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Abstract

1

Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and
compositions, and often possess novel or enhanced properties compared to larger sized particles
of the same elemental composition. To ensure the safe commercialization of products containing
ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be
created in an almost infinite number of variations, it is not feasible to conduct /n vivotesting on
each type of ENM. Instead, new approach methodologies (NAMS) such as /n vitro or in chemico
test methods may be needed, given their capacity for higher throughput testing, lower cost, and
ability to provide information on toxicological mechanisms. However, the different behaviors of
ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In
this study, member agencies within the Interagency Coordinating Committee on the Validation of
Alternative Methods were queried about what types of ENMs are of agency interest and whether
there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to
provide robust results in ENM testing, two key issues in the usage of NAMSs, namely dosimetry
and interference/bias controls, are thoroughly discussed.

Introduction

Engineered nanomaterials (ENMs) are materials with a size range, in at least one dimension,
from 1 nm up to 100 nm (ASTM E2456-06, 2006; 1SO, 2019) or are engineered to

exhibit properties or phenomena (chemical, physical, or biological) that are attributable

to their dimension(s), even if those dimensions fall outside the nanoscale range, up to

one micrometer (1,000 nm) (FDA, 2014b). Compared to larger materials with the same
elemental composition, ENMs may have enhanced or novel properties and may exhibit

a wide variation in their structure as well as in their physical and chemical properties.

These enhanced and novel properties of ENMs have led to their use in a broad range of
fields, including agriculture (Adisa et al., 2018; Borgatta et al., 2018; Kah et al., 2019),
consumer productsl, environmental remediation (Petersen et al., 2012; Lowry et al., 2019;
Zhang et al., 2019), food production and packaging (Uddin et al., 2016; Szefler, 2018),

and nanomedicine (Besinis et al., 2015; Rasslein et al., 2017; Sun et al., 2017). Due to

the widespread use of ENMs, it is necessary to ensure that potential environmental (Waissi-
Leinonen et al., 2012; Edgington et al., 2014; Mortimer et al., 2016; Lead et al., 2018;
Geitner et al., 2020) or human health (Nelson et al., 2013; Grafmueller et al., 2015; Fadeel et
al., 2018; Salieri et al., 2020) risks of ENMs are understood and minimized.

1 http://manodb.dk/
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In the United States, multiple federal agencies are tasked with the oversight and regulation
of ENMs and applications of nanotechnology. The evaluation of potential ecological and
human health effects of ENMs is challenging because of the nearly endless varieties of
ENMs that can be synthesized in terms of shapes, sizes, surface coatings, and elemental
compositions (Nel et al., 2013a,b; Zhao et al., 2019). In addition, toxicological effects for
“the same” type of ENM can differ depending on synthesis methods, manufacturer/supplier
performing the syntheses, and how each ENM is handled (Griffitt et al., 2008; Harper et al.,
2008; Jeevanandam et al., 2018; Renero-Lecuna et al., 2019) and disposed of along its life
cycle (Oischinger et al., 2019). The exponentially increasing number of potential ENMs and
the possible differences in properties between the same types of ENMs makes the use of
slow, expensive /n vivotoxicity testing impractical (Nel et al., 2013a,b; Shatkin et al., 2016).

An alternative approach to /n vivotoxicity testing, envisioned to be more efficient,
predictive, and economical than using animals for evaluating the potential toxic effects of
chemicals, was proposed by the U.S. National Research Council (NRC, 2007; Andersen and
Krewski, 2009; Krewski et al., 2014). This approach uses /n silico, in chemico, and in vitro
methods, collectively known as new approach methodologies (NAMs), to inform pathway-
based toxicities, hazard assessment, and, in some cases, to predict the level of toxicity.
NAMSs may be more effective than /n vivotests in providing mechanistic information on
the potential biological effects of ENMs through adverse outcome pathways (AOPs). AOPs
are frameworks to link biological events (often using data obtained with NAMSs) to adverse
effects, such as describing the relationship between protein alkylation and liver fibrosis
(Gerloff et al., 2017) or the link between the altered transcriptional responses of acute
phase response genes in lung tissue and nanoparticle-induced cardiovascular disease (Saber
et al., 2014; Hadrup et al., 2020). While standardized test methods have been developed

to measure potential toxicological effects, the behaviors of ENMs (e.g., the potential

to agglomerate and settle out of suspension, or to react with test media and/or testing
components) can challenge the performance of /n vitro NAMs (Grieger et al., 2009; Kihnel
and Nickel, 2014; Rdésslein et al., 2015; Jeevanandam et al., 2018; OECD, 2018a). This has
led to a sustained research effort to evaluate the applicability of test methods for use with
ENMSs and to design control experiments to test for potential biases and artifacts (Keene et
al., 2014; Guadagnini et al., 2015; Hanna et al., 2018; Petersen et al., 2019b). However, it
is not yet fully clear to what degree different U.S. regulatory agencies would accept results
from standardized /n vitro or in chemico NAMs and what methodological modifications are
needed to yield robust, relevant results.

The Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of
Chemicals and Medical Products in the U.S.2, developed by the Interagency Coordinating
Committee on the Validation of Alternative Methods (ICCVAM), guides activities to support
the development of NAMs and increase confidence in their use among U.S. regulatory
agencies. ICCVAM is composed of representatives from 17 U.S. federal agencies that

use, generate, or disseminate toxicological and safety testing information3. The committee

2 https://ntp.niehs.nih.gov/go/natl-strategy
https://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/iccvam-agencies/index.html (accessed 07.08.2019)
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facilitates the development, validation, and regulatory acceptance of NAMSs and other
approaches that replace, reduce, or refine the use of animals for chemical safety testing®.

To perform specific tasks for the development or validation of NAMs, ICCVAM establishes
ad hocworkgroupsS. ICCVAM established its Nanomaterials Workgroup (NanoWG)

to identify and evaluate ENM-specific testing requirements/recommendations among
different U.S. government agencies, to determine whether ENM testing requirements/
recommendations among the different agencies differ from testing requirements/
recommendations specified for other types of substances, and to identify opportunities for
NAMs to be used or developed to address agency needs.

