finding was unclear, the

authors hypothesized that myositis could be relatively common in

COVID-19 patients. It cannot be ruled out that the paraspinal involve-

ment could have been secondary to a protracted immobilization

among severe COVID-19 patients.
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The biopsy-based series of 35 patients by Suh et al showed a high

percentage of critically ill COVID-19 patients with histological evi-

dence of muscle involvement although, unfortunately, this was not

supported by any information on clinical presentation and neurologic

exam.23 Specifically necrotizing myopathy occurred in nine patients,

as shown by myophagocytosis of necrotic fibers, whereas myositis

occurred in seven cases and was characterized by perivascular and

endomysial inflammatory cell infiltrates, which were mainly

CD68-positive, CD4-positive, and/or CD8-positive histiocytes and T-

cells. Diffuse or multifocal MHC-1 immunostaining of non-necrotic/

non-regenerating muscle fibers was evident in all 16 patients with

myositis or necrotizing myopathy. In one case, MHC-1 was positive in

the perifascicular muscle fibers, a finding often seen in dermatomyosi-

tis; however, this was not supported by any clinical information. An

TABLE 4 Literature review on COVID-19-induced myositis

Phenotype References
Age
(years) Sex

Temporal

association
(days) CK (initial) Diagnosis Treatment Outcome

Proximal

myopathy

[157] 38 M +4 21 000 Clinical, lab RRT, hydration Complete

recovery

Proximal

myopathy

[158] NA NA -4 25 384 MRI, lab Hydration Prolonged ICU

Proximal

myopathy

[159] 38 M +3 42 670 Clinical, lab Hydration Complete

recovery

Proximal

myopathy

[10] 38 M 0 29 800 Clinical, lab, biopsy Oral and IV steroids Partial

recovery

Proximal

myopathy

[164] 40 M +14 850 Clinical, EMG, MRI,

biopsy

COVID-19

treatment

Prolonged

rehabilitation

Bulbar

involvement

[160] 58 F +21 700 Biopsy, MRI, EMG,

lab (anti SSA, anti-

SAE-1ANA), EM

IV steroids Partial

recovery,

PEG

Dermatomyositis [161] 64 M Preceded

COVID-19

990 Clinical, lab (ANA) IVIG,

mycophenolate,

oral steroids

Partial

recovery

Dermatomyositis [161] 50 F Preceded

COVID-19

150 Clinical, lab (anti-

MDA5, SAE-1)

IV steroids, MTX,

cyclophosphamide

Death

Dermatomyositis [161] 26 F Preceded

COVID-19

8349 Clinical, lab (Mi2) MTX, oral steroid,

HXQ

Complete

recovery

Dermatomyositis [161] 46 M Preceded

COVID-19

570 Clinical, lab (anti

SAE)

HXQ,

mycophenolate,

MTX

Complete

recovery

Paraspinal

myositis

[162] 33 F Preceded

COVID-19

NA Spine (T/L) MRI NA Complete

recovery

Paraspinal

myositis

[162] 60 M Preceded

COVID-19

NA Spine (C/L) MRI NA Complete

recovery

Paraspinal

myositis

[162] 63 M Preceded

COVID-19

NA Spine (T/L) MRI Intubation Ventilator

dependence

Paraspinal

myositis

[162] 87 M Preceded

COVID-19

NA Spine (T/L) MRI NA Complete

recovery

Paraspinal

myositis

[162] 54 F Preceded

COVID-19

NA Spine (L) MRI Intubation Partial

recovery

Paraspinal

myositis

[162] 62 M Preceded

COVID-19

NA Spine (C/T/L) MRI Intubation Partial

recovery

Paraspinal

myositis

[162] 56 M Preceded

COVID-19

NA Spine (C/T/L) MRI Intubation Partial

recovery

Muscle ischemia

(bilateral

thighs)

[163] 33 M 0 Elevated

(not

reported)

Clinical, lab, CT Anticoagulation,

fasciotomy,

bilateral

amputation

Lower limbs

amputation

Abbreviations: EM, electronic microscopy; HXQ, hydroxychloroquine; MTX, methotrexate; NA, not available; RRT, renal replacement therapy; lab = CK

elevation, or additional studies when indicated.
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autopsy series in Brazil found evidence of myositis in two out of

