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Abstract

Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and 

compositions, and often possess novel or enhanced properties compared to larger sized particles 

of the same elemental composition. To ensure the safe commercialization of products containing 

ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be 

created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on 

each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico 
test methods may be needed, given their capacity for higher throughput testing, lower cost, and 

ability to provide information on toxicological mechanisms. However, the different behaviors of 

ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In 

this study, member agencies within the Interagency Coordinating Committee on the Validation of 

Alternative Methods were queried about what types of ENMs are of agency interest and whether 

there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to 

provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry 

and interference/bias controls, are thoroughly discussed.

1 Introduction

Engineered nanomaterials (ENMs) are materials with a size range, in at least one dimension, 

from 1 nm up to 100 nm (ASTM E2456-06, 2006; ISO, 2019) or are engineered to 

exhibit properties or phenomena (chemical, physical, or biological) that are attributable 

to their dimension(s), even if those dimensions fall outside the nanoscale range, up to 

one micrometer (1,000 nm) (FDA, 2014b). Compared to larger materials with the same 

elemental composition, ENMs may have enhanced or novel properties and may exhibit 

a wide variation in their structure as well as in their physical and chemical properties. 

These enhanced and novel properties of ENMs have led to their use in a broad range of 

fields, including agriculture (Adisa et al., 2018; Borgatta et al., 2018; Kah et al., 2019), 

consumer products1, environmental remediation (Petersen et al., 2012; Lowry et al., 2019; 

Zhang et al., 2019), food production and packaging (Uddin et al., 2016; Szefler, 2018), 

and nanomedicine (Besinis et al., 2015; Rösslein et al., 2017; Sun et al., 2017). Due to 

the widespread use of ENMs, it is necessary to ensure that potential environmental (Waissi-

Leinonen et al., 2012; Edgington et al., 2014; Mortimer et al., 2016; Lead et al., 2018; 

Geitner et al., 2020) or human health (Nelson et al., 2013; Grafmueller et al., 2015; Fadeel et 

al., 2018; Salieri et al., 2020) risks of ENMs are understood and minimized.

1 http://nanodb.dk/ 
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In the United States, multiple federal agencies are tasked with the oversight and regulation 

of ENMs and applications of nanotechnology. The evaluation of potential ecological and 

human health effects of ENMs is challenging because of the nearly endless varieties of 

ENMs that can be synthesized in terms of shapes, sizes, surface coatings, and elemental 

compositions (Nel et al., 2013a,b; Zhao et al., 2019). In addition, toxicological effects for 

“the same” type of ENM can differ depending on synthesis methods, manufacturer/supplier 

performing the syntheses, and how each ENM is handled (Griffitt et al., 2008; Harper et al., 

2008; Jeevanandam et al., 2018; Renero-Lecuna et al., 2019) and disposed of along its life 

cycle (Oischinger et al., 2019). The exponentially increasing number of potential ENMs and 

the possible differences in properties between the same types of ENMs makes the use of 

slow, expensive in vivo toxicity testing impractical (Nel et al., 2013a,b; Shatkin et al., 2016).

An alternative approach to in vivo toxicity testing, envisioned to be more efficient, 

predictive, and economical than using animals for evaluating the potential toxic effects of 

chemicals, was proposed by the U.S. National Research Council (NRC, 2007; Andersen and 

Krewski, 2009; Krewski et al., 2014). This approach uses in silico, in chemico, and in vitro 
methods, collectively known as new approach methodologies (NAMs), to inform pathway-

based toxicities, hazard assessment, and, in some cases, to predict the level of toxicity. 

NAMs may be more effective than in vivo tests in providing mechanistic information on 

the potential biological effects of ENMs through adverse outcome pathways (AOPs). AOPs 

are frameworks to link biological events (often using data obtained with NAMs) to adverse 

effects, such as describing the relationship between protein alkylation and liver fibrosis 

(Gerloff et al., 2017) or the link between the altered transcriptional responses of acute 

phase response genes in lung tissue and nanoparticle-induced cardiovascular disease (Saber 

et al., 2014; Hadrup et al., 2020). While standardized test methods have been developed 

to measure potential toxicological effects, the behaviors of ENMs (e.g., the potential 

to agglomerate and settle out of suspension, or to react with test media and/or testing 

components) can challenge the performance of in vitro NAMs (Grieger et al., 2009; Kühnel 

and Nickel, 2014; Rösslein et al., 2015; Jeevanandam et al., 2018; OECD, 2018a). This has 

led to a sustained research effort to evaluate the applicability of test methods for use with 

ENMs and to design control experiments to test for potential biases and artifacts (Keene et 

al., 2014; Guadagnini et al., 2015; Hanna et al., 2018; Petersen et al., 2019b). However, it 

is not yet fully clear to what degree different U.S. regulatory agencies would accept results 

from standardized in vitro or in chemico NAMs and what methodological modifications are 

needed to yield robust, relevant results.

The Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of 

Chemicals and Medical Products in the U.S.2, developed by the Interagency Coordinating 

Committee on the Validation of Alternative Methods (ICCVAM), guides activities to support 

the development of NAMs and increase confidence in their use among U.S. regulatory 

agencies. ICCVAM is composed of representatives from 17 U.S. federal agencies that 

use, generate, or disseminate toxicological and safety testing information3. The committee 

2 https://ntp.niehs.nih.gov/go/natl-strategy 
3https://ntp.niehs.nih.gov/pubhealth/evalatm/iccvam/iccvam-agencies/index.html (accessed 07.08.2019)
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facilitates the development, validation, and regulatory acceptance of NAMs and other 

approaches that replace, reduce, or refine the use of animals for chemical safety testing4.

To perform specific tasks for the development or validation of NAMs, ICCVAM establishes 

ad hoc workgroups5. ICCVAM established its Nanomaterials Workgroup (NanoWG) 

to identify and evaluate ENM-specific testing requirements/recommendations among 

different U.S. government agencies, to determine whether ENM testing requirements/

recommendations among the different agencies differ from testing requirements/

recommendations specified for other types of substances, and to identify opportunities for 

NAMs to be used or developed to address agency needs.