This article summarizes the NanoWG’s evaluation of U.S. government agency requirements/
recommendations for ENM testing. During this process, the NanoWG identified key
considerations that need to be evaluated before NAM-based methods can be used to
conduct safety testing on ENMs. Based on the information provided by the agencies on
ENM-specific testing requirements/recommendations, we were able to collate references to
published documentary standards that have been published relevant to ENM hazard testing.
We also discuss key issues regarding control measurements and dosimetry during /n vitro
testing when evaluating ENMs. This article is not intended to be a comprehensive collection
of all test methods used to evaluate ENM toxicity, nor is it a complete compendium of

all U.S. agencies, offices, or divisions that utilize ENM testing. The article is intended to
provide information to guide future discussion of approaches to advance the use of NAMs
for evaluating the hazards of ENMs. Additional information on the regulatory framework
for nanomaterials may be found in Ridge (2018), and a recent review by Shaffer et al.
(2021) provides an overview of the agencies that perform chemical evaluations for different
exposure scenarios.

2 Methods

The NanoWG surveyed ICCVAM member agencies to request information as to which
ENMs are of agency interest, which toxicity tests were performed on ENMs to meet agency
information requirements, and whether there are agency-specific guidance documents for
ENM toxicity testing currently in place. Designated agency NanoWG representatives
reviewed and compared their Agency’s current toxicity data requirements to generate
responses and disseminated the survey information to appropriate staff members and

other divisions for their input on needs and data challenges. Responses were received

from the Centers for Disease Control and Prevention/National Institute for Occupational
Safety and Health (CDC/NIOSH), U.S. Consumer Product Safety Commission (CPSC),
U.S. Department of Defense, U.S. Department of Energy, U.S. Department of the Interior,
U.S. Environmental Protection Agency (EPA), U.S. Food and Drug Administration (FDA),
National Institute of Standards and Technology (NIST), and U.S. Department of Agriculture.
These responses are summarized in Section 3. Some agencies responded that while they do
not require or conduct toxicology testing, they are involved in the development and use of

4 https://ntp.niehs.nih.gov/iccvamreport/2019/about/index.html
https://ntp.niehs.nih.gov/go/iccvam-wg
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reference materials and standard methods related to ENM testing and evaluation. Tables 1,
2, and 3, respectively, include information on ENMs of agency interest, some test guidelines
under which nanomaterials test data are submitted, and ENM-specific guidance documents
developed by regulatory agencies.

As mentioned previously, differences in ENM synthesis and handling can alter their
toxicological profiles. ENMs also tend to agglomerate/aggregate, settle out of suspension,
or react with test media and/or testing components. Consequently, these properties indicate
that ENMs have complex dosimetry, and therefore characterization of test media and/or
testing components is a critical part of testing. The NanoWG also conducted an additional
survey to discuss considerations for ENM characterization and dosimetry for in vitro assays.
Responses were received from CPSC, EPA, FDA, and CDC/NIOSH, and are discussed in
Section 4.

3 Agency needs for ENM testing

Agency responses regarding ENMs of interest, tests used to evaluate ENMs, and agency-
specific guidance documents were compiled and reviewed and are discussed in more depth
below. Agencies or divisions that have an interest in ENMSs but do not require or conduct
testing are the Pacific Northwest National Laboratory of the U.S. Department of Energy, the
U.S. Department of the Interior, CPSC, and the U.S. Department of Agriculture National
Institute of Food and Agriculture.

3.1 Responses relating to materials of interest

Given that the type of ENM and its end use may influence the required testing, the
workgroup sought information about what ENMs are of interest to member agencies. The
identified materials of interest are presented in Table 1, along with some of the use cases that
brought these materials to agency attention. While a broad range of ENMs was represented
in responses, almost all the most common ENMs are a focus for at least one agency. Some
ENMSs, such as carbon nanotubes, graphene family materials, metal oxides, nanoclays, and
nanosilvers are a focus for multiple agencies. In addition to providing information about
materials of interest, agencies also provided information on why the materials are of interest
and indicated which materials are emerging concerns.

CPSC indicated that graphenes and nanoclays are emerging nanomaterials of interest, as
well as complex mixtures of carbon nanotubes, metal ENMs, and other particles. They also
stated that recently published studies have detected styrene, metals, and carbon nanotubes in
the emissions from 3D printers, and carbon nanotubes, nanometals, metal oxides, polycyclic
aromatic hydrocarbons, ozone, and carbon dioxide in emissions from laser printers (Kim et
al., 2015; Pirela et al., 2019), and that these emissions will require further study.

EPA and CPSC collaborate to evaluate the potential release of free ion or micronized (e.g.,
formulations consisting of copper carbonate particles ranging in size from a few nanometers
to several microns) copper particles from the paint or coating containing nanocopper and
nanocopper pressure-treated lumber during their normal use, as well as to evaluate the
effects of released metal oxides from treated wood. There is also a potential interest in

ALTEX. Author manuscript; available in PMC 2022 May 18.
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other forms of nanocopper (e.g., aqueous alkaline copper azole), which has similar use
applications and toxicological outcomes to micronized copper.

EPA’s Office of Pesticide Programs (OPP) indicated that nanosilica and nanometals bound
to nanosilica and mixtures of nanometals were of emerging interest. EPA’s Office of
Pollution Prevention and Toxics (OPPT) indicated that graphene and graphene oxides are
emerging nanomaterials of interest.

FDA'’s Center for Food Safety and Applied Nutrition (CFSAN) commented that while
nanoclays are used in food packaging, they are not expected to migrate into food products.
There is potential dietary exposure to ionic copper or silver derived from food contact
packaging use of nanoparticulated silver or copper. Because titanium dioxide and silicon
dioxide, when used as direct food additives, may contain some particles in the nanoscale
range, consumers may also be exposed to nanoparticulate forms of titanium dioxide and
silicon dioxide.