10 examined autopsies, although the study provided few clinical and

histological data.167

The potential of COVID-19 to cause new-onset myasthenia

gravis (MG) has been proposed based on few case reports of both

ocular168 and generalized MG.4,169,170 One study described three

patients without previous neurologic or autoimmune disorders who

developed ptosis, diplopia, and/or dysphagia 5 to 7 days after

COVID-19.169 Patients were diagnosed based on decremental

responses on repetitive nerve stimulation and positive acetylcholine

receptor (AchR) antibody testing. Treatment with steroids, IVIG and

PEX was effective. Few cases of anti-muscle-specific tyrosine kinase

(MuSK) MG have been also described.171,172 COVID-19 could be a

trigger of MG exacerbations, possibly with worse outcomes. We

found literature reports on MG crisis requiring mechanical intubation,

although the reported cases were responsive to IVIG.173,174 One bias

is that some of the medications that have been used for COVID-19,

such as hydroxychloroquine and azithromycin, may cause MG exacer-

bations. A further concern is that a superimposed infection with Sars-

CoV-2 may worsen the respiratory status of patients admitted for MG

exacerbation. A retrospective Brazilian study in 15 MG patients with

COVID-19 showed high invasive ventilation and mortality rates (73%

and 30%, respectively).175 Smaller case series have confirmed the

more frequent need for invasive ventilation, however with lower mor-

tality rates.174,176

MG patients may be more prone to be infected by SARS-CoV-2

given their autoimmune disorder or treatment-related immunosup-

pression, and they may have worse outcomes due to the risk of neu-

romuscular respiratory failure. In the early stages of the pandemic,

two major registry-based studies focused on this topic.177,178 Using

the TriNetX COVID-19 Research Network platform (www.trinetx.

com), a global COVID-19 dataset, Roy and colleagues found that MG

patients with COVID-19 had a significantly higher risk of hospitaliza-

tion and death when compared to the entire COVID-19 cohort.177

Data from the COVID-19 Associated Risks and Effects in MG (CARE-

MG), a registry launched by a global MG working group demonstrated

a mortality of 24% and MG relapse rate of 40% among 91 patients,

which is higher than expected in non-COVID-19 MG.178 More recent

retrospective studies, however, have shown that the risk of COVID-

19 in MG patients may not be higher than that of the general

population,179 that COVID-19 may affect only minimally the course of

MG,179-181 and mainly in those with high Myasthenia Gravis Founda-

tion of America (MGFA) class (ie, ≥IV).180

2.6 | ICU-related PNS complications

In one of the few available prospective COVID-19 series, complica-

tions related to ICU stay represented the most common cause of PNS

involvement, with critical illness myopathy (CIM) and/or critical illness

polyneuropathy (CIP) being the most common diagnoses (eight out of

nine patients with PNS involvement).10 The first published case series

on CIM/CIP and COVID-19-reported 11 patients with clinical and

neurophysiological diagnosis of CIM or CIP among 225 COVID-19

patients admitted to ICU.182 This proportion was lower than pre-

COVID-19 literature data, but likely affected by higher mortality rates

related to COVID-19 and/or inability to perform electrodiagnostic

studies in all patients given the stress on the healthcare system. The

available electrophysiological and biopsy data in this cohort did not

show any distinctive feature. Of note, muscle biopsies did not show

thrombi or inflammatory infiltrates in the vessels. A smaller (n = 6) but

well-characterized cohort of CIM patients was described by Madia

et al, with patients initially suspected of having myopathy due to ven-

tilator wean failure, 6 to 14 days from initial intubation.183 Patients

presented clinically with flaccid quadriplegia and preserved cranial

muscles, electrophysiological studies were consistent with irritable

myopathy and preserved sensory responses, CK was normal or mildly

elevated (highest level of 1274 UI/L), and correlated prospectively

with the course of the disease, which was overall benign with com-

plete or almost complete recovery. The majority of patients had

received hydroxychloroquine, but no specific treatments were trialed

for the concomitant myopathy.183 Based on prospective case series

showing potential benefit of IVIG to prevent disease progression in

COVID-19184 and on similar experiences with influenza A and B infec-

tion, early administration of IVIG has been proposed as a potential

preventative intervention for CIM/CI, although evidence is still limited

to individual case reports.185

Prone positioning has been found beneficial in ARDS and suc-

cessfully translated to the COVID-19 care in the ICU, but it has also

posed unexplored challenges.186 In the setting of PNS disease, entrap-

ment neuropathies have been the most common complication.187-191

Among 83 patients admitted for COVID-19-related ARDS and requir-

ing prone ventilation, 12 (14.5%) developed this complication.187 The

most frequent sites of injury were ulnar nerve (28.6%), radial nerve

(14.3%), sciatic nerve (14.3%), brachial plexus (9.5%), and median

nerve (9.5%). A similar study in Italy involved 135 COVID-19 patients

requiring prone ventilation of whom 7 (5.2%) developed entrapment

neuropathies, with again the ulnar nerve (five out of seven) and the

brachial plexus (two out of seven) being the most frequently affected.

In the majority of cases, axonotmesis was evident on neurophysiologi-

cal exams.188 These percentages are higher than expected based on

the clinical trials that have validated the use of prone ventilation in

the pre-COVID era.186 One hypothesis is that patients with COVID-

19 ARDS may be more vulnerable to peripheral nerve injury, but no

control patients were included to address this question in both stud-

ies.187,188 Long and repeated prone positioning, and the comorbidities

associated with severe COVID-19 (eg, diabetes, obesity, old age)

rather than direct mechanisms could explain a predisposition to more

frequent nerve injury among COVID-19 patients.