This article summarizes the NanoWG’s evaluation of U.S. government agency requirements/

recommendations for ENM testing. During this process, the NanoWG identified key 

considerations that need to be evaluated before NAM-based methods can be used to 

conduct safety testing on ENMs. Based on the information provided by the agencies on 

ENM-specific testing requirements/recommendations, we were able to collate references to 

published documentary standards that have been published relevant to ENM hazard testing. 

We also discuss key issues regarding control measurements and dosimetry during in vitro 
testing when evaluating ENMs. This article is not intended to be a comprehensive collection 

of all test methods used to evaluate ENM toxicity, nor is it a complete compendium of 

all U.S. agencies, offices, or divisions that utilize ENM testing. The article is intended to 

provide information to guide future discussion of approaches to advance the use of NAMs 

for evaluating the hazards of ENMs. Additional information on the regulatory framework 

for nanomaterials may be found in Ridge (2018), and a recent review by Shaffer et al. 

(2021) provides an overview of the agencies that perform chemical evaluations for different 

exposure scenarios.

2 Methods

The NanoWG surveyed ICCVAM member agencies to request information as to which 

ENMs are of agency interest, which toxicity tests were performed on ENMs to meet agency 

information requirements, and whether there are agency-specific guidance documents for 

ENM toxicity testing currently in place. Designated agency NanoWG representatives 

reviewed and compared their Agency’s current toxicity data requirements to generate 

responses and disseminated the survey information to appropriate staff members and 

other divisions for their input on needs and data challenges. Responses were received 

from the Centers for Disease Control and Prevention/National Institute for Occupational 

Safety and Health (CDC/NIOSH), U.S. Consumer Product Safety Commission (CPSC), 

U.S. Department of Defense, U.S. Department of Energy, U.S. Department of the Interior, 

U.S. Environmental Protection Agency (EPA), U.S. Food and Drug Administration (FDA), 

National Institute of Standards and Technology (NIST), and U.S. Department of Agriculture. 

These responses are summarized in Section 3. Some agencies responded that while they do 

not require or conduct toxicology testing, they are involved in the development and use of 

4 https://ntp.niehs.nih.gov/iccvamreport/2019/about/index.html 
5 https://ntp.niehs.nih.gov/go/iccvam-wg 
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reference materials and standard methods related to ENM testing and evaluation. Tables 1, 

2, and 3, respectively, include information on ENMs of agency interest, some test guidelines 

under which nanomaterials test data are submitted, and ENM-specific guidance documents 

developed by regulatory agencies.

As mentioned previously, differences in ENM synthesis and handling can alter their 

toxicological profiles. ENMs also tend to agglomerate/aggregate, settle out of suspension, 

or react with test media and/or testing components. Consequently, these properties indicate 

that ENMs have complex dosimetry, and therefore characterization of test media and/or 

testing components is a critical part of testing. The NanoWG also conducted an additional 

survey to discuss considerations for ENM characterization and dosimetry for in vitro assays. 

Responses were received from CPSC, EPA, FDA, and CDC/NIOSH, and are discussed in 

Section 4.

3 Agency needs for ENM testing

Agency responses regarding ENMs of interest, tests used to evaluate ENMs, and agency-

specific guidance documents were compiled and reviewed and are discussed in more depth 

below. Agencies or divisions that have an interest in ENMs but do not require or conduct 

testing are the Pacific Northwest National Laboratory of the U.S. Department of Energy, the 

U.S. Department of the Interior, CPSC, and the U.S. Department of Agriculture National 

Institute of Food and Agriculture.

3.1 Responses relating to materials of interest

Given that the type of ENM and its end use may influence the required testing, the 

workgroup sought information about what ENMs are of interest to member agencies. The 

identified materials of interest are presented in Table 1, along with some of the use cases that 

brought these materials to agency attention. While a broad range of ENMs was represented 

in responses, almost all the most common ENMs are a focus for at least one agency. Some 

ENMs, such as carbon nanotubes, graphene family materials, metal oxides, nanoclays, and 

nanosilvers are a focus for multiple agencies. In addition to providing information about 

materials of interest, agencies also provided information on why the materials are of interest 

and indicated which materials are emerging concerns.

CPSC indicated that graphenes and nanoclays are emerging nanomaterials of interest, as 

well as complex mixtures of carbon nanotubes, metal ENMs, and other particles. They also 

stated that recently published studies have detected styrene, metals, and carbon nanotubes in 

the emissions from 3D printers, and carbon nanotubes, nanometals, metal oxides, polycyclic 

aromatic hydrocarbons, ozone, and carbon dioxide in emissions from laser printers (Kim et 

al., 2015; Pirela et al., 2019), and that these emissions will require further study.

EPA and CPSC collaborate to evaluate the potential release of free ion or micronized (e.g., 

formulations consisting of copper carbonate particles ranging in size from a few nanometers 

to several microns) copper particles from the paint or coating containing nanocopper and 

nanocopper pressure-treated lumber during their normal use, as well as to evaluate the 

effects of released metal oxides from treated wood. There is also a potential interest in 
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other forms of nanocopper (e.g., aqueous alkaline copper azole), which has similar use 

applications and toxicological outcomes to micronized copper.

EPA’s Office of Pesticide Programs (OPP) indicated that nanosilica and nanometals bound 

to nanosilica and mixtures of nanometals were of emerging interest. EPA’s Office of 

Pollution Prevention and Toxics (OPPT) indicated that graphene and graphene oxides are 

emerging nanomaterials of interest.

FDA’s Center for Food Safety and Applied Nutrition (CFSAN) commented that while 

nanoclays are used in food packaging, they are not expected to migrate into food products. 

There is potential dietary exposure to ionic copper or silver derived from food contact 

packaging use of nanoparticulated silver or copper. Because titanium dioxide and silicon 

dioxide, when used as direct food additives, may contain some particles in the nanoscale 

range, consumers may also be exposed to nanoparticulate forms of titanium dioxide and 

silicon dioxide.