CDC/NIOSH’s Nanotechnology Research Center (NTRC) is the leading federal agency
conducting research and providing guidance on the occupational safety and health
implications and applications of advanced materials and nanotechnology. NTRC has a
robust field study and laboratory research program that investigates ENM toxicity and
conducts exposure assessments and epidemiological studies in the workplace. In addition,
the NTRC focuses on critical areas of ENM research including material properties such

as dustiness and explosivity behavior, and emissions characteristics of nanomaterials and
NM-enabled products that are important in assessing potential toxicity and risk associated
with real-world occupational exposures (Bishop et al., 2017). The data suggests that low
solubility nano-scaled particles are generally more toxic than larger particles on a mass-to-
mass basis (Oberddrster et al., 2005; Rothen-Rutishauser et al., 2007; Sager and Castranova,
2009; Zhao et al., 2009; Bakand et al., 2012). There are also strong indications that particle
surface area, surface chemistry, and solubility play a role in the observed toxicity of ENMs
in cell culture and animal models (Sager and Castranova, 2009; Roberts et al., 2013).

In vitro models employing both acute and sub-chronic exposure conditions have been
developed and used to predict /n vivotoxicological responses (Cho et al., 2013; Manke

et al., 2014; Wang et al., 2014). Based on comparable exposure doses, time courses, target
cell types, and relevant biological endpoints, consistent results have been obtained from
comparable experiments with /n vitrovs. in vivo models using similar ENMs (e.g., based
on physicochemical properties) such as carbon nanotubes (Mercer et al., 2011; Mishra et
al., 2012; Sargent et al., 2014; Siegrist et al., 2014; Snyder-Talkington et al., 2015, 2019),
metal oxide nanoparticles (Ma et al., 2015; Davidson et al., 2016), boron nitride nanotubes
(Kodali et al., 2017; Xin et al., 2020), and end-life cycle (incinerated) nanoclay enabled
thermoplastics (Stueckle et al., 2018; Wagner et al., 2018). These results, mainly observed
from CDC/NIOSH research projects on the ENMs of agency interest listed in Table 1,
support the implementation of /n vitro models as a rapid and economical tool to screen and
predict the potential /n vivotoxicological responses to ENMs for reducing, refining, and
replacing animal usage.

ALTEX. Author manuscript; available in PMC 2022 May 18.
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The U.S. Department of Agriculture Forest Service Forest Products Laboratory is primarily
or partly responsible for the development of many of today’s wood-based technologies such
as wood science, building structures, building resilience, building materials, pulp and paper,
biofuels, performance polymers from wood, and high-value chemicals from wood. In the
area of nanotechnology, the laboratory focuses on research into the application of cellulose
ENMs, the nanoscale aspects of wood, especially renewable, forest-based nanomaterials,
and partners with other organizations on understanding the environmental, health and safety
aspects of forest-based nanomaterials.

3.2 Responses relating to methods and guidance documents relevant to ENM toxicity

testing

One difficulty with the evaluation of ENMs is determining when ENM-specific testing is
required. For example, an agency’s definition of what may be considered an “ENM” varies
between U.S. agencies and may be dependent on end use. This implies the need for a
case-by-case ENM-specific safety assessment, based on the material’s characteristics, the
proposed use of the material, and the route of exposure/administration, among other factors
(FDA, 2014b; EPA, 2017). As described in Table 1, there are multiple types of ENMs of
interest to U.S. agencies, spanning an array of applications and uses. While testing of ENMs
often needs to be evaluated on a case-by-case basis, there are test guidelines, provided in
Table 2, that are frequently used for the evaluation of ENMs for use as food additives, new
dietary ingredients, pesticides, or as part of pesticide formulations. Table 2 is not intended
to be a complete compendium of all test methods used to evaluate ENM hazard, nor should
it be implied that these guidelines are only used to test the substances/products indicated in
the table. In addition to the guidelines listed in Table 2, some agencies (such as EPA) allow
studies to be conducted in accordance with Organisation for Economic Co-operation and
Development (OECD) guidance6. Moreover, EPA requires or recommends that protocols
be submitted prior to study submission if modifications of these methods are proposed for
toxicity testing of ENMs. It was often not possible to provide prescriptive suggestions about
what specific methods are acceptable for testing ENMs, because the science on this topic

is rapidly evolving and decisions are often made on a case-by-case basis. Given this rapid
evolution, consensus has not yet been reached within agencies on some topics.

EPA OPP regulates the manufacturing and use of pesticides (including insecticides,
herbicides, rodenticides, disinfectants, sanitizers, etc.) in the United States and establishes
maximum levels for pesticide residues in food. OPP operates under the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA), which governs pesticide registration, distribution,
sale and use. Enacted in 1947, FIFRA sets risk/benefit standards for pesticide registration,
requiring that pesticides perform their intended function, when used according to labeling
directions, without posing unreasonable risks of adverse effects on human health or the
environment (7 U.S.C. § 136 et seq., 1947). In 1972, FIFRA was amended, expanding
EPA’s authority to strengthen the registration process, enforcement provisions, and broaden
the legal emphasis on further protecting health and the environment (7 U.S.C. § 136 et

seq., 1972). FIFRA was further amended by the Food Quality Protection Act (FQPA) (7

6 https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm
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U.S.C. 8136, 1996) and the Federal Food Drug and Cosmetic Act (21 U.S.C. §301 et seq,
2002), under which EPA establishes tolerances or maximum legal limits for pesticides that
apply to food. Under FQPA, a collection of pesticide data is necessary to set allowable
levels and to conclude that a pesticide is safe. The rule further ensures that no harm will
result to infants and children from aggregate exposure to the pesticide chemical residue.

As a result, pesticide products, including ENM-containing antimicrobial products, inquiring
registration require various data generation to address potential adverse effects to humans
and environmental fate.

In evaluating a pesticide registration application, OPP assesses a wide variety of potential

toxicological effects associated with the use of the product or active ingredient. In general,
for ENMs, OPP requires data generated with the toxicological test guidelines presented

in Table 2, but ENMs’ physical-chemical product characteristics are evaluated by product
chemistry test guidelines and often compared with ENMs reported in toxicology studies.

EPA OPPT administers the Toxic Substances Control Act (TSCA,; (15 U.S.C. 82601 et seq.,
1976)), which regulates chemical substances and mixtures that are manufactured, imported,
processed, distributed, used or disposed of in the United States and that are not regulated
under other laws (such as those that apply to pesticides or food and drugs). TSCA was
originally enacted in 1976 and serves as the nation’s primary chemicals management law. In
2016, TSCA was amended by the Frank R. Lautenberg Chemical Safety for the 215t Century
Act, which included language to encourage alternatives to animal use for testing done under
TSCA (15 U.S.C. § 2601 et seq., 2016).