Compression of the lateral femoral cutaneous nerve at the level

of the anterior-superior iliac spine or inguinal ligament may be a rela-

tively uncommon but specific complication of prone position-

ing.192,193 Additional complications have been linked to nerve injury

during endotracheal tube insertion or as a result of its displacement

during prone positioning. A case of Tapia syndrome (ie, concomitant

paralysis of hypoglossal and vagus nerves) has been described in one
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COVID-19 patient.132 At least one of the two cases of hypoglossal

paralysis reported in Table 2 was likely due to orotracheal intubation

and prone ventilation rather than to multineuritis as hypothesized.133

2.7 | Long COVID and PNS involvement

Descriptions of COVID-19 patients who develop neurological com-

plaints for several months after the resolution of respiratory symp-

toms are increasingly reported. Interestingly, and probably a unicum in

the history of neurology, the first reports of such nature have been

spread by patients themselves, using social network platforms, such

as Twitter and Facebook, and then amplified by the mainstream

media.

The terms “long-COVID” or post-acute sequelae of SARS-CoV-2

(PASC)194 have been used to describe this picture, although there is no

consensus on the potential timeline of disease progression, from acute

(eg, less than 4 weeks), to subacute (eg, 4-12 weeks) and chronic (eg,

more than 12 weeks), since the natural history of the entity itself is

unknown. This and other methodological flaws are major limitations to

the interpretation of the literature on long-COVID, including timing and

type of assessment (self-administered questionnaires, interviews, digital

apps, physical assessment), poor definition of symptoms and inclusion

criteria, heterogeneity of COVID-19 severity, co-morbid illnesses

(either known or undiagnosed) with respective treatments and lack of

control groups.195

Initial reports have focused on the involvement of the CNS,

suggested by subtle symptoms and signs of cognitive and neuropsy-

chological impairment, frequently described under the umbrella term

of “brain fogginess,” such as mental slowness, memory difficulties,

poor concentration, mental fatigue, and anxiety. Depending on the

epidemiological scenarios, either hospitalized or self-quarantined

patients, the frequency of cognitive impairment 4 months after onset

has been reported in up to 38% and 18% of patients, respec-

tively.196,197 These findings are supported by impaired performance

on neuropsychological testing and by evidence of frontal and parietal

hypometabolism on FDG-PET.198,199 Proposed mechanisms include

long lasting neuronal damage caused by hypoxia, neuroinflammation,

or virus permanence.200

More recently, an increasing body of literature has suggested an

involvement of the PNS during the later stages of COVID-19. As

pointed above, anosmia and dysgeusia besides being common early

COVID-19 symptoms, seem to persist in up to 27% of patients after

the acute phase, possibly suggesting irreversible damage to the nerve

terminals or the sensory receptor cells.197

Pain is one of the most common long-term PNS symptoms after

COVID-19, reported by up to 30% of patients depending on the

cohorts.200 Localized pain, such as chest pain, joint pain, and headache

is the most frequent complaint, but there is an increasing number of

reports on a more diffuse and ill-defined pain among long-haulers, fre-

quently associated with descriptors such as fatigue, myalgia, and par-

esthesia.196,197,200 One hypothesis is that the release of pro-

inflammatory cytokines during the acute infection may cause

hypersensitization of peripheral nociceptors followed by plastic

changes and central sensitization during the chronic stage.

Muscle atrophy seems to be an early feature of severe COVID-

19, in possible relation to the release of proinflammatory cytokines

(TNF-alpha, IL-1 and IL-6), a mechanism that has been well established

in other diseases, such as AIDS and cancer, where muscle loss is a

prominent symptom.201 Additional mechanisms, specific to COVID-

19, could be prolonged immobilization with type 2 muscle atrophy,

use of high-dose steroids and neuromuscular blockade, and nutritional

deficiencies related to prolonged feeding assistance. Whether these

manifestations are reversible and their long-term impact on COVID-

19 patients remains to be determined, and prospective studies are still

lacking.