CDC/NIOSH’s Nanotechnology Research Center (NTRC) is the leading federal agency 

conducting research and providing guidance on the occupational safety and health 

implications and applications of advanced materials and nanotechnology. NTRC has a 

robust field study and laboratory research program that investigates ENM toxicity and 

conducts exposure assessments and epidemiological studies in the workplace. In addition, 

the NTRC focuses on critical areas of ENM research including material properties such 

as dustiness and explosivity behavior, and emissions characteristics of nanomaterials and 

NM-enabled products that are important in assessing potential toxicity and risk associated 

with real-world occupational exposures (Bishop et al., 2017). The data suggests that low 

solubility nano-scaled particles are generally more toxic than larger particles on a mass-to-

mass basis (Oberdörster et al., 2005; Rothen-Rutishauser et al., 2007; Sager and Castranova, 

2009; Zhao et al., 2009; Bakand et al., 2012). There are also strong indications that particle 

surface area, surface chemistry, and solubility play a role in the observed toxicity of ENMs 

in cell culture and animal models (Sager and Castranova, 2009; Roberts et al., 2013). 

In vitro models employing both acute and sub-chronic exposure conditions have been 

developed and used to predict in vivo toxicological responses (Cho et al., 2013; Manke 

et al., 2014; Wang et al., 2014). Based on comparable exposure doses, time courses, target 

cell types, and relevant biological endpoints, consistent results have been obtained from 

comparable experiments with in vitro vs. in vivo models using similar ENMs (e.g., based 

on physicochemical properties) such as carbon nanotubes (Mercer et al., 2011; Mishra et 

al., 2012; Sargent et al., 2014; Siegrist et al., 2014; Snyder-Talkington et al., 2015, 2019), 

metal oxide nanoparticles (Ma et al., 2015; Davidson et al., 2016), boron nitride nanotubes 

(Kodali et al., 2017; Xin et al., 2020), and end-life cycle (incinerated) nanoclay enabled 

thermoplastics (Stueckle et al., 2018; Wagner et al., 2018). These results, mainly observed 

from CDC/NIOSH research projects on the ENMs of agency interest listed in Table 1, 

support the implementation of in vitro models as a rapid and economical tool to screen and 

predict the potential in vivo toxicological responses to ENMs for reducing, refining, and 

replacing animal usage.
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The U.S. Department of Agriculture Forest Service Forest Products Laboratory is primarily 

or partly responsible for the development of many of today’s wood-based technologies such 

as wood science, building structures, building resilience, building materials, pulp and paper, 

biofuels, performance polymers from wood, and high-value chemicals from wood. In the 

area of nanotechnology, the laboratory focuses on research into the application of cellulose 

ENMs, the nanoscale aspects of wood, especially renewable, forest-based nanomaterials, 

and partners with other organizations on understanding the environmental, health and safety 

aspects of forest-based nanomaterials.

3.2 Responses relating to methods and guidance documents relevant to ENM toxicity 
testing

One difficulty with the evaluation of ENMs is determining when ENM-specific testing is 

required. For example, an agency’s definition of what may be considered an “ENM” varies 

between U.S. agencies and may be dependent on end use. This implies the need for a 

case-by-case ENM-specific safety assessment, based on the material’s characteristics, the 

proposed use of the material, and the route of exposure/administration, among other factors 

(FDA, 2014b; EPA, 2017). As described in Table 1, there are multiple types of ENMs of 

interest to U.S. agencies, spanning an array of applications and uses. While testing of ENMs 

often needs to be evaluated on a case-by-case basis, there are test guidelines, provided in 

Table 2, that are frequently used for the evaluation of ENMs for use as food additives, new 

dietary ingredients, pesticides, or as part of pesticide formulations. Table 2 is not intended 

to be a complete compendium of all test methods used to evaluate ENM hazard, nor should 

it be implied that these guidelines are only used to test the substances/products indicated in 

the table. In addition to the guidelines listed in Table 2, some agencies (such as EPA) allow 

studies to be conducted in accordance with Organisation for Economic Co-operation and 

Development (OECD) guidance6. Moreover, EPA requires or recommends that protocols 

be submitted prior to study submission if modifications of these methods are proposed for 

toxicity testing of ENMs. It was often not possible to provide prescriptive suggestions about 

what specific methods are acceptable for testing ENMs, because the science on this topic 

is rapidly evolving and decisions are often made on a case-by-case basis. Given this rapid 

evolution, consensus has not yet been reached within agencies on some topics.

EPA OPP regulates the manufacturing and use of pesticides (including insecticides, 

herbicides, rodenticides, disinfectants, sanitizers, etc.) in the United States and establishes 

maximum levels for pesticide residues in food. OPP operates under the Federal Insecticide, 

Fungicide, and Rodenticide Act (FIFRA), which governs pesticide registration, distribution, 

sale and use. Enacted in 1947, FIFRA sets risk/benefit standards for pesticide registration, 

requiring that pesticides perform their intended function, when used according to labeling 

directions, without posing unreasonable risks of adverse effects on human health or the 

environment (7 U.S.C. § 136 et seq., 1947). In 1972, FIFRA was amended, expanding 

EPA’s authority to strengthen the registration process, enforcement provisions, and broaden 

the legal emphasis on further protecting health and the environment (7 U.S.C. § 136 et 

seq., 1972). FIFRA was further amended by the Food Quality Protection Act (FQPA) (7 

6 https://www.oecd.org/chemicalsafety/testing/series-testing-assessment-publications-number.htm 
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U.S.C. §136, 1996) and the Federal Food Drug and Cosmetic Act (21 U.S.C. §301 et seq, 

2002), under which EPA establishes tolerances or maximum legal limits for pesticides that 

apply to food. Under FQPA, a collection of pesticide data is necessary to set allowable 

levels and to conclude that a pesticide is safe. The rule further ensures that no harm will 

result to infants and children from aggregate exposure to the pesticide chemical residue. 

As a result, pesticide products, including ENM-containing antimicrobial products, inquiring 

registration require various data generation to address potential adverse effects to humans 

and environmental fate.

In evaluating a pesticide registration application, OPP assesses a wide variety of potential 

toxicological effects associated with the use of the product or active ingredient. In general, 

for ENMs, OPP requires data generated with the toxicological test guidelines presented 

in Table 2, but ENMs’ physical-chemical product characteristics are evaluated by product 

chemistry test guidelines and often compared with ENMs reported in toxicology studies.

EPA OPPT administers the Toxic Substances Control Act (TSCA; (15 U.S.C. §2601 et seq., 

1976)), which regulates chemical substances and mixtures that are manufactured, imported, 

processed, distributed, used or disposed of in the United States and that are not regulated 

under other laws (such as those that apply to pesticides or food and drugs). TSCA was 

originally enacted in 1976 and serves as the nation’s primary chemicals management law. In 

2016, TSCA was amended by the Frank R. Lautenberg Chemical Safety for the 21st Century 

Act, which included language to encourage alternatives to animal use for testing done under 

TSCA (15 U.S.C. § 2601 et seq., 2016).