Under TSCA, most nanomaterials are regarded as “chemical substances”. New chemical
substances manufactured at the nanoscale must be submitted to EPA review before they can
enter the marketplace7. Although upfront toxicity testing is not required under TSCA for
any chemical substance, including ENMs, manufacturers must submit any existing data in
their possession or control at the time of the new chemical application in a premanufacture
notice. Premanufacture notice submissions for new nanomaterials under TSCA are reviewed
and regulated individually. If EPA determines that the available information is insufficient
to make a reasoned evaluation as to whether an ENM might produce an unreasonable risk
to human health or the environment under the expected conditions of use, the agency may
issue a consent order under Section 5(e) of TSCA to the submitter for additional testing.
The recommended testing is specific to the area of human health concern. For example, if
the concern is about inhalation exposure to various nanoparticles, the recommended testing
may include an inhalation toxicity study (OPPTS Test Guideline 870.3465 (EPA, 1998f) or
OECD Test Guideline 413 (OECD, 2018b).

The 2016 Lautenberg Chemical Safety Act (15 U.S.C. § 2601 et seq., 2016) requires EPA
to develop a plan to “promote the development and implementation of alternative test
methods and strategies to reduce, refine, or replace vertebrate animal testing and provide
information of equivalent or better scientific quality and relevance for assessing risks of
injury to health or the environment of chemical substances or mixtures.” As part of this

7 https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/fact-sheet-nanoscale-materials
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effort, EPA published a strategic plan in 2018 (EPA, 2018) to promote the development and
implementation of alternative test methods or NAMs and a list of acceptable NAMs within
the TSCA program (EPA, 2021). Even though NAMs presented in this list are not specific to
ENMSs, EPA expects to consider NAMs for several TSCA ENM decision contexts including
hazard identification and characterization.

Table 3 lists selected guidance documents that U.S. federal agencies have issued to advise
stakeholders on ENM testing. In 2017, EPA issued guidance (Tab. 3) to assist companies

to report under the TSCA nanotechnology reporting and recordkeeping requirements rule
(EPA, 2017). This rule mandates that manufacturers report information including specific
chemical identity, production volume, methods of manufacture and processing, exposure and
release information, and existing data on environmental and health effects.

FDA recently released a progress report (FDA, 2020) that shows a steady increase in

drug product submissions containing nanomaterials to FDA. These submissions include
nanomaterials of differing compositions, sizes, and surfaces, as well as hanomaterials
containing therapeutic agents (Farjadian et al., 2019). FDA has issued several guidance
documents on topics related to the application of nanotechnology in FDA-regulated
products (Tab. 3) as part of ongoing implementation of recommendations from FDA’s 2007
Nanotechnology Task Force Report (FDA, 2007). These documents serve to convey FDA’s
current opinion on a topic rather than to bind the FDA or the public.

In 2014, FDA issued the FDA Final Guidance for Industry — Considering Whether

an FDA-Regulated Product Involves the Application of Nanotechnology (FDA, 2014b).
This guidance describes an overarching framework for FDA’s approach to the regulation
of nanotechnology products. FDA has not established a regulatory definition of
nanotechnology, nanomaterial, nanoscale, or related terms. In this overarching guidance,
FDA identified two “points to consider” that should be used to evaluate whether FDA-
regulated products involve the application of nanotechnology:

1. Whether a material or end product is engineered to have at least one
external dimension, or an internal or surface structure, in the nanoscale range
(approximately 1 nm to 100 nm);

2. Whether a material or end product is engineered to exhibit properties or
phenomena, including physical or chemical properties or biological effects, that
are attributable to its diniension(s), even if these dimensions fall outside the
nanoscale range, up to one micrometer (1,000 nm).

The FDA Center for Devices and Radiological Health follows this guidance when evaluating
new medical devices. A key statement from this document is: “Based on our current
scientific and technical understanding of ENMSs and their characteristics, FDA believes

that evaluations of safety, effectiveness, public health impact, or requlatory status of
nanotechnology products should consider any unique properties and behaviors that the
application of nanotechnology may impart”

In addition to the FDA Final Guidance for Industry — Considering Whether an FDA-
Regulated Product Involves the Application of Nanotechnology, the Center for Drug

ALTEX. Author manuscript; available in PMC 2022 May 18.
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Evaluation and Research also refers to another draft guidance®, Drug Products, Including
Biological Products, that Contain Nanomaterials — Guidance for Industry (FDA, 2017). This
draft guidance “does not address, or presuppose, what ultimate regulatory outcome, if any,
will result for a particular drug product that contains nanomaterials.” Safety, effectiveness,
public health impact, and regulatory status of drug products that contain ENMs are currently
addressed on a case-by-case basis using FDA’s existing review processes. Current Center for
Drug Evaluation and Research guidance documents and requirements for the evaluation and
maintenance of quality, safety, and efficacy apply to drug products containing ENMs that
fall within their scopes. “As such, this guidance should be viewed as supplementary to other
guidances for drug products” (FDA, 2017).

FDA has also issued guidance documents pertaining to ENMs in food (FDA, 2014a).
CFSAN has premarket authorization authority over food additives and new dietary
ingredients under the United States Federal Food, Drug, and Cosmetic Act (21 U.S.C.

8301 et seq, 2002). As both product areas concern potential oral exposure to an ENM,

the toxicity testing paradigms generally used to evaluate the safety of food additives or

new dietary ingredients primarily comprise repeated oral dosing studies in rodents. Existing
test guidelines describing repeated oral dosing and inhalational exposure studies in rodents
(EPA, 1998e,f; OECD, 1998b; EPA, 2000; OECD, 2008, 2009b, 2018b) appear to be
appropriate for use with ENMs (OECD, 2009z, 2012).

