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Abstract

Background—There is an urgent need to update diabetes prediction, which has relied on the 

United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s’ European 

populations.

Objective—The objective of this study was to develop a risk engine with multiple risk equations 

using a recent patient cohort with type 2 diabetes mellitus reflective of the US population.

Methods—A total of 17 risk equations for predicting diabetes-related microvascular and 

macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were 

estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) 

trial (n = 10,251). Internal and external validation processes were used to assess performance 

of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way 

sensitivity analysis was conducted to examine the impact of risk factors on mortality at the 

population level.

Results—The BRAVO risk engine added several risk factors including severe hypoglycemia 

and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO 

risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., 

glycosylated hemoglobin < 6.5%). External validation showed a good prediction power on 28 

endpoints observed from other clinical trials (slope = 1.071, R2 = 0.86).
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Conclusion—The BRAVO risk engine for the US diabetes cohort provides an alternative to 

the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as 

cost-effective resource allocation in USA.

1 Introduction

The prevalence of type 2 diabetes mellitus (T2DM) in USA has risen from 4.21% (12.1 

million) in 2002 [1] to 9.1% in 2012 [2]. The overall prevalence of diabetes in USA is 

projected to reach to 21% in 2050 [3]. This increase in the T2DM population has led to 

dramatically increased costs in managing diabetes. The total costs of diabetes increased 

approximately 41% from US$174 billion in 2007 [1] to US$245 billion in 2012. In 2012, 

patients with T2DM incurred 20% of total healthcare expenditures in USA, more than half 

of which was attributable to treating diabetes and its complications [4]. A majority of the 

diabetes-related costs were the result of micro/macrovascular complication events [5]. The 

most common diabetes-related macrovascular events include myocardial infarction (MI), 

congestive heart failure (CHF), and stroke. The most frequent diabetes-related microvascular 

events include retinopathy (e.g., edema, blindness), nephropathy [e.g., end-stage renal 

disease (ESRD)], and neuropathy [e.g., severe pressure sensation loss (SPSL), amputation] 

[6].

To better manage the growing T2DM population in an environment of constrained 

healthcare resources, systemwide improvement and redesign are necessary. In the ‘bigdata’ 

era, this is possible using outcome-driven and evidence-based diabetes management. 

Prediction models can help to develop sophisticated and well-designed diabetes management 

strategies. Models also better profile the risk of patients so that more healthcare resources 

can be effectively allocated to those with more health needs. Several diabetes models in 

USA have been used to describe disease progression and compare the cost effectiveness 

of different therapeutic strategies: the CORE diabetes model, the University of Michigan 

model for diabetes, the Swedish Institute of Health Economics model otherwise known as 

the Economics and Health Outcomes in T2DM Model, the United Kingdom Prospective 

Diabetes Study (UKPDS) outcomes model, the Centers for Disease Control-Research 

Triangle Institute diabetes cost-effectiveness model, the Cardiff Research Consortium model 

[7], and several others [8, 9]. These models have been used to support the outcome-

driven evidence-based diabetes management in several areas such as comparisons between 

therapeutic plans [10–16], evaluating potential benefits of achieving treatment goals, [14] 

and policy impact on T2DM [17–19].

However, these diabetes models rely heavily on the UKPDS risk engine that was developed 

using data from a UK diabetes cohort collected from the 1970s. The UKPDS population 

differs significantly from the current US population in terms of race/ethnicity, definition 

of diabetes, treatment algorithm, and screening methods to assess complications and 

comorbidities. Further, the baseline hazard of diabetes-related events may vary over time 

[20] and may differ between the UKPDS population and current US population [21]. Using 

a UK-based risk engine to predict US diabetes management raised significant concerns on 

the prediction validity. There is an urgent need for a new risk engine to be developed based 

on a US population to support decision making in clinical practice in USA. Therefore, 
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our goal in this study was to develop the Building, Relating, Assessing, and Validating 

Outcomes (BRAVO) Diabetes Risk Engine based on the US diabetes population, which may 

provide an alternative risk engine for US researchers and policy makers.

2 Research Design and Methods

2.1 Data Source

The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial is one of the largest 

studies ever conducted in adults with T2DM mainly in USA. Three potential strategies were 

tested through this multicenter clinical trial to lower the risk of major cardiovascular events: 

intensive blood sugar control, intensive blood pressure control, and treatment to lower blood 

lipid levels. There were 10,251 participants enrolled in this trial, with an average follow-up 

time of approximately 4 years. All diabetes-related events were recorded periodically during 

the study. The ACCORD trial started its enrollment in January 2001 [22], and the baseline 

demographic characteristics were reported in the Buse et al. ACCORD study [23, 24]. For 

the convenience of our readers, we also include the baseline information in eTable 1 of the 

Electronic Supplementary Material (ESM).