Under TSCA, most nanomaterials are regarded as “chemical substances”. New chemical 

substances manufactured at the nanoscale must be submitted to EPA review before they can 

enter the marketplace7. Although upfront toxicity testing is not required under TSCA for 

any chemical substance, including ENMs, manufacturers must submit any existing data in 

their possession or control at the time of the new chemical application in a premanufacture 

notice. Premanufacture notice submissions for new nanomaterials under TSCA are reviewed 

and regulated individually. If EPA determines that the available information is insufficient 

to make a reasoned evaluation as to whether an ENM might produce an unreasonable risk 

to human health or the environment under the expected conditions of use, the agency may 

issue a consent order under Section 5(e) of TSCA to the submitter for additional testing. 

The recommended testing is specific to the area of human health concern. For example, if 

the concern is about inhalation exposure to various nanoparticles, the recommended testing 

may include an inhalation toxicity study (OPPTS Test Guideline 870.3465 (EPA, 1998f) or 

OECD Test Guideline 413 (OECD, 2018b).

The 2016 Lautenberg Chemical Safety Act (15 U.S.C. § 2601 et seq., 2016) requires EPA 

to develop a plan to “promote the development and implementation of alternative test 
methods and strategies to reduce, refine, or replace vertebrate animal testing and provide 
information of equivalent or better scientific quality and relevance for assessing risks of 
injury to health or the environment of chemical substances or mixtures.” As part of this 

7 https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/fact-sheet-nanoscale-materials 
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effort, EPA published a strategic plan in 2018 (EPA, 2018) to promote the development and 

implementation of alternative test methods or NAMs and a list of acceptable NAMs within 

the TSCA program (EPA, 2021). Even though NAMs presented in this list are not specific to 

ENMs, EPA expects to consider NAMs for several TSCA ENM decision contexts including 

hazard identification and characterization.

Table 3 lists selected guidance documents that U.S. federal agencies have issued to advise 

stakeholders on ENM testing. In 2017, EPA issued guidance (Tab. 3) to assist companies 

to report under the TSCA nanotechnology reporting and recordkeeping requirements rule 

(EPA, 2017). This rule mandates that manufacturers report information including specific 

chemical identity, production volume, methods of manufacture and processing, exposure and 

release information, and existing data on environmental and health effects.

FDA recently released a progress report (FDA, 2020) that shows a steady increase in 

drug product submissions containing nanomaterials to FDA. These submissions include 

nanomaterials of differing compositions, sizes, and surfaces, as well as nanomaterials 

containing therapeutic agents (Farjadian et al., 2019). FDA has issued several guidance 

documents on topics related to the application of nanotechnology in FDA-regulated 

products (Tab. 3) as part of ongoing implementation of recommendations from FDA’s 2007 

Nanotechnology Task Force Report (FDA, 2007). These documents serve to convey FDA’s 

current opinion on a topic rather than to bind the FDA or the public.

In 2014, FDA issued the FDA Final Guidance for Industry — Considering Whether 

an FDA-Regulated Product Involves the Application of Nanotechnology (FDA, 2014b). 

This guidance describes an overarching framework for FDA’s approach to the regulation 

of nanotechnology products. FDA has not established a regulatory definition of 

nanotechnology, nanomaterial, nanoscale, or related terms. In this overarching guidance, 

FDA identified two “points to consider” that should be used to evaluate whether FDA-

regulated products involve the application of nanotechnology:

1. Whether a material or end product is engineered to have at least one 

external dimension, or an internal or surface structure, in the nanoscale range 

(approximately 1 nm to 100 nm);

2. Whether a material or end product is engineered to exhibit properties or 

phenomena, including physical or chemical properties or biological effects, that 

are attributable to its diniension(s), even if these dimensions fall outside the 

nanoscale range, up to one micrometer (1,000 nm).

The FDA Center for Devices and Radiological Health follows this guidance when evaluating 

new medical devices. A key statement from this document is: “Based on our current 
scientific and technical understanding of ENMs and their characteristics, FDA believes 
that evaluations of safety, effectiveness, public health impact, or regulatory status of 
nanotechnology products should consider any unique properties and behaviors that the 
application of nanotechnology may impart.”

In addition to the FDA Final Guidance for Industry – Considering Whether an FDA-

Regulated Product Involves the Application of Nanotechnology, the Center for Drug 
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Evaluation and Research also refers to another draft guidance8, Drug Products, Including 

Biological Products, that Contain Nanomaterials – Guidance for Industry (FDA, 2017). This 

draft guidance “does not address, or presuppose, what ultimate regulatory outcome, if any, 
will result for a particular drug product that contains nanomaterials.” Safety, effectiveness, 

public health impact, and regulatory status of drug products that contain ENMs are currently 

addressed on a case-by-case basis using FDA’s existing review processes. Current Center for 

Drug Evaluation and Research guidance documents and requirements for the evaluation and 

maintenance of quality, safety, and efficacy apply to drug products containing ENMs that 

fall within their scopes. “As such, this guidance should be viewed as supplementary to other 
guidances for drug products” (FDA, 2017).

FDA has also issued guidance documents pertaining to ENMs in food (FDA, 2014a). 

CFSAN has premarket authorization authority over food additives and new dietary 

ingredients under the United States Federal Food, Drug, and Cosmetic Act (21 U.S.C. 

§301 et seq, 2002). As both product areas concern potential oral exposure to an ENM, 

the toxicity testing paradigms generally used to evaluate the safety of food additives or 

new dietary ingredients primarily comprise repeated oral dosing studies in rodents. Existing 

test guidelines describing repeated oral dosing and inhalational exposure studies in rodents 

(EPA, 1998e,f; OECD, 1998b; EPA, 2000; OECD, 2008, 2009b, 2018b) appear to be 

appropriate for use with ENMs (OECD, 2009a, 2012).