To evaluate carcinogenicity of these products, genotoxicity studies, such as the Ames assay
or the mouse lymphoma assay, are used to ascertain the mechanism of action of any
observed neoplastic effects in rodent bioassays (Kobets et al., 2018). However, for the Ames
assay, some ENMs have been shown to be unable to enter the bacterial cells, which would
make such test articles incompatible with the test system (Woodruff et al., 2012). It is
notable that none of the standard OECD test guidelines on /n vitro genotoxicity assays has
been validated for use with ENMs, though the guideline describing the /n vitro mammalian
cell micronucleus test directly acknowledges the requirement for methodological adaptation
for ENMs (OECD, 2016). In addition, toxicokinetic studies may be used to inform the
safety assessment regarding the potential for systemic exposure to the food additive or

new dietary ingredient, for route-to-route extrapolation from the results of non-oral toxicity
studies, and for refining the inter- and intraspecies uncertainty factors used in quantitative
risk assessment for non-neoplastic endpoints.

CDC/NIOSH leads the federal government health and safety initiative for nanotechnologyg.
Research and activities are co-ordinated through CDC/NIOSH’s NTRC. The contributions
of NTRC to the nanotechnology and nanotoxicology fields include the guidance documents
of safety programs, guidelines, and design solutions for ENM workplaces (Tab. 3).

The CPSC’s regulations do not require testing; the Federal Hazardous Substances Act (15
U.S.C. 81261 et seq., 2008) and its implementing regulations only require that a product
be labeled to reflect the hazards associated with that product. Manufacturers, retailers, and

8This document is a draft and not for implementation. Once finalized, the document will represent the FDA’s position.
https://www.cdc.gov/niosh/topics/nanotech/default.html
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distributors of nano-enabled products, as with any consumer product under the CPSC’s
jurisdiction, must report to the CPSC immediately if they obtain information that reasonably
supports the conclusion that their product fails to comply with an applicable consumer
product safety rule, contains a defect that could create a substantial product hazard, or
creates an unreasonable risk of serious injury or death (CPSC, 2019).

The U.S. Department of Defense generally uses data collected using EPA’s guidelines for
ENM testing. Some specific tests such as the zebrafish (Danio rerio) embryo test (OECD,
1998a; Haque and Ward, 2018) or Daphnia magna toxicity testing (Xu et al., 2019) are
primarily directed at understanding the ecotoxicity of novel ENMs.

In addition to the test guidelines and guidance documents identified in Tables 2 and 3, the
NanoWG compiled a list of documentary standards and guidelines designed or evaluated for
ENM characterization and/or toxicity testing issued by the American Society for Testing and
Materials International (ASTM), the International Organization for Standardization (ISO),
and the OECD Working Party on Manufactured Nanomaterials. The compiled list, which
contains recommended vocabularies for ENMs, methods for the characterization of ENMs,
and some methods for working with and evaluating ENMs, is presented in Table S110. This
compilation of methods has been prepared to support scientists with identifying potentially
relevant standards. While some of these methods describe toxicity tests designed for use
with ENMs (e.g., ASTM E2526 (2013)), many also describe the protocol considerations and
measurements that are needed to support toxicity testing such as ENM characterization in
the test media and quantification of the ENM concentration. The key issue of dosimetry
during /n vitro tests with ENMs will be discussed in depth in Section 4.2.

4 Practical considerations for in vitro toxicity testing of ENMs

Compared to substances that readily dissolve in test medium or other solvents, ENMs pose
multiple challenges owing to their unique physicochemical characteristics. It is increasingly
realized that commonly used /n vitro inhalation toxicity study models where the effects

of ENMs on cultured cells are tested under submerged conditions, may not represent real
exposure conditions, i.e., inhaled “dry” ENM deposition in the lung. One of the foremost
challenges in ENM testing relates to changes in dosimetry occurring during experiments
(Teeguarden et al., 2007; DeLoid et al., 2017). Changes in dosimetry can occur as a result
of each ENM’s effective density in culture medium (DeLoid et al., 2014; Pal et al., 2015),
dissolution of particles (e.g., nanosilver particles dissolving and forming silver ions (Liu

et al., 2010)), agglomeration of particles (e.g., particles interacting with other particles

to form larger agglomerates (Li et al., 2010)), heteroagglomeration of the particles (e.g.,
particles interacting with, for example, algae or bacterial cells during the assay to form
agglomerates (Hartmann et al., 2012; Hanna et al., 2018)), and transformations such as
redox changes (e.g., changes in the speciation of particles such as the conversion of AgNPs
to silver chloride particles (Ha et al., 2018; Poli et al., 2020)). Dissolution, agglomeration,
and/or redox changes can cause the exposure concentration to vary substantially when
testing pelagic organisms (i.e., organisms in the water column such as Daphnia magna) or

10¢0i:10.14573/altex.2105041s
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suspended cells. In addition, the results of /n vitro assays for some ENMs may vary strongly
based on the composition of the test medium, which can impact the dissolution of ENMs,
their transformations (e.g., redox changes), or the formation of a protein corona (Drasler
etal., 2017; Kaiser et al., 2017). Another key challenge that we discuss in Section 4.3 is

the potential for experimental artifacts during toxicity testing of ENMs. This necessitates
adequate control experiments to identify and minimize potential artifacts and may reveal
additional control experiments required for elucidating mechanisms of toxicity.

One approach that may have more physiological relevance and overcome some of the
issues with transformations that can occur during exposure with submerged models is

to expose cell culture models having an air-liquid interface to aerosolized ENMs. This
exposure approach utilizes cells grown on porous culture inserts, such as 3D models with
pseudostratified epithelium and intact mucosa and cilia, which enables direct deposition of
nanoparticle powders through aerosol exposure. This approach has been used in numerous
recent ENM studies (Polk et al., 2016; Drasler et al., 2017; Barosova et al., 2020; Leibrock
etal., 2020).

4.1 Dosimetry survey responses

The complexity of ENM dosimetry (i.e., particle agglomeration/aggregations, redox
changes, interaction of particles with proteins in media, particle dissolution rate, etc.) led
the NanoWG to develop a list of detailed considerations for those using /n vitro tests (Tab.
4). The measurements in Table 4 are suggested based on best practices from the scientific
literature. However, it is important to note that standardized methods are not yet available
for some potential dose metrics such as particle number concentration or surface area
concentration. Additional concerns are described below.