2.2 Risk Equations

Compared with the commonly used Markov approach in several current models [18, 25, 

26], the BRAVO risk engine was developed based on a series of discrete intercorrelated 

risk equations. This discrete-equation approach accounted for risk escalation as diabetes 

progressed and for interactions between complications. It also allows for adjusting a large 

number of demographic and biological characteristics [27].

The BRAVO risk engine contains three separate modules (events module, risk factors 

module, and mortality module), each of which contains a series of regression equations 

to predict the occurrence of events, progression in risk factors, and mortality. In the events 

module, a series of risk equations were fitted to predict diabetes-related macrovascular 

events (stroke, MI, CHF, angina, and revascularization surgery), microvascular events 

(ESRD, blindness, and SPSL), and adverse events (severe hypoglycemia and symptomatic 

hypoglycemia). In the risk factors module, each risk factor [glycosylated hemoglobin 

(HbA1c), systolic blood pressure (SBP), weight, and low-density lipoprotein (LDL)] in the 

current cycle was predicted jointly by its value from the last cycle and other risk factors. 

Last, in the mortality module, an equation was fitted to predict patient death, and a second 

equation was developed to explore the cause of death [i.e., cardiovascular disease (CVD) or 

other death causes]. All the clinical outcomes have been defined in an article published by 

the ACCORD trial group [23].

A literature review has been conducted to identify the initial list of explanatory variables 

(eTable 2 of the ESM) and a backward selection process was conducted to remove those 

with no improvement for model fitting. Explanatory variables can be categorized into three 

groups: biomedical factors, demographic characteristics, and complications. The definitions 

of these explanatory variables are provided in eTable 2 of the ESM. The main modeling 

strategy we used in this study was a left-censored, time-dependent, parametric proportional 
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hazard model, in which diabetes duration was used as the time index, instead of real time in 

the clinical trial. To smooth measurement fluctuation for biomarkers, we applied a moving 

average technique: as the models were developed based on annual cycles, all the parameters 

values should be aggregated annually. We aggregated the parameters values for each year 

by averaging all the measurements conducted within the previous 2 years. Parameters values 

from the current year were used to predict the probability of encountering an outcome 

event in the next year to account for potential bias caused by reverse causality. The history 

of events was also included in the initial list of explanatory variables. Having had an 

event at baseline or in the study periods before the current year would both be identified 

as a history of that event for the current year. A mixed-method algorithm including a 

cross-validation-based, backward model selection process, literature review, and consultation 

from endocrinologists was used to support the model fitting process. For binary outcomes, 

the c-statistic has been applied to measure the discrimination power of the model.

However, in the BRAVO risk engine, we were not only interested in the discrimination 

power of the model, but also the prediction accuracy. Thus, both the c-statistic and Brier 

score [28] were calculated to support the model selection process. For continuous outcomes 

[HbA1c, SBP, LDL, and body mass index (BMI)], the mean square prediction error was 

used to select the models. A ten-fold cross-validation framework was applied to adjust 

the c-statistic, Brier score, and mean square prediction error for possible over-fitting in low-

dimension regressions [29]. All risk factors that improved model performance were included 

into the final model. For those risk factors that did not have a significant impact on model 

performance, inclusion and exclusion were judged by clinical endocrinology knowledge and 

evidence found from the current literature. Risk factors that were not statistically significant 

in the BRAVO model selection processes, but that were supported as risk factors by existing 

clinical evidence were included in the risk equations. Details regarding the functional form 

of each risk equation and model selection process are provided in Online Appendix 1.

2.3 Internal and External Validation Process

The internal validation process was conducted by plotting the predicted cumulative hazard 

against the Kaplan–Meier cumulative hazard for all outcome measures. We also calculated 

the log–log 95% confidence interval (CI) for cumulative incidence rate across a diabetes 

duration of 0–40 years in the ACCORD trial using the left-truncated method, and the 

predicted curve was examined if it fell within the 95% CI of the Kaplan–Meier curve.