Fatigue has been described in as high as 53% of patients at

2 months after resolution of other COVID-19 symptoms.202 Its fre-

quent association with symptoms, such as tachycardia, postural hypo-

tension, dizziness, low-grade fever, bowel, bladder, or sexual

dysfunctions seems to support a role for autonomic dysfunction as a

possible encompassing mechanism. A subset of these patients meets

the criteria for postural orthostatic tachycardia syndrome (POTS). In

two case series on patients presenting after COVID-19 with fatigue

and other lingering symptoms, such as palpitations, dizziness, or dys-

pnea, POTS was the final diagnosis in the majority of cases.203-205 A

possible role of autonomic dysfunction was suggested by a case series

of 50 outpatients presenting with chronic fatigue 3 months after

COVID-19, where 26% had sudomotor dysfunction as diagnosed by

electrochemical skin conductance.206 In a comparable study on

27 patients referring to the Mayo Clinic for similar complaints,

sudomotor function was abnormal in 36%, cardiovagal function in

27%, and cardiovascular adrenergic function in 7% of patients.205

Sensory symptoms referable to small fiber neuropathy (SFN) have

been reported in a subset of long haulers. Abrams et al retrospectively

studied the clinical features of 13 patients presenting with painful par-

esthesia and numbness that developed during or after SARS-CoV-2

infection and who had nerve conduction studies showing no evidence

of a large fiber polyneuropathy.207 Six out of 13 patients had a final

diagnosis of SFN on skin biopsy, including two cases with

dysautonomia on autonomic testing.207 No correlation with COVID-

19 severity was found.207

The spectrum of symptoms associated with long COVID has

prompted comparisons with myalgic encephalomyelitis or chronic

fatigue syndrome (ME/CFS).208 This is not surprising as ME/CFS

could be secondary to viral infections such as EBV, rotavirus, or

HHV-6, among others.209 One may hypothesize that at least some of

the symptoms observed with long COVID could be a non-specific

response to an infectious (viral) illness in predisposed individuals, as it

has been proposed for ME/CFS.208

Despite the mounting pressure from the public opinion, which

parallels the increasing frequency of referrals to neurology for “long-
COVID” symptoms, the quality and quantity of literature on this topic

is still limited. Many questions remain unanswered, including the tem-

poral criteria for defining “long-COVID” itself, whether this is a single

entity or an umbrella category for multiple and unrelated
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presentations, and, more importantly, whether it is secondary to a

non-neurological pathological process, such as a psychiatric disorder

(such as post-traumatic stress disorder or depression), or expression

of the pulmonary and/or cardiac involvement in the early stages of

the disease.

2.8 | COVID-19 vaccines: An overview

To date, the Food and Drug Administration (FDA) has granted emer-

gency use authorization for three COVID-19 vaccines: two mRNA

vaccines, that is, BNT-162b2 SARS-CoV-2 vaccine (Pfizer/

BioNTech)210 and mRNA-1273 SARS-CoV-2 vaccine (Moderna),211

and one replication-deficient adenovirus-based vaccine, that is, Ad26.

COV2.S (Johnson & Johnson).212 Booster doses have been recently

approved for these vaccines as well. Two other adenovirus-based vac-

cines, ChAdOx1 nCoV-19 vaccine (AstraZeneca/Oxford or

Vaxzevria)213 and COVID-Vac/Sputnik V (Gamaleya Institute)214 have

been granted conditional marketing authorization in Europe and

Russia. An additional vaccine based on a radically innovative

approach, that is, recombinant protein nanoparticles, NVX-CoV2373

(Novavax), is at and advanced stage of development, with a phase III

clinical trial showing efficacy and safety rates similar to the mRNA

vaccines.215 For multiple other vaccine candidates (https://covid19.

trackvaccines.org/vaccines/), some of which already available for use

in different countries, to date no large phase three clinical trials have

been published. Among these, BBIBP-CorV vaccine (Sinopharm, Bei-

jing Bio-Institute of Biological Products Co. Ltd.),216 an inactivated

SARS-CoV-2 isolate, has been listed for emergency use by the World

Health Organization (WHO) (https://www.who.int/news/item/07-05-

2021-who-lists-additional-covid-19-vaccine-for-emergency-use-and-

issues-interim-policy-recommendations), potentially expediting its

global roll out.

An overwhelming amount of both retrospective and prospective

data have suggested that COVID-19 vaccines are safe, and beside

decreasing COVID-19-associated morbidity and mortality, vaccination

has been associated with lower mortality rates from all other causes,

supporting the notion that COVID-19 vaccination does not increase

the risk of death.217

2.9 | Guillain-Barré syndrome following COVID-19
vaccines

Concern for autoimmunity secondary to COVID-19 vaccines has

been raised by the adenovirus vaccine trials, with cases of trans-

verse myelitis reported after the Johnson & Johnson and

AstraZeneca vaccines, although later determined to be unlikely

related to the vaccine.212,213 Similar concerns of have been raised

by the mRNA vaccines as well, Pfizer and Moderna, which have

been associated with higher than expected rates of myocarditis

and pericarditis in post-marketing surveillance studies and real-

world cohorts.218,219

The potential of COVID-19 vaccines to cause GBS, particularly

the adenovirus vector-based, vaccines has been initially suggested by

cases that occurred during the phase III clinical trials. The association

between GBS and vaccination has been long debated since initial

reports of increased incidence of GBS after the swine influenza vac-

cine during the USA/New Jersey 1976 vaccination campaign.104

Thereafter, similar concerns have been raised for multiple vaccines,

including oral polio, DPT, rabies, hepatitis B, and quadrivalent conju-

gated meningococcal vaccines.220 However, large case-control studies

have failed to show causal association.220 Two patients in the John-

son & Johnson trial developed GBS after the single-dose vaccine

injection, specifically one in the placebo group and one in the vaccine

group, thus, with identical incidence in both the trial arms.221 The case

in the vaccine arm was an otherwise healthy 60-year-old female who

developed a GBS/MFS overlap syndrome 10 days after the vaccine

administration. No distinctive features were noted, and she was nega-

tive for anti-GQ1b antibody.221 No GBS case occurred during the

AstraZeneca phase III clinical trial. In addition, there have been no

reports of GBS after the administration of mRNA vaccine during the

clinical trials.