Accurate dosimetry measurements, in general, are challenging and may not be technically
feasible for all types of ENMs (Johnston et al., 2020). For example, it is substantially

more difficult to characterize the agglomeration status of rod- or plate-shaped ENMs than
that of spherical nanoparticles. This is because dynamic light scattering, a commonly used
agglomeration characterization method, typically determines the hydrodynamic diameter of
an ENM based on the size of a sphere that diffuses at the same rate as the particle being
measured (Petersen and Henry, 2012; Carvalho et al., 2018). In addition, commonly used /n
vitro dosimetry models for submerged cells are limited to relatively low-aspect-ratio ENMs
(i.e., those with a length similar to their width) (DeLoid et al., 2017).

Another factor that must be accounted for is the effective density of the ENM agglomerate
unit, which includes both the particles and the media (DeLoid et al., 2014). The effective
density for an ENM can vary greatly from one culture medium to another, thus changing
the delivered dose to the cells for the same ENM. The capacity to characterize different
concentration dose metrics also varies based on the type of ENM and its agglomeration
state (Minelli et al., 2019). For example, a comparison of the number concentration
measurements of gold ENMs had substantially worse agreement among techniques for
samples which showed substantial agglomeration than for those that remained individually
dispersed (Petersen et al., 2019a). The detection limit of analytical methods to quantify
ENM mass concentration in test media for in vitro NAMs also varies for different ENMs.
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For example, it is difficult to measure the concentration of carbonaceous ENMs in test media
with high concentrations of serum (Petersen et al., 2016; Goodwin et al., 2018), while the
presence of serum in medium is less problematic for quantification of metal and metal oxide
ENMs (Laborda et al., 2016).

The procedure to prepare an ENM suspension at the necessary concentration prior to an
assay can vary greatly among laboratories, which may change the experimental outcome.
Thus, there is a need to standardize the preparation for each ENM to reduce variability
between testing laboratories. For example, most ENMs are sonicated prior to testing, but the
level and duration of the sonication can vary, which affects the amount of energy delivered
to the material. This variation can affect the agglomeration size, which ultimately affects the
dose of material delivered to the cells. A way to minimize variation is to calorimetrically
calibrate all sonicators to ensure the exact same energy is delivered to the material each time
for consistent dispersion results (Taurozzi et al., 2011). Also, the total delivered sonication
energy and the number of sonications needed to disperse ENMs should be reported for each
study.

Table 4 was circulated within the workgroup to assess the relevance of these considerations
on the characterization of ENMs to agencies’ information needs. As expected from agencies
with very different testing needs, responses to Table 4 varied.

Responses from EPA OPP were that several characterizations (i.e., ENM mean size prior to
addition to test media, ENM size distribution prior to addition to test media, ENM mean
size in test media prior to exposure period, ENM size distribution in test media prior to
exposure period, and ENM dissolution in test media before and after exposure period)

are not required as part of toxicity testing, but are requested as part of physicochemical
properties of products and environmental fate determinations. Thus, these measurements
are not necessarily made in the presence of cell culture or environmental media. ENM

mass concentration in test media before exposure period are not required, but OPP typically
requests clarification of such information as part of the dissolution kinetic studies when

test media are buffer solutions or water. For toxicology studies, if not provided, OPP
encourages registrants “to provide nanomaterial mass concentrations in medid’ under certain
circumstances. It is important to note that, if ENM-specific modifications to test methods
are needed, a revised protocol submission is recommended for review prior to initiating the
study. Such modifications may be needed to generate robust results.

EPA OPPT stated that manufacturers are not required to submit any specific dosimetry
characterization data for ENMs. However, manufacturers are encouraged to submit

ENM mean size and size distribution before exposure period along with other standard
physicochemical characterization data, which may assist with EPA’s understanding of the
toxicity of an ENM.

For review of engineered nanomaterial food contact substances where consumer exposure
to the nanomaterial is expected, FDA CFSAN requires the following ENM-specihc
information: particle number or surface-area concentration in test media before exposure
period, ENM mean size or size distribution prior to addition to test media, and ENM mean
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size in test media prior to exposure period (Rice et al., 2009). ENM dissolution in test
media after exposure period would be considered a key metric both in assessing test system
exposure to the ENM and also in assessing the feasibility of using “read-across” to its
non-nano analogs (e.g., a particle with the same composition and shape with all dimensions
> 100 nm) in the safety assessment of the ENM. CFSAN indicated that some information
such as measurements or modeling of ENM mass concentration associated with cells after
the exposure period would be considered key metrics for documenting exposure of the test
system to the test article.

Regarding delivered dose, there was discussion about the benefits and limitations of two
different particokinetic models: the /n vitro sedimentation, diffusion, and dosimetry (ISDD)
model (Hinderliter et al., 2010; DeLoid et al., 2017) and the in vitro sedimentation diffusion,
dissolution, and dosimetry (ISD3) model (Thomas et al., 2018). NanoWG discussion
specifically concerned the models’ usefulness in relating a nominal concentration to an
estimate of the actual amount of ENMs reaching the cells. Ultimately, the workgroup
reached no consensus as to how to use different dose metrics or particokinetic models

to understand the results from /n vitro studies, although several workgroup members

agreed with the CPSC response that, in general, robust studies include hydrodynamic or
aerodynamic size distribution data for aqueous dispersions or airborne ENMs before the start
of the exposures.

The measurements presented in Table 4 are not necessarily required data for the submission
of ENMs to regulatory agencies, and there is still debate within and across agencies as

to which data should be required or considered as part of toxicity study requirements

for ENMs. Nonetheless, the measurements are still useful for consideration during the
development and testing of ENMs.

4.2 Dosimetry considerations

Table 5 lists five main categories of /in vitro test exposure systems. The choice of whether
to require additional dosimetry measurements for /n vitro methods may vary based on the
exposure system used.

While promising research has been conducted on the fourth (airborne exposure to a
biological test system located on an air-liquid interface (Lacroix et al., 2018; Barosova et al.,
2020)) and fifth (lung-on-a-chip model of inhalation toxicity (Zhang et al., 2018)) exposure
systems/categories, there are no standardized methods using these exposure approaches.
Thus, this discussion will focus on the first three types of exposure systems.