We included all the clinical trials from the fourth and fifth Mount Hood Challenges 

to conduct the external validation process [7, 30], which were the Atorvastatin 

Study for Prevention of Coronary Heart Disease Endpoints in Non-Insulin-Dependent 

Diabetes Mellitus (ASPEN) trial, the Action in Diabetes and Vascular Disease: Preterax 

and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial, and the 

Collaborative Atorvastatin Diabetes Study (CARDS) trial.

A total of 28 endpoints were predicted using the BRAVO risk engine through a discrete-time 

event microsimulation process (Online Appendix 2), under the corresponding time horizon 

of each trial [31]. The advantage of this modeling strategy over the traditional Markov 

cohort model has been discussed previously [32]. The baseline characteristics of each trial 
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have been reported [7] and applied directly as the characteristic of simulation samples. 

Normal distribution was assumed for all input variables and the standard error of each 

variable was extracted from the corresponding literature. The values of key risk factors, 

including HbA1c, LDL, SBP, and BMI in each validation trial were assumed to reach the 

corresponding treatment target at the first year and remain constant in the following years. 

Then, 10,000 simulation runs were used to reach convergence in outcomes. An ordinary 

least-square model was used to fit the BRAVO-predicted incidence rates to observed 

incidence rates, and slope, intercept, and R2 were used to show prediction accuracy. The 

microsimulation was conducted using a joint program written through Visual Basic and C++ 

language.

In addition, we conducted one-way sensitivity analyses to explore the impact of six risk 

factors on the life expectancy in the ACCORD trial population. The values of continuous 

risk factors (HbA1c, SBP, LDL, and BMI) were set from one standard deviation below 

the mean to one standard deviation above, while categorical risk factors (smoking and 

severe hypoglycemia) ranged from 50 to 200% of the population average. Results from this 

analysis were reported in Online Appendix 4.

3 Results

The median follow-up time for patients in the ACCORD trial was 3.7 years, with a total 

of 39,043 person-years of data to support the model fitting process for developing the 

BRAVO risk engine. Hazard ratios of risk factors for non-fatal MI, stroke, CHF, angina, 

revascularization surgery, ESRD, blindness, and SPSL are presented in Table 1. In addition, 

Table 1 also presents hazard/odds ratios of prediction equations for all-cause mortality 

and CVD death. The inter-correlations between different co-morbidities were captured by 

using other co-morbidities as risk factors to predict the occurrence of the target event. For 

example, in the CHF equation, having a history of MI increased the risk of CHF by 82.2%. 

In addition, repeat events were also taken into consideration. Having a history of CHF was 

associated with a 247.6% increase in the risk of a second CHF event.

Race was identified as a significant risk factor for predicting MI, revascularization surgery, 

blindness, and nephropathy. Compared with African Americans, Caucasian, Hispanic, and 

other race/ethnicities were associated with 68.7% (95% CI 31.0–117.2), 26.7% (95% CI 

– 16.0 to 91.3), and 27.9% (95% CI – 10.7 to 83.1) higher risks for MI, respectively. In 

addition, Caucasian, Hispanic, and other race/ethnicities were associated with a 46.4% (95% 

CI 22.7–74.6), 11.0% (−17.0 to 48.3), and 18.1% (95% CI −7.8 to 51.1) higher likelihood of 

receiving revascularization surgery, compared with African Americans. Caucasian, Hispanic, 

and other race/ethnicities were correlated with a risk escalation of 8.1% (95% CI – 11.5 

to 32.0), 70.1% (95% CI 28.2–125.5), and 17.9% (95% CI – 10.5 to 55.5), respectively, 

compared with African Americans for blindness. Last, Hispanic individuals and others were 

associated with risk reductions of SPSL for 15.3% (95% CI −13.2 to 36.6) and 44.8% 

(95% CI 27.4–58.0), respectively, while Caucasians were associated with a 22.4% (95% CI 

4.4–43.4) higher risk for SPSL compared with African Americans.
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The BRAVO risk engine included severe hypoglycemia in multiple risk equations. 

Encountering one more episode of severe hypoglycemia in the current year was associated 

with increased risks for CHF [hazard ratio (HR) = 198%], MI (HR = 228.6%), angina (HR 

= 188.5%), and blindness (HR = 151.7%). Although not statistically significant, quadratic 

polynomials of HbA1c levels were also found to be an important predictor for predicting 

all-cause mortality as indicated by Bier scores and c-statistics. An HbA1c level of 7.12% 

was calculated to be associated with the lowest mortality risks. The equations to model 

time-varying risk factors including HbA1c, SBP, LDL, body weights, smoking status, and 

occurrence of severe hypoglycemia and symptomatic hypoglycemia are presented in eTable 

3 of the ESM.