To evaluate carcinogenicity of these products, genotoxicity studies, such as the Ames assay 

or the mouse lymphoma assay, are used to ascertain the mechanism of action of any 

observed neoplastic effects in rodent bioassays (Kobets et al., 2018). However, for the Ames 

assay, some ENMs have been shown to be unable to enter the bacterial cells, which would 

make such test articles incompatible with the test system (Woodruff et al., 2012). It is 

notable that none of the standard OECD test guidelines on in vitro genotoxicity assays has 

been validated for use with ENMs, though the guideline describing the in vitro mammalian 

cell micronucleus test directly acknowledges the requirement for methodological adaptation 

for ENMs (OECD, 2016). In addition, toxicokinetic studies may be used to inform the 

safety assessment regarding the potential for systemic exposure to the food additive or 

new dietary ingredient, for route-to-route extrapolation from the results of non-oral toxicity 

studies, and for refining the inter- and intraspecies uncertainty factors used in quantitative 

risk assessment for non-neoplastic endpoints.

CDC/NIOSH leads the federal government health and safety initiative for nanotechnology9. 

Research and activities are co-ordinated through CDC/NIOSH’s NTRC. The contributions 

of NTRC to the nanotechnology and nanotoxicology fields include the guidance documents 

of safety programs, guidelines, and design solutions for ENM workplaces (Tab. 3).

The CPSC’s regulations do not require testing; the Federal Hazardous Substances Act (15 

U.S.C. §1261 et seq., 2008) and its implementing regulations only require that a product 

be labeled to reflect the hazards associated with that product. Manufacturers, retailers, and 

8This document is a draft and not for implementation. Once finalized, the document will represent the FDA’s position.
9 https://www.cdc.gov/niosh/topics/nanotech/default.html 
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distributors of nano-enabled products, as with any consumer product under the CPSC’s 

jurisdiction, must report to the CPSC immediately if they obtain information that reasonably 

supports the conclusion that their product fails to comply with an applicable consumer 

product safety rule, contains a defect that could create a substantial product hazard, or 

creates an unreasonable risk of serious injury or death (CPSC, 2019).

The U.S. Department of Defense generally uses data collected using EPA’s guidelines for 

ENM testing. Some specific tests such as the zebrafish (Danio rerio) embryo test (OECD, 

1998a; Haque and Ward, 2018) or Daphnia magna toxicity testing (Xu et al., 2019) are 

primarily directed at understanding the ecotoxicity of novel ENMs.

In addition to the test guidelines and guidance documents identified in Tables 2 and 3, the 

NanoWG compiled a list of documentary standards and guidelines designed or evaluated for 

ENM characterization and/or toxicity testing issued by the American Society for Testing and 

Materials International (ASTM), the International Organization for Standardization (ISO), 

and the OECD Working Party on Manufactured Nanomaterials. The compiled list, which 

contains recommended vocabularies for ENMs, methods for the characterization of ENMs, 

and some methods for working with and evaluating ENMs, is presented in Table S110. This 

compilation of methods has been prepared to support scientists with identifying potentially 

relevant standards. While some of these methods describe toxicity tests designed for use 

with ENMs (e.g., ASTM E2526 (2013)), many also describe the protocol considerations and 

measurements that are needed to support toxicity testing such as ENM characterization in 

the test media and quantification of the ENM concentration. The key issue of dosimetry 

during in vitro tests with ENMs will be discussed in depth in Section 4.2.

4 Practical considerations for in vitro toxicity testing of ENMs

Compared to substances that readily dissolve in test medium or other solvents, ENMs pose 

multiple challenges owing to their unique physicochemical characteristics. It is increasingly 

realized that commonly used in vitro inhalation toxicity study models where the effects 

of ENMs on cultured cells are tested under submerged conditions, may not represent real 

exposure conditions, i.e., inhaled “dry” ENM deposition in the lung. One of the foremost 

challenges in ENM testing relates to changes in dosimetry occurring during experiments 

(Teeguarden et al., 2007; DeLoid et al., 2017). Changes in dosimetry can occur as a result 

of each ENM’s effective density in culture medium (DeLoid et al., 2014; Pal et al., 2015), 

dissolution of particles (e.g., nanosilver particles dissolving and forming silver ions (Liu 

et al., 2010)), agglomeration of particles (e.g., particles interacting with other particles 

to form larger agglomerates (Li et al., 2010)), heteroagglomeration of the particles (e.g., 

particles interacting with, for example, algae or bacterial cells during the assay to form 

agglomerates (Hartmann et al., 2012; Hanna et al., 2018)), and transformations such as 

redox changes (e.g., changes in the speciation of particles such as the conversion of AgNPs 

to silver chloride particles (Ha et al., 2018; Poli et al., 2020)). Dissolution, agglomeration, 

and/or redox changes can cause the exposure concentration to vary substantially when 

testing pelagic organisms (i.e., organisms in the water column such as Daphnia magna) or 

10doi:10.14573/altex.2105041s
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suspended cells. In addition, the results of in vitro assays for some ENMs may vary strongly 

based on the composition of the test medium, which can impact the dissolution of ENMs, 

their transformations (e.g., redox changes), or the formation of a protein corona (Drasler 

et al., 2017; Kaiser et al., 2017). Another key challenge that we discuss in Section 4.3 is 

the potential for experimental artifacts during toxicity testing of ENMs. This necessitates 

adequate control experiments to identify and minimize potential artifacts and may reveal 

additional control experiments required for elucidating mechanisms of toxicity.

One approach that may have more physiological relevance and overcome some of the 

issues with transformations that can occur during exposure with submerged models is 

to expose cell culture models having an air-liquid interface to aerosolized ENMs. This 

exposure approach utilizes cells grown on porous culture inserts, such as 3D models with 

pseudostratified epithelium and intact mucosa and cilia, which enables direct deposition of 

nanoparticle powders through aerosol exposure. This approach has been used in numerous 

recent ENM studies (Polk et al., 2016; Drasler et al., 2017; Barosova et al., 2020; Leibrock 

et al., 2020).

4.1 Dosimetry survey responses

The complexity of ENM dosimetry (i.e., particle agglomeration/aggregations, redox 

changes, interaction of particles with proteins in media, particle dissolution rate, etc.) led 

the NanoWG to develop a list of detailed considerations for those using in vitro tests (Tab. 

4). The measurements in Table 4 are suggested based on best practices from the scientific 

literature. However, it is important to note that standardized methods are not yet available 

for some potential dose metrics such as particle number concentration or surface area 

concentration. Additional concerns are described below.