Following the start of the worldwide mass vaccination campaign,

real-world case reports of GBS after COVID-19 vaccine have emerged.

Until 1 December 2021, we identified a total of 24 case reports and

16 publications,221-236 with the majority of cases occurring after the

AstraZeneca vaccine (17 out of 24).222,224,225,229-232,235,236 Initial

reports included two patients with classic AIDP occurring 11 and

14 days after the first dose of the ChAdOx1c nCoV-19 vaccine

(AstraZeneca).224,225 GBS variants, including bifacial weakness with or

without paresthesia, and pure sensory GBS, could be more common

after the AstraZeneca vaccine, occurring in 13 out of 17 cases. All

cases occurred after the first dose, with a median time from vaccina-

tion to symptom onset of 11 days (range 7-21 days). The neurophysio-

logical diagnosis was AIDP in the majority of cases (13 out of 14 cases

where it was available), whereas in a single case it was AMSAN.

Patients were treated with conventional therapies (ie, IVIG) and the

outcome was positive, with GBS disability score ≤ 2 in 10 out of

14 cases where this information was available. The occurrence of GBS

after mRNA-based vaccines has been also reported, although less com-

monly (n = 5 cases).223,227,228,233,234 Interestingly, GBS occurred after

the second dose as well (three out of five cases), with a range of 5 to

16 days, as well as after the first with a range of 1 to 14 days. The clin-

ical presentation was paraparetic GBS in four out of five cases, with

the remaining case being a classic form. Neurophysiological studies

were consistent with AIDP in two cases and AMSAN in one case.

Beside the GBS case during the Johnson & Johnson trial,221 we did not

find other reports associated with this vaccine. The literature on GBS

after the other COVID-19 vaccines is quite scarce, with to date a sin-

gle report of classic GBS (AMSAN) 5 days after the second dose of the

CoronaVac vaccine.226

A cohort study conducted from 1 January 2021 to 30 June 2021 at

the Birmingham University Hospital, United Kingdom, compared

16 cases of GBS presenting within 4 weeks after the first COVID-19

vaccine (14 had received the AstraZeneca vaccine and the remaining
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two the Pfizer and Moderna vaccines) to a historical cohort of 114 con-

secutive GBS patients diagnosed between 2005 and 2019.237 The

authors found a 2.6-fold increase in number of admissions for GBS dur-

ing the study period, compared to the same period in the previous

3 years.237 Patients presenting with GBS after AstraZeneca vaccine had

more frequent facial and bulbar involvement than the historical cases,

and more commonly they had the bifacial weakness and distal paresthe-

sia GBS variant, similar to the above-mentioned reports.237-239

Large surveillance programs to identify any excess of GBS cases

after any of the vaccines are already underway, including initiatives

from national and international public health agencies and institutions

(CDC, FDA, EMA, WHO), and neurological societies such as the

Peripheral Nerve Society (www.pnsociety.com) and the International

GBS Outcome Study group (https://gbsstudies.erasmusmc.nl/). Based

on preliminary reports, in the United States, there have been

132 cases of GBS after 13.2 million doses of Ad26.COV2.S vaccine

(Johnson & Johnson).240 The estimated rate is 9.8 cases per million

doses, that is approximately four times the expected rate. The median

age is 56 years (range 45-62 years), the median time to onset from

vaccination is 13 days, 35% had a life-threatening presentation, and

one patient died.240 In a preliminary report on 100 cases from the

same series, and unexpectedly high frequency of bifacial weakness, in

up to 25% of patients, was reported. In Europe, a total of 227 cases of

GBS occurred after 51 million doses of ChAdOx1 nCoV-19

(AstraZeneca) (https://www.ema.europa.eu/en/documents/covid-19-

vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-

previously-covid-19-vaccine-astrazeneca-9-december-2021_en.pdf).