The results of our internal validation process are presented in Fig. 1. The black dashed 

line denotes the Kaplan–Meier curve of the observed cumulative incidence for each event 

type using the left-truncated method. The red solid line indicates the predicted cumulative 

incidence of a given event from diabetes onset until 40 years after onset. The gray area 

denotes the log–log 95% CI for the observed cumulative incidence at each time point. All 

predicted incidence curves fit close to the observed curves and all predicted curves were 

within the 95% CI.

The results of external validation are presented in Fig. 2. Predicted incidence rates were 

plotted against observed incidence rates, with a dashed line indicating 100% prediction 

accuracy. The incidence rates of 28 endpoints, which were predicted from the BRAVO 

risk engine, were clustered around the prediction accuracy line. The slope coefficient and 

intercept of the ordinary least-square regression on the predicted incidence rates were 1.071 

and 0.001, respectively, and the R2 was estimated to be 0.86. An F-test was applied to 

examine the difference between the fitted line and the line of 100% prediction accuracy, and 

no statistical difference was identified (p = 0.82).

4 Discussion

The BRAVO risk engine with good internal and external validity was developed to offer an 

alternative to the established UKPDS risk engine that was based on the US population, 

to support decision making in US clinical practices. Health outcome predictions from 

the BRAVO risk engine were consistent with the previous findings of the ACCORD trial 

on non-fatal MI, angina, and revascularization surgery [33]. Although not statistically 

significant, a previous study has found that intensive glycemic control was associated with 

lower HRs of ESRD, blindness, and SPSL [34]. The BRAVO risk engine included HbA1c as 

an important risk factor for predicting these microvascular events. More interestingly, even 

when including the extensive covariate list from our BRAVO risk engine, these associations 

between HbA1c and microvascular events were still statistically significant in the BRAVO 

risk equations.

The impact of hypoglycemia on diabetes outcomes and mortality has been studied 

extensively in recent years. The occurrence of hypoglycemia was found to be associated 

with major microvascular and microvascular events, death, and other nonvascular outcomes 

[35]. Our previous study also found that in addition to the direct impact of hypoglycemia 
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on vascular risk [36], the fear for hypoglycemia was also associated with an additional 

quality-adjusted life-year decrement [37]. Our risk engine is the first to fully incorporate 

hypoglycemia’s impact on disease course. Our engine provides a critical predictive tool to 

evaluate new T2DM drugs, which usually have lower hypoglycemic incidents than the older 

class of antidiabetic drugs such as sulfonylureas. One of the major limitations of T2DM 

models based on the UKPDS risk engine is that they did not model hypoglycemia as a 

risk factor for diabetes complications. To capture the impact of hypoglycemia, the BRAVO 

risk engine included severe hypoglycemia as a risk factor to predict CHF, MI, angina, 

and blindness. Encountering hypoglycemia was also found to be associated with higher 

CVD-related mortality rates. This feature of the BRAVO risk engine can directly capture 

the benefits of hypoglycemia prevention on cardiovascular outcomes and mortality for future 

diabetes models, which is a substantial innovation, compared with previously developed 

diabetes-related risk engines.

The existence of racial disparities in outcomes among a wide range of diabetic 

complications [38] made it essential for a diabetes model to include race segmentation 

relevant to the target population for clinical intervention. The BRAVO risk engine 

categorizes race into Caucasian, African American, Hispanic, and Asian individuals in 

accordance with their representation in the US population. The BRAVO risk engine 

predicted disparity patterns close to the finding from the Karter et al. study [38]. Among all 

four race groups, being white was associated with the highest risk for MI and nephropathy, 

while being African American was found to be a protecting factor with the lowest risk for 

MI, blindness, and the need for revascularization surgery.

One of the important findings in the ACCORD trial was a higher mortality rate in the 

intensive glycemic control group (HbA1c < 6%) compared with the standard glycemic 

control group (HbA1c 7.0–7.9%) [39]. The association between HbA1c and mortality rate 

was found to be ‘U’ shaped in the standard control group, with an optimal HbA1c level 

between 7.0 and 7.5% [39]. The BRAVO risk engine included a second-degree polynomial 

in the HbA1c level that fits the data better than a linear relationship between the HbA1c level 

and all-cause mortality. The BRAVO risk engine estimated the optimal glycemic control 

level for the ACCORD population was 7.12%, and any deviation from this point was 

associated with an increased risk of mortality.