Accurate dosimetry measurements, in general, are challenging and may not be technically 

feasible for all types of ENMs (Johnston et al., 2020). For example, it is substantially 

more difficult to characterize the agglomeration status of rod- or plate-shaped ENMs than 

that of spherical nanoparticles. This is because dynamic light scattering, a commonly used 

agglomeration characterization method, typically determines the hydrodynamic diameter of 

an ENM based on the size of a sphere that diffuses at the same rate as the particle being 

measured (Petersen and Henry, 2012; Carvalho et al., 2018). In addition, commonly used in 
vitro dosimetry models for submerged cells are limited to relatively low-aspect-ratio ENMs 

(i.e., those with a length similar to their width) (DeLoid et al., 2017).

Another factor that must be accounted for is the effective density of the ENM agglomerate 

unit, which includes both the particles and the media (DeLoid et al., 2014). The effective 

density for an ENM can vary greatly from one culture medium to another, thus changing 

the delivered dose to the cells for the same ENM. The capacity to characterize different 

concentration dose metrics also varies based on the type of ENM and its agglomeration 

state (Minelli et al., 2019). For example, a comparison of the number concentration 

measurements of gold ENMs had substantially worse agreement among techniques for 

samples which showed substantial agglomeration than for those that remained individually 

dispersed (Petersen et al., 2019a). The detection limit of analytical methods to quantify 

ENM mass concentration in test media for in vitro NAMs also varies for different ENMs. 
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For example, it is difficult to measure the concentration of carbonaceous ENMs in test media 

with high concentrations of serum (Petersen et al., 2016; Goodwin et al., 2018), while the 

presence of serum in medium is less problematic for quantification of metal and metal oxide 

ENMs (Laborda et al., 2016).

The procedure to prepare an ENM suspension at the necessary concentration prior to an 

assay can vary greatly among laboratories, which may change the experimental outcome. 

Thus, there is a need to standardize the preparation for each ENM to reduce variability 

between testing laboratories. For example, most ENMs are sonicated prior to testing, but the 

level and duration of the sonication can vary, which affects the amount of energy delivered 

to the material. This variation can affect the agglomeration size, which ultimately affects the 

dose of material delivered to the cells. A way to minimize variation is to calorimetrically 

calibrate all sonicators to ensure the exact same energy is delivered to the material each time 

for consistent dispersion results (Taurozzi et al., 2011). Also, the total delivered sonication 

energy and the number of sonications needed to disperse ENMs should be reported for each 

study.

Table 4 was circulated within the workgroup to assess the relevance of these considerations 

on the characterization of ENMs to agencies’ information needs. As expected from agencies 

with very different testing needs, responses to Table 4 varied.

Responses from EPA OPP were that several characterizations (i.e., ENM mean size prior to 

addition to test media, ENM size distribution prior to addition to test media, ENM mean 

size in test media prior to exposure period, ENM size distribution in test media prior to 

exposure period, and ENM dissolution in test media before and after exposure period) 

are not required as part of toxicity testing, but are requested as part of physicochemical 

properties of products and environmental fate determinations. Thus, these measurements 

are not necessarily made in the presence of cell culture or environmental media. ENM 

mass concentration in test media before exposure period are not required, but OPP typically 

requests clarification of such information as part of the dissolution kinetic studies when 

test media are buffer solutions or water. For toxicology studies, if not provided, OPP 

encourages registrants “to provide nanomaterial mass concentrations in media” under certain 

circumstances. It is important to note that, if ENM-specific modifications to test methods 

are needed, a revised protocol submission is recommended for review prior to initiating the 

study. Such modifications may be needed to generate robust results.

EPA OPPT stated that manufacturers are not required to submit any specific dosimetry 

characterization data for ENMs. However, manufacturers are encouraged to submit 

ENM mean size and size distribution before exposure period along with other standard 

physicochemical characterization data, which may assist with EPA’s understanding of the 

toxicity of an ENM.

For review of engineered nanomaterial food contact substances where consumer exposure 

to the nanomaterial is expected, FDA CFSAN requires the following ENM-specihc 

information: particle number or surface-area concentration in test media before exposure 

period, ENM mean size or size distribution prior to addition to test media, and ENM mean 
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size in test media prior to exposure period (Rice et al., 2009). ENM dissolution in test 

media after exposure period would be considered a key metric both in assessing test system 

exposure to the ENM and also in assessing the feasibility of using “read-across” to its 

non-nano analogs (e.g., a particle with the same composition and shape with all dimensions 

> 100 nm) in the safety assessment of the ENM. CFSAN indicated that some information 

such as measurements or modeling of ENM mass concentration associated with cells after 

the exposure period would be considered key metrics for documenting exposure of the test 

system to the test article.

Regarding delivered dose, there was discussion about the benefits and limitations of two 

different particokinetic models: the in vitro sedimentation, diffusion, and dosimetry (ISDD) 

model (Hinderliter et al., 2010; DeLoid et al., 2017) and the in vitro sedimentation diffusion, 

dissolution, and dosimetry (ISD3) model (Thomas et al., 2018). NanoWG discussion 

specifically concerned the models’ usefulness in relating a nominal concentration to an 

estimate of the actual amount of ENMs reaching the cells. Ultimately, the workgroup 

reached no consensus as to how to use different dose metrics or particokinetic models 

to understand the results from in vitro studies, although several workgroup members 

agreed with the CPSC response that, in general, robust studies include hydrodynamic or 

aerodynamic size distribution data for aqueous dispersions or airborne ENMs before the start 

of the exposures.

The measurements presented in Table 4 are not necessarily required data for the submission 

of ENMs to regulatory agencies, and there is still debate within and across agencies as 

to which data should be required or considered as part of toxicity study requirements 

for ENMs. Nonetheless, the measurements are still useful for consideration during the 

development and testing of ENMs.

4.2 Dosimetry considerations

Table 5 lists five main categories of in vitro test exposure systems. The choice of whether 

to require additional dosimetry measurements for in vitro methods may vary based on the 

exposure system used.

While promising research has been conducted on the fourth (airborne exposure to a 

biological test system located on an air-liquid interface (Lacroix et al., 2018; Barosova et al., 

2020)) and fifth (lung-on-a-chip model of inhalation toxicity (Zhang et al., 2018)) exposure 

systems/categories, there are no standardized methods using these exposure approaches. 