Based on these data, the European Medicines' Agency (EMA) safety

committee has recommended a change in product information for the

AstraZeneca vaccine to include a warning about cases of GBS

reported following vaccination (https://www.ema.europa.eu/en/

news/meeting-highlights-pharmacovigilance-risk-assessment-

committee-prac-5-8-july-2021). Data derived from the English

National Immunization Database of SARS-CoV2 vaccinations linked

to hospital admission data, found a 2.04-fold increased risk for GBS

(95% confidence interval [CI]: 1.60-2.60) within 28 days after the

AstraZeneca vaccine administration, but not after the Pfizer vac-

cine.241 In three districts of India, over the 1.5 million individuals who

were vaccinated with COVID-19 vaccines between mid-March to

mid-April 2021, with 80% being ChAdOx1-S nCoV-19 (AstraZeneca),

there were seven cases of GBS that occurred within 2 weeks of the

first dose of vaccination.239 All seven patients developed severe GBS,

and a higher than expected rate of bilateral facial weakness was

observed. The frequency of GBS was calculated to be 1.4- to 10-fold

higher than expected in that population and in the same period of

time. In a large multi-institutional study in Taiwan involving 18 269

healthcare workers who received AstraZeneca vaccine between

22 March and 31 May 2021, one single case of GBS variant (bilateral

facial palsy with paresthesia) after the first vaccine dose was identi-

fied.242 A similar large cohort study in Mexico among 3 890 250

recipients of the Pfizer vaccine within 30 days from the first vaccine

administration, identified seven incident cases, with observed inci-

dence of 0.18/100 000 which was similar to the expected

community-based rate, indicating no increased risk.243 Among the

613 780 patients who had received both doses, no GBS cases were

reported. Of note, the seven GBS cases occurred after a median of

6 days (range 3-28), were classic GBS in the majority of cases (five out

seven), with a relatively higher proportion of AMAN (four out of

seven) as would be expected in this geographical scenario.243

In contrast, during surveillance studies for the mRNA-based vac-

cines, no vaccine-outcome association, including the occurrence of GBS,

met the pre-specified requirement for a signal.244 This may suggest that,

similar to thrombotic complications (see below), antigens mimicking neu-

ral components may be related to the structure of the adenovirus vec-

tors, and this would explain the relative safety of mRNA vaccines.245

Overall, these data are preliminary and should be taken cautiously,

without leaping to costly conclusions.246 The only cohort study so far

on GBS and COVID-19 vaccines is retrospective, included four cases

out of 16 that later were diagnosed has having acute onset CIDP, was

small and could have been affected by random clustering bias.237 Sur-

veillance programs have so far been limited to relatively short periods

of time (weeks or months). The surveillance system itself is based on

passive reporting, which is subject to under-reporting and lack of direct

and unbiased comparison of groups. Spontaneous reporting frequently

contains incomplete medical record information (ie, clinical findings,

electrodiagnostic studies, CSF data, diagnostic certainty, response to

treatment), and therefore GBS cases must be considered presumptive

pending analysis of medical records and definitive diagnoses. Finally,

these preliminary analyses compared the observed GBS incidence with

expected rates reported in the pre-COVID literature, but this assumes

that the vaccinated population is subject to the same background rate

as the population that was assessed in the literature.

Assuming an incidence of 8 to 19 GBS cases/million adults/

year,247 for every billion people vaccinated against COVID-19, by

chance alone we would expect to see 900 to 2200 GBS cases within

6 weeks after a one dose vaccine, and 1500 to 3700 within a

10-week period after a two-dose vaccine.

2.10 | COVID-19 vaccines and cranial
neuropathies

The occurrence of cranial neuropathies after COVID-19 vaccines is

increasingly being reported following initial reports of Bell's palsy

during the phase III clinical trials of both mRNA vaccines. Specifi-

cally, during the Pfizer-BioNTech clinical trial, which included

43 448 participants (21 720 BNT162b2 vs 21 728 placebo), four

patients diagnosed with Bell's palsy were reported (0.018%) in the

vaccine group and none in the placebo group (day 37 after dose

1 and days 3, 9, and 48 after dose 2).210 The Moderna trial, which

enrolled 30 420 volunteers (15 210 participants in each group),

reported three cases in the vaccine (0.02%) and one in the placebo

group (0.007) (22, 28, and 32 days after dose 2).211 All except one

case occurred after the second dose, with a median delay of 25 days

(range 3-48). These data are relative to a median follow-up of two

months. As pointed out by Oznoff et al,248 if expressed as number
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of cases per 100 000 person-years, the observed incidence of Bell's