Our modeling approach has also demonstrated a novel approach to using clinical trials with 

a limited length of follow-up time. While the ACCORD trial only ran for 7 years, the 

ACCORD cohort covered a wide range of diabetes durations. Therefore, the BRAVO risk 

engine used diabetes duration as a time index to simulate diabetes progression and mortality 

over 40 years [40]. Further, indexing time by diabetes duration allowed us to estimate the 

time dependency of diabetes on events and mortality.

A recently published RECODe risk engine has also used the ACCORD trial data to develop 

a set of risk equations for modeling the risk of diabetes complications [41]. Besides 

the methodological differences in the modeling strategy, outcomes inclusion, and variable 

definition, the BRAVO risk engine and RECODe risk engine have very different purposes 

of risk predictions. The RECODe risk engine is intended for use in clinical settings to assist 
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the initial treatment decision because the models only use baseline characteristics to predict 

the incidence rates of diabetes outcomes in a specified period (5 or 10 years). The BRAVO 

risk engine aims to use an agent-based microsimulation modeling algorithm and ultimately 

to develop a diabetes model in predicting life-time disease progression. Because the BRAVO 

risk engine uses all time-dependent biomarkers, disease history, and other risk factors, the 

BRAVO risk engine will be more appropriate than the RECODe risk engine to support a 

cost-effectiveness analysis such as prioritizing therapeutic strategies or treatment targets of 

HbA1c, LDL, and blood pressure. A table has been developed to briefly summarize the 

key differences between the RECODe risk engine and BRAVO risk engine (eTable 4 of the 

ESM).

The BRAVO risk engine is based on the ACCORD trial population and this study 

population, especially for the intensive treatment group, may be very different from 

the general diabetes population. Risk factors progress very differently under different 

circumstances, and largely depend on factors such as medication adherence, lifestyle 

modification, and therapy escalation. Further adaptation of the BRAVO risk engine could 

be conducted to better reflect the natural progression of risk factors in a real-world 

population using electronic medical records. In addition, a few potential co-morbidities 

such as ulceration and amputation were not explicitly included in the BRAVO risk engine. 

These co-morbidities were not included as endpoints in the ACCORD trial, thus cannot be 

incorporated into the BRAVO risk engine.

In the future, other datasets with relevant outcome measures could be used to either 

further refine prediction equations or to add supplementary risk equations to the original 

BRAVO risk engine. Furthermore, all the risk equations were estimated separately and a 

microsimulation algorithm was used to combine them into one risk engine. Considering the 

mutually exclusive nature of some complications, this approach might still have competing 

risk bias. Moreover, the type of antidiabetic drugs was not included in the risk equations 

because the underlying assumption of the BRAVO risk engine is that all types of treatments, 

including lifestyle modification, impact the risk of events only through key risk factors (e.g., 

HbA1c, BMI). We suggest researchers choose the RECODe risk equation to directly explore 

the impact of different medications. Finally, ESRD was found to be associated with a lower 

mortality rate in our study, owing to a low sample size. Thus, we decided to exclude ESRD 

from the all-cause mortality equation. We will revisit this issue when we have the long-term 

follow-up data from the ACCORD trial.

5 Conclusions

All equations from the BRAVO risk engine have been validated internally, and the external 

validation also showed a good prediction accuracy for the BRAVO risk engine. A simulation 

disease model based on the BRAVO risk engine can be developed to predict a range of 

long-term diabetes-related outcomes to assist clinical and policy decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The datasets used for this study are publicly available and can be requested through the 

National Heart, Lung, and Blood Institute [42].
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Key Points

The Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine has 

been developed to predict a series of diabetes complications and mortality

The BRAVO risk engine has found a glycosylated hemoglobin level slightly above 7.0% 

is associated with the lowest risk for all-cause mortality

With good internal and external validation, the BRAVO risk engine can be applied to 

develop a diabetes prediction model and to assist decision making in clinical practice and 

health policy.
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Fig. 1. 
Comparison between predicted cumulative incidence and Kaplan–Meier observed 

cumulative incidence. CHF congestive heart failure, CI confidence interval, CVD 
cardiovascular disease, ESRD end-stage renal disease, MI myocardial infarction, SPSL 
severe pressure sensation loss
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Fig. 2. 
External validation results plotting predicted incidence rates against observed incidence 

rates. CHF congestive heart failure, CVD cardiovascular disease, MI myocardial infarction
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