Thus, this discussion will focus on the first three types of exposure systems.

As described in Section 4.1, dosimetry and dosimetry requirements/recommendations for 

ENMs can be complex, differing to some extent among agencies, and detailed guidance 

is not always available. In the absence of such guidance, it can be helpful to consider 

the dosimetry requirements for testing dissolved substances, which are described in detail 

for the OECD testing program. For human health testing for either in vivo or in vitro 
measurements, only the verification of the initial dose is required. However, it is widely 

known that the exposure concentration of dissolved chemicals can vary due to factors 

such as volatilization, adsorption to the well sidewalls, and metabolism (Tanneberger et al., 
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2013). The trade-offs between test method accuracy and the additional costs and workload 

associated with testing the concentrations in the wells is a topic of ongoing discussion 

(Natsch et al., 2018). In addition, numerous efforts have been made to move from a nominal 

to a cellular concentration in in vitro assays using submerged culture exposure conditions 

and in associated in vitro to in vivo extrapolation modeling (Amritage et al., 2014; Casey et 

al., 2018).

Nominal concentrations are typically used for in vitro measurements for human health 

endpoints, which raises questions about the dosimetry requirements for in vitro tests of 

ENMs and whether it is justified to require more detailed information for the dosimetry of 

ENMs than for other test substances. OECD GD 317 (2020) addresses dosimetry concerns 

for aquatic toxicity testing of ENMs and may provide guidance on how to handle exposure 

measurements for in vitro testing for human health testing requirements if additional 

dosimetry measurements are deemed necessary. Multiple dose metrics are considered: mass 

concentration, nanoparticle number concentration, and surface area concentration, all of 

which have been successfully used in the published literature. However, as stated above, 

there is a lack of standardized methods for measuring the nanoparticle number and surface 

area concentrations. Recent studies have shown substantial differences in the nanoparticle 

number concentration among techniques (Amini et al., 2016; Mourdikoudis et al., 2018; 

Petersen et al., 2019a). Thus, this guidance document suggests that mass concentration 

measurements should be required, although additional ENM characterization and dosimetry 

measurements in the test media can also be provided.

In NAMs with liquid exposure to suspended molecules or cells (Category 1 of Tab. 5), 

rapid agglomeration and settling of the ENM in these systems would reduce the suspended 

exposure concentration to the ENM. Therefore, it may be appropriate to measure the change 

in the suspended ENM mass concentration across the duration of the assay to evaluate if the 

concentration is constant, unless the ENM concentration at the bottom of the test container 

would be expected to have the same effect as the fraction that remains suspended. For 

Category 2 assays, those in which cells growing in monolayers are submerged in media, it 

is possible to quantify changes in the suspended concentration during the exposure period 

and to estimate that the exposure concentration is equivalent to the change in the suspended 

concentration. For the third exposure approach (Category 3: a liquid, cream, or solid directly 

applied to a biological test system such as a 3D construct), determining the ENM mass 

applied to the surface is likely sufficient. The exposure concentration on the biological test 

article can be determined from the ENM concentration in the formulation or solid and the 

mass or volume applied to the biological construct. For submerged cell model exposure 

(Category 2), there have also been extensive efforts to model the expected cellular exposure 

concentration based on the effective density and size of the ENM, as described above for 

the ISDD model (Hinderliter et al., 2010; Thomas et al., 2018). However, this approach 

has not yet been standardized, the reproducibility of effective density measurements has 

not undergone interlaboratory testing, and the modeled cellular concentration may depend 

upon the method used to quantify the ENM size (Petersen et al., 2019a). Further dosimetry 

modelling to model deposition relies upon accurate input parameters, such as dispersant 

density and viscosity, that are not universally available. This can lead to uncertainty in 

attaining expected cellular exposure concentrations; therefore, in the absence of parameters 
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published in the literature, the required parameters should be experimentally derived. Lastly, 

gaps in dosimetry include the impact of physiochemical parameters on ENM behavior in 

medium during dosing, modeling deposition within the cellular environment for high-aspect 

ratio fibers (Price et al., 2019) and two-dimensional ENMs, and efficient dosing with 

buoyant ENMs, such as virgin and nano-enabled composite thermoplastics. Until robust 

models are developed and validated, secondary analytical techniques presented in Table 4 

should be considered to reduce uncertainty in assessing cellular exposure.

4.3 Interference/bias controls

One of the foremost challenges in using in vitro test methods with ENMs is the potential 

for analytical biases or artifacts (i.e., problems that occur during the test leading to an 

incorrect result or misinterpretation). in vitro ENM studies often either overlook or provide 

incomplete interference characterization (Ong et al., 2014), because control experiments 

to detect and characterize ENM-derived artifacts are often not performed. A list of 

potential control experiments is provided in Table 6 along with assays that could be 

impacted by each artifact. No specific recommendations or guidelines for the detection 

and characterization of method specific ENM interference currently exist. Since each test 

method is performed under a unique set of circumstances, which may include method-

specific reagents, incubation temperature and times, or biological sample matrices, it is 

necessary to critically review each parameter prior to determining what control experiments 

may be needed when testing a particular ENM.

If artifactual results are expected or observed, it may be necessary to consider whether 

mitigation strategies, bias characterization, or complete methodological replacement are 

warranted. In the case of cytotoxicity, membrane integrity, and proliferation screening 

assays, no single method is universally robust against interference for all ENMs (Monteiro-

Riviere et al., 2009; Kroll et al., 2012). Therefore, each ENM-method pairing should be 

screened for known sources of interference highlighted in Tables 6 and 7 to determine 

analytic fitness for purpose and to characterize approximate direction and magnitude of 

analytic bias, if possible (Han et al., 2011; Holder et al., 2012). In addition to the sources 

of interference highlighted in the tables, when using methods with indirect measurement 

endpoints, e.g., colorimetric, fluorometric, luminometric, etc., ENM absorbance, quenching, 

and autofluorescence should be examined to assess appropriateness of that method. 

Where applicable, signal inhibition/enhancement and spike-in control experiments may be 

warranted. Further, measures of cytotoxicity, membrane integrity, and proliferation can be 

performed using two or more concurrent methods to assess concordance and facilitate result 

interpretation.