palsy in the 40 000 combined vaccine arm participants was

3.5-7-times higher than it would be expected in the general popula-

tion. Associations between vaccines and Bell's palsy have been

reported in the past, particularly with the H1N1 influenza

vaccine,248 but of note they were all protein-based vaccines and/or

contained an exogenous protein adjuvant. New and yet unknown

mechanisms may be responsible for this complication with mRNA

vaccines. Based on such evidence, the FDA has recommended post-

marketing surveillance for cases of Bell's palsy in the general popula-

tion. The first real-world report249 described a 37-year-old other-

wise healthy male developing Bell's palsy 15 days after the first dose

of the Pfizer vaccine. In an additional report, a patient with a history

of recurrent idiopathic facial palsy (three prior episodes over

8 years), developed a new episode of Bell's palsy 36 hours after the

administration of the second dose of the Pfizer vaccine.250 A report

from the United Kingdom described recurrent and side-changing

facial nerve palsy occurring shortly after each dose of the Pfizer-

BioNTech vaccine: the first episode involved the left facial nerve and

occurred 5 hours after administration of the first vaccine dose.251 Six

weeks later, after a complete recovery with prednisolone treatment,

the patient received the second dose, and 2 days later he developed

a more severe (House-Brackmann grade 4) right-side Bell's palsy,

with incomplete response to high dose steroids. Of note, this patient

had type 2 diabetes and multiple vascular risk factors.251 In Israel,

that has one of highest world pro-capita vaccination rates, a case

series of nine patients experiencing Bell's palsy after the Pfizer vac-

cine was published.252 Interestingly, in six out of nine cases, it

occurred after the first dose (median 6 days, range 3-11) and not

after the second one as reported during the clinical trials.252 Post-

vaccine monitoring so far has not identified an association between

COVID-19 vaccination and Bell's palsy (https://www.cdc.gov/

vaccines/acip/meetings/downloads/slides-2021-01/06-COVID-

Shimabukuro.pdf).

Isolated cranial neuropathies, including optic nerve,253 oculomo-

tor nerve,253 and abducens nerve253-255 have been reported after

adenovirus-based vaccines (6-30 days after the first dose)253 and the

Pfizer vaccine (2 days after the first dose).254 Brain and orbit MRI with

contrast did not show gadolinium enhancement when such study was

available.253,254

Multiple cranial neuropathies, specifically ipsilateral oculomotor,

abducens, trigeminal, and facial palsy, were reported 6 days after the

first dose of the Pfizer-BioNTech COVID-19 vaccine.256 Brain MRI

with contrast revealed enhancement in the clinically affected cranial

nerves, whereas CSF studies and additional differential diagnostic lab-

oratory tests were negative. The patient responded to high doses of

i.v. corticosteroids.256 An additional report of acute bilateral oculomo-

tor nerve palsy, likely overlapping with an incomplete variant of MFS

(ie, acute ophtalmoparesis), has been reported 18 days after the first

dose of Pfizer vaccine.257 Given the overlapping presentation with

MFS, the patient was treated with IVIG with complete response. CSF

and neurophysiological studies, and anti Gq1b testing were all

negative.257

As of 2014, only four cases of cranial palsies excluding the facial

nerve have been reported by the US Vaccine Adverse Event

Reporting System (VAERS) after inoculation of a large number of non-

COVID-19 vaccines, both inactivated and live attenuated.258 A similar

effort is undergoing for COVID-19 vaccines as well.

2.11 | COVID-19 vaccines, CIDP, and other
neuropathies

In our review, we found isolated reports of “acute onset” CIDP fol-

lowing Moderna259 and AstraZeneca vaccines,235,260 in all cases

3 weeks after the first dose. Of note, one of the cases had a similar

presentation years prior after the influenza vaccine, but he was

asymptomatic since then.259 All cases had a good recovery after stan-

dard treatment. In the UK cohort on GBS within 4 weeks after

COVID-19 vaccines, four out of 16 patients were diagnosed with

acute-onset CIDP.237 No clinical or neurophysiological exams are

available for these patients, besides the fact that two were subse-

quently re-treated with IVIG, one patient with corticosteroids, and

one with plasma exchanges with good outcome.237

In the pre-COVID era, the Italian CIDP database identified vacci-

nation as the anteceding event in 1.5% of 411 patients 1 to 42 days

before the diagnosis of CIDP.261 Given the chronic nature of CIDP

and the fact that its diagnosis requires a progression over 8 weeks,

attributing its onset to a single event (ie, vaccination) is challenging.

As an example, one of the post-COVID-19 vaccine CIDP patients had

also received the influenza vaccine 6 weeks prior to the onset of

symptoms, while the COVID-19 vaccine had been administered

3 weeks prior.235 When reviewing the potential of COVID-19 vac-

cines to exacerbate or worsen CIDP in patients with an established

diagnosis, we did not find any report so far. Our current knowledge

on the use of vaccines of any kind in patients with a prior CIDP diag-

nosis is quite limited. Three cohort studies have tried to address this

question,262-264 reaching contrasting conclusions due to significant

methodological differences and limitations.265

ChadOx1 nCoV-19/AZD1222 (AstraZeneca) and Ad26.COV2.S

(Johnson & Johnson) vaccines, but not the mRNA-based vaccines,

have each been associated in real-world reports with a small risk of

thrombotic events, pathophysiologically similar to heparin-induced

thrombocytopenia (HIT). Reported cases included cerebral venous

sinus thrombosis.266 To date no PNS complication ascribable to a

hypercoagulable state secondary to the adenovirus-based vaccines

has been reported.