As described in Section 4.1, dosimetry and dosimetry requirements/recommendations for
ENMSs can be complex, differing to some extent among agencies, and detailed guidance

is not always available. In the absence of such guidance, it can be helpful to consider

the dosimetry requirements for testing dissolved substances, which are described in detail
for the OECD testing program. For human health testing for either /in vivoor in vitro
measurements, only the verification of the initial dose is required. However, it is widely
known that the exposure concentration of dissolved chemicals can vary due to factors

such as volatilization, adsorption to the well sidewalls, and metabolism (Tanneberger et al.,
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2013). The trade-offs between test method accuracy and the additional costs and workload
associated with testing the concentrations in the wells is a topic of ongoing discussion
(Natsch et al., 2018). In addition, numerous efforts have been made to move from a nominal
to a cellular concentration in /n vitro assays using submerged culture exposure conditions
and in associated /n vitroto in vivo extrapolation modeling (Amritage et al., 2014; Casey et
al., 2018).

Nominal concentrations are typically used for /n vitro measurements for human health
endpoints, which raises questions about the dosimetry requirements for /n vitro tests of
ENMSs and whether it is justified to require more detailed information for the dosimetry of
ENMSs than for other test substances. OECD GD 317 (2020) addresses dosimetry concerns
for aquatic toxicity testing of ENMs and may provide guidance on how to handle exposure
measurements for /n vitrotesting for human health testing requirements if additional
dosimetry measurements are deemed necessary. Multiple dose metrics are considered: mass
concentration, nanoparticle number concentration, and surface area concentration, all of
which have been successfully used in the published literature. However, as stated above,
there is a lack of standardized methods for measuring the nanoparticle number and surface
area concentrations. Recent studies have shown substantial differences in the nanoparticle
number concentration among techniques (Amini et al., 2016; Mourdikoudis et al., 2018;
Petersen et al., 2019a). Thus, this guidance document suggests that mass concentration
measurements should be required, although additional ENM characterization and dosimetry
measurements in the test media can also be provided.

In NAMs with liquid exposure to suspended molecules or cells (Category 1 of Tab. 5),

rapid agglomeration and settling of the ENM in these systems would reduce the suspended
exposure concentration to the ENM. Therefore, it may be appropriate to measure the change
in the suspended ENM mass concentration across the duration of the assay to evaluate if the
concentration is constant, unless the ENM concentration at the bottom of the test container
would be expected to have the same effect as the fraction that remains suspended. For
Category 2 assays, those in which cells growing in monolayers are submerged in media, it
is possible to quantify changes in the suspended concentration during the exposure period
and to estimate that the exposure concentration is equivalent to the change in the suspended
concentration. For the third exposure approach (Category 3: a liquid, cream, or solid directly
applied to a biological test system such as a 3D construct), determining the ENM mass
applied to the surface is likely sufficient. The exposure concentration on the biological test
article can be determined from the ENM concentration in the formulation or solid and the
mass or volume applied to the biological construct. For submerged cell model exposure
(Category 2), there have also been extensive efforts to model the expected cellular exposure
concentration based on the effective density and size of the ENM, as described above for
the ISDD model (Hinderliter et al., 2010; Thomas et al., 2018). However, this approach

has not yet been standardized, the reproducibility of effective density measurements has
not undergone interlaboratory testing, and the modeled cellular concentration may depend
upon the method used to quantify the ENM size (Petersen et al., 2019a). Further dosimetry
modelling to model deposition relies upon accurate input parameters, such as dispersant
density and viscosity, that are not universally available. This can lead to uncertainty in
attaining expected cellular exposure concentrations; therefore, in the absence of parameters
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published in the literature, the required parameters should be experimentally derived. Lastly,
gaps in dosimetry include the impact of physiochemical parameters on ENM behavior in
medium during dosing, modeling deposition within the cellular environment for high-aspect
ratio fibers (Price et al., 2019) and two-dimensional ENMs, and efficient dosing with
buoyant ENMs, such as virgin and nano-enabled composite thermoplastics. Until robust
models are developed and validated, secondary analytical techniques presented in Table 4
should be considered to reduce uncertainty in assessing cellular exposure.

4.3 Interference/bias controls

One of the foremost challenges in using /n vitro test methods with ENMs is the potential
for analytical biases or artifacts (i.e., problems that occur during the test leading to an
incorrect result or misinterpretation). /n vitro ENM studies often either overlook or provide
incomplete interference characterization (Ong et al., 2014), because control experiments

to detect and characterize ENM-derived artifacts are often not performed. A list of
potential control experiments is provided in Table 6 along with assays that could be
impacted by each artifact. No specific recommendations or guidelines for the detection
and characterization of method specific ENM interference currently exist. Since each test
method is performed under a unique set of circumstances, which may include method-
specific reagents, incubation temperature and times, or biological sample matrices, it is
necessary to critically review each parameter prior to determining what control experiments
may be needed when testing a particular ENM.

If artifactual results are expected or observed, it may be necessary to consider whether
mitigation strategies, bias characterization, or complete methodological replacement are
warranted. In the case of cytotoxicity, membrane integrity, and proliferation screening
assays, no single method is universally robust against interference for all ENMs (Monteiro-
Riviere et al., 2009; Kroll et al., 2012). Therefore, each ENM-method pairing should be
screened for known sources of interference highlighted in Tables 6 and 7 to determine
analytic fitness for purpose and to characterize approximate direction and magnitude of
analytic bias, if possible (Han et al., 2011; Holder et al., 2012). In addition to the sources

of interference highlighted in the tables, when using methods with indirect measurement
endpoints, e.g., colorimetric, fluorometric, luminometric, etc., ENM absorbance, quenching,
and autofluorescence should be examined to assess appropriateness of that method.

Where applicable, signal inhibition/enhancement and spike-in control experiments may be
warranted. Further, measures of cytotoxicity, membrane integrity, and proliferation can be
performed using two or more concurrent methods to assess concordance and facilitate result
interpretation.