In certain instances, method replacement may not be plausible, and adaptation of an extant 

method may be required. Here, we use the in vitro cytokinesis-block micronucleus assay 

using cytochalasin B, which is a standard assay for measuring genotoxicity of a chemical 

(Fenech, 1997), as an example. In the method, cytochalasin B is added to cultured cells to 

inhibit cytokinesis, but it also inhibits actin assembly, which can decrease cellular uptake 

of ENMs (MacLean-Fletcher and Pollard, 1980; Kettiger et al., 2013). Therefore, while 

not formally adopted, the OECD has proposed methodological adaptation through delayed 
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cytochalasin B treatment after ENM treatment to mitigate potential ENM uptake inhibition 

for the in vitro cytokinesis-block micronucleus assay (Gonzalez et al., 2011).

Under certain circumstances, artifactual influences on the biological system may be 

unavoidable. For example, the formation of a proteinaceous ENM corona can lead to 

immunomodulatory or toxicodynamic effects on in vitro models (Mo et al., 2018). Effects 

caused by a protein corona during in vitro experiments may not necessarily be translatable 

to in vivo models or the human milieu, but they cannot be immediately discounted given 

that the incorporation of nano-enabled medicines may potentially lead to bioavailable serum-

bound ENMs (Rampado et al., 2020).

In addition to potential analytical artifacts and biases, it is possible to perform additional 

control experiments to better understand and contextualize the mechanism of toxicity to 

match inherent properties of a particular ENM and its respective exposure conditions. For 

example, the addition of a particle dispersant may impart a biological or toxicodynamic 

effect on the in vitro system that may not translate to the in vivo milieu. Though such 

controls are typically routine, the potential biological effects due to corona formation 

in the presence of proteinaceous dispersants, such as serum, should be considered. The 

toxicodynamic effects of dissolvable ions from ENM and leachable constituents from 

complex mixtures may warrant investigation with a myriad of methods, including treatments 

with soluble ion controls and filtrate controls. A list of experiments to understand the 

mechanism(s) of toxicity is presented in Table 7. For some contexts of use, gaining 

insight into the toxicity mechanism as well as contributory sources of biological effect 

may be critical for risk assessment, while for other contexts of use, this infonnation may 

not be essential but assists in interpreting the assay results. When conducting assays to 

fulfil regulatory requirements/recommendations, the relevant regulatory agency should be 

consulted to determine what control experiments are required prior to the submission of in 
vitro toxicity or efficacy test data.

Conclusions and future directions

The NanoWG surveyed ICCVAM member agencies to request information as to which 

types of ENMs are of agency interest, which toxicology tests are performed on ENMs, 

whether there is agency-specific guidance for ENM toxicity testing, and what dosimetry 

and interference/bias controls are requested for the use of in vitro test methods with 

ENMs. Based on the responses received, the workgroup determined that there are significant 

challenges in identifying and clarifying the toxicity testing needs of ENMs across agencies 

and programs, because the requirements or key considerations at each agency differ based 

on the products they regulate. Therefore, the NanoWG evaluated two key issues, namely 

dosimetry and interference/bias controls, which are relevant across a broad range of NAMs 

when testing ENMs to assist in vitro method developers in understanding the perspectives of 

different agencies on these topics and to help provide general guidance.

Demonstrating the technical reproducibility and biological relevance of NAMs is the key to 

supporting their broader use for dissolved and particulate substances such as ENMs. One 

important topic for future work related to technical reproducibility to support the broader 
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use of in vitro test methods is to provide clear guidance on determining whether a particular 

method is applicable for use with ENMs. This may require performing the assay with a 

specific set of ENMs with diverse properties such as different surface charges, elemental 

compositions, and surface coatings, and clarifying specific control measurements that should 

be performed simultaneously. If control measurements of a NAM show artifactual results 

with some types of ENMs, the applicability domain of the NAM may be limited to those 

ENMs that do not produce such results, or modifications to the NAM to minimize the effect 

of the artifacts may be needed.

An important topic for future work related to biological relevance is how to correlate in 
vitro and in vivo test results, and how to evaluate to what extent in vitro responses can be 

used to predict corresponding in vivo exposures and effects. This is especially important 

if the in vitro test results will be used for more than just screening and prioritization. As 

described in the ICCVAM roadmap (2018), it is recommended, when possible, to discuss 

proposed applications of NAMs with regulatory agencies during the NAM development 

process to carefully clarify the context of use. To validate the in vitro to in vivo correlation, 

it would be helpful to collect high-quality data available for different standardized in vivo 
test methods with different ENMs. These results could then be compared to those obtained 

using individual NAMs (e.g., lung fibrosis (Barosova et al., 2020)) or combinations of 

NAMs (e.g., those for skin sensitization (OECD, 2021b)) testing specific key events along 

an adverse outcome pathway (Halappanavar et al., 2019, 2020). Suggested priority areas 

for comparing in vivo results and NAMs are for endpoints that have demonstrated defined 

approaches (e.g., skin sensitization) for dissolved chemicals and for endpoints that have 

robust in vivo datasets with ENMs.

Stakeholders place confidence in data from toxicology test methods, i.e., that they are 

producing the correct result and identifying a potential hazard (or not). Hazard evaluation 

has historically been accomplished through in vivo approaches. As highlighted above, to 

establish confidence in NAMs, we compare them to the in vivo test method result, and 

discordance is viewed as a limitation of the NAM. However, in addition to assessing NAM 

reproducibility, several studies are now investigating the reproducibility of in vivo methods 

so that limitations can be taken into consideration in the context of any discordance noted 

when comparing to NAMs (Luechtefeld et al., 2016; Pham et al., 2020; Rooney et al., 2021). 

Other recent work has focused on evaluating traditional in vivo toxicity tests, as well as 

NAMs, based on their relevance to human biology (Clippinger et al., 2021). With that in 

mind and given the challenges to implementation of NAMs as complete replacements of 

animal use for testing single chemicals, it stands to reason that their implementation for 

testing ENMs has yet to be realized. Therefore, while substantial progress has been made 

in the testing of ENMs during the past two decades, additional work on these topics is 

needed to support the increased usage of in vitro test methods with ENMs for regulatory 

testing. Progress towards this goal will be predicated on federal agencies and stakeholders 

working together using flexible, robust, and integrated approaches to implement NAMs that 

both protect human and environment health and reduce or eliminate the need for testing in 

animals.
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