Several reports of neuralgic amyotrophy or Parsonage-Turner

Syndrome after COVID-19 vaccines are emerging, interestingly after

both mRNA267-271 and adenovirus-based vaccines.270,272-274 As

expected, most patients presented with paralysis preceded by pain,

although with some exceptions271 (well known to the pre-COVID lit-

erature). Most cases involved the brachial plexus and, less frequently,

the lumbosacral plexus.272 Interestingly, one patient complained of

onset of pain around the injection site that spread to the shoulder and

the arm.270 Overall, the incidence of post-vaccination Parsonage-
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Turner syndrome seems very low. The most reliable reference is the

influenza vaccination campaign, with only 18 cases reported in the

Vaccine Adverse Effect Reporting System from 2018 to 2020 (http://

wonder.cdc.gov/vaers.html).

2.12 | COVID-19 vaccines and muscle
involvement

Myalgia is a common adverse effect of COVID-19 vaccines, occurring

in up to 50% of recipients in the Moderna trial after the second

dose211 and up to 60% in the single-dose Johnson & Johnson trial.212

It is reported as transient and occurring along with systemic symp-

toms like fever, headache, arthralgia, and fatigue. Similar flu-like symp-

toms were reported in the Vac/Sputnik V vaccine trial, although in

only 5% of cases.214 Among 1.6 million Pfizer vaccine recipients in the

United States who responded to a post-vaccination survey, 17% and

37% of patients reported myalgias after the first and second dose,

respectively, whereas fevers, chills, and joint pain each occurred in

approximately 20% of cases.275 Similarly, for the Moderna vaccine

recipients during post-marketing surveys, myalgias were reported in

21% and 51% after the first and second dose, respectively, while

fever/chills and joint pain occurred in approximately 40% and 32% of

nearly 2 million responders.275

Clinical and laboratory diagnoses of rhabdomyolysis have been

reported with both mRNA vaccines, after the first and second

dose.276,277 Reports of localized muscle inflammation at the injection

site of COVID-19 vaccine, as demonstrated by MRI or biopsy, have

been reported as well,278,279 and represent site reaction rather than

systemic disease. So far, we found a single report of myositis after the

Moderna vaccine, with involvement of the proximal lower extremities

and extensions to the fascia.280 This case had a complete response to

i.v. steroids.280

3 | CONCLUSION

As we write, the body of literature linking COVID-19 and vaccines to

PNS complications increases daily. Moreover, several other cases

might have been observed worldwide and never been published for

different reasons. As we move from the pandemic to the vaccine era,

a number of questions remain unanswered, including: (a) whether the

risk of PNS complications among breakthrough infections after vacci-

nation could be higher, potentially driven by higher degrees of

immune-mediated responses (and, potentially, of molecular mimicry),

although available literature suggests that COVID-19 seems to be

milder among vaccinated patients;281 (b) whether the emergence of

SARS-CoV-2 variants, such as the Beta and the Omicron variants,

could select strands with more marked neurotropism and direct PNS

invasion capabilities, similar to SARS-CoV and MERS-CoV; (c) whether

booster vaccinations and the combination of different types of vac-

cines in this setting could cause more frequent PNS complications,

although preliminary reports indicate this may not be the case

(https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-

11-19/04-COVID-Shimabukuro-508.pdf).

Criteria for assessing causality between a proposed clinical out-

come and a possible pathological insult were originally proposed by

Austin Bradford Hill in 1965 and consist of nine characteristics:

strength, consistency, specificity, temporality, biologic gradient, plausi-

bility, coherence, experiment, and analogy.282 So far temporality and,

possibly, plausibility seem to be the only criteria met by the conditions

reviewed in this paper. Therefore, based on available data, any conclu-

sion about a pathophysiological correlation between COVID-19, vac-

cines and PNS disorders remains premature, while epidemiological,

clinical and pathological data are insufficient.283

The occurrence of PNS complication after COVID-19 vaccines

seems very rare and limited to a possible higher risk of facial nerve

palsy and possibly GBS, however, in a range that should not raise any

concern on the need to pursue the vaccination campaign. Based on

experiences with other vaccination campaigns and data coming from

adverse monitoring systems, there is widespread consensus that the

benefits of vaccination outweigh the risks related to adverse events.

Although large cohort studies are still lacking, there is early evidence

that the administration of COVID-19 vaccines, specifically the Pfizer

vaccine, among patients with known history of GBS is not associated

with a significant risk of relapse.284 As such, multiple institutions

including the CDC (https://www.cdc.gov/vaccines/hcp/acip-recs/

general-recs/index.html), the American Association of Neuromuscular

and Electrodiagnostic Medicine (AANEM),285 and an ad hoc group

from the Peripheral Nerve Society286 encourage all patients with PNS

disorders to adhere to the vaccination campaign, including those with

history of CIDP, GBS, or MG.
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