In certain instances, method replacement may not be plausible, and adaptation of an extant
method may be required. Here, we use the /n vitro cytokinesis-block micronucleus assay
using cytochalasin B, which is a standard assay for measuring genotoxicity of a chemical
(Fenech, 1997), as an example. In the method, cytochalasin B is added to cultured cells to
inhibit cytokinesis, but it also inhibits actin assembly, which can decrease cellular uptake
of ENMs (MacLean-Fletcher and Pollard, 1980; Kettiger et al., 2013). Therefore, while
not formally adopted, the OECD has proposed methodological adaptation through delayed
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cytochalasin B treatment after ENM treatment to mitigate potential ENM uptake inhibition
for the Jin vitro cytokinesis-block micronucleus assay (Gonzalez et al., 2011).

Under certain circumstances, artifactual influences on the biological system may be
unavoidable. For example, the formation of a proteinaceous ENM corona can lead to
immunomodulatory or toxicodynamic effects on /in vitro models (Mo et al., 2018). Effects
caused by a protein corona during /n vitro experiments may not necessarily be translatable

to /n vivo models or the human milieu, but they cannot be immediately discounted given
that the incorporation of nano-enabled medicines may potentially lead to bioavailable serum-
bound ENMs (Rampado et al., 2020).

In addition to potential analytical artifacts and biases, it is possible to perform additional
control experiments to better understand and contextualize the mechanism of toxicity to
match inherent properties of a particular ENM and its respective exposure conditions. For
example, the addition of a particle dispersant may impart a biological or toxicodynamic
effect on the /n vitro system that may not translate to the /n vivo milieu. Though such
controls are typically routine, the potential biological effects due to corona formation

in the presence of proteinaceous dispersants, such as serum, should be considered. The
toxicodynamic effects of dissolvable ions from ENM and leachable constituents from
complex mixtures may warrant investigation with a myriad of methods, including treatments
with soluble ion controls and filtrate controls. A list of experiments to understand the
mechanism(s) of toxicity is presented in Table 7. For some contexts of use, gaining

insight into the toxicity mechanism as well as contributory sources of biological effect
may be critical for risk assessment, while for other contexts of use, this infonnation may
not be essential but assists in interpreting the assay results. When conducting assays to
fulfil regulatory requirements/recommendations, the relevant regulatory agency should be
consulted to determine what control experiments are required prior to the submission of /n
vitro toxicity or efficacy test data.

Conclusions and future directions

The NanoWG surveyed ICCVAM member agencies to request information as to which
types of ENMs are of agency interest, which toxicology tests are performed on ENMs,
whether there is agency-specific guidance for ENM toxicity testing, and what dosimetry

and interference/bias controls are requested for the use of /n vitro test methods with

ENMSs. Based on the responses received, the workgroup determined that there are significant
challenges in identifying and clarifying the toxicity testing needs of ENMSs across agencies
and programs, because the requirements or key considerations at each agency differ based
on the products they regulate. Therefore, the NanoWG evaluated two key issues, namely
dosimetry and interference/bias controls, which are relevant across a broad range of NAMs
when testing ENMs to assist /n vitro method developers in understanding the perspectives of
different agencies on these topics and to help provide general guidance.

Demonstrating the technical reproducibility and biological relevance of NAMs is the key to
supporting their broader use for dissolved and particulate substances such as ENMs. One
important topic for future work related to technical reproducibility to support the broader
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use of in vitrotest methods is to provide clear guidance on determining whether a particular
method is applicable for use with ENMs. This may require performing the assay with a
specific set of ENMs with diverse properties such as different surface charges, elemental
compositions, and surface coatings, and clarifying specific control measurements that should
be performed simultaneously. If control measurements of a NAM show artifactual results
with some types of ENMs, the applicability domain of the NAM may be limited to those
ENMs that do not produce such results, or modifications to the NAM to minimize the effect
of the artifacts may be needed.

An important topic for future work related to biological relevance is how to correlate /in
vitroand in vivo test results, and how to evaluate to what extent /n vitro responses can be
used to predict corresponding /in vivo exposures and effects. This is especially important

if the /n vitrotest results will be used for more than just screening and prioritization. As
described in the ICCVAM roadmap (2018), it is recommended, when possible, to discuss
proposed applications of NAMs with regulatory agencies during the NAM development
process to carefully clarify the context of use. To validate the /n vitroto in vivo correlation,
it would be helpful to collect high-quality data available for different standardized /n vivo
test methods with different ENMs. These results could then be compared to those obtained
using individual NAMs (e.g., lung fibrosis (Barosova et al., 2020)) or combinations of
NAMs (e.g., those for skin sensitization (OECD, 2021b)) testing specific key events along
an adverse outcome pathway (Halappanavar et al., 2019, 2020). Suggested priority areas
for comparing /n vivoresults and NAMs are for endpoints that have demonstrated defined
approaches (e.g., skin sensitization) for dissolved chemicals and for endpoints that have
robust /n vivo datasets with ENMs.

Stakeholders place confidence in data from toxicology test methods, i.e., that they are
producing the correct result and identifying a potential hazard (or not). Hazard evaluation
has historically been accomplished through /in vivo approaches. As highlighted above, to
establish confidence in NAMs, we compare them to the /n vivo test method result, and
discordance is viewed as a limitation of the NAM. However, in addition to assessing NAM
reproducibility, several studies are now investigating the reproducibility of /n vivo methods
so that limitations can be taken into consideration in the context of any discordance noted
when comparing to NAMs (Luechtefeld et al., 2016; Pham et al., 2020; Rooney et al., 2021).
Other recent work has focused on evaluating traditional /n7 vivotoxicity tests, as well as
NAMs, based on their relevance to human biology (Clippinger et al., 2021). With that in
mind and given the challenges to implementation of NAMs as complete replacements of
animal use for testing single chemicals, it stands to reason that their implementation for
testing ENMs has yet to be realized. Therefore, while substantial progress has been made

in the testing of ENMs during the past two decades, additional work on these topics is
needed to support the increased usage of /n vitro test methods with ENMs for regulatory
testing. Progress towards this goal will be predicated on federal agencies and stakeholders
working together using flexible, robust, and integrated approaches to implement NAMs that
both protect human and environment health and reduce or eliminate the need for testing in
animals.
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