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Radiogenomic analysis of primary breast 
cancer reveals [18F]‑fluorodeoxglucose 
dynamic flux‑constants are positively associated 
with immune pathways and outperform static 
uptake measures in associating with glucose 
metabolism
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Abstract 

Background:  PET imaging of 18F-fluorodeoxygucose (FDG) is used widely for tumour staging and assessment of 
treatment response, but the biology associated with FDG uptake is still not fully elucidated. We therefore carried out 
gene set enrichment analyses (GSEA) of RNA sequencing data to find KEGG pathways associated with FDG uptake in 
primary breast cancers.

Methods:  Pre-treatment data were analysed from a window-of-opportunity study in which 30 patients underwent 
static and dynamic FDG-PET and tumour biopsy. Kinetic models were fitted to dynamic images, and GSEA was per‑
formed for enrichment scores reflecting Pearson and Spearman coefficients of correlations between gene expression 
and imaging.

Results:  A total of 38 pathways were associated with kinetic model flux-constants or static measures of FDG uptake, 
all positively. The associated pathways included glycolysis/gluconeogenesis (‘GLYC-GLUC’) which mediates FDG 
uptake and was associated with model flux-constants but not with static uptake measures, and 28 pathways related 
to immune-response or inflammation. More pathways, 32, were associated with the flux-constant K of the simple Pat‑
lak model than with any other imaging index. Numbers of pathways categorised as being associated with individual 
micro-parameters of the kinetic models were substantially fewer than numbers associated with flux-constants, and lay 
around levels expected by chance.

Conclusions:  In pre-treatment images GLYC-GLUC was associated with FDG kinetic flux-constants including Patlak K, 
but not with static uptake measures. Immune-related pathways were associated with flux-constants and static uptake. 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†G. P. Ralli and  R. D. Carter contributed equally. 

†F. M. Buffa and J. D. Fenwick contributed equally.

*Correspondence:  daniel.mcgowan@oncology.ox.ac.uk

1 Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-022-01529-9&domain=pdf


Page 2 of 13Ralli et al. Breast Cancer Research           (2022) 24:34 

Introduction
Positron emission tomography (PET) images of the radi-
otracer 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) are used 
widely for tumour staging and assessment of treatment 
response [1]. In routine practice single static FDG-PET 
images are collected around an hour after tracer injec-
tion. In the research setting, however, PET scanning 
is often carried out dynamically, collecting sequences 
of images in time-frames from injection onwards [2]. 
From these sequences kinetic measures of tumour FDG 
uptake are obtained by analysing tumour time-activity-
curves (TACs) and arterial input functions (AIFs) which 
describe time-courses of tracer activity concentrations 
within tumours and the blood flowing into them. Here 
we characterise associations between tumour biology and 
static and kinetic measures of FDG uptake, using base-
line data from a non-randomised window-of-opportunity 
study that investigated the effects of metformin on breast 
cancer metabolism [3].

In the window study, static and dynamic FDG-PET 
scans and tumour biopsies were obtained before and 
after a 13–21 day course of metformin, which is used to 
treat type-2 diabetes and is under investigation for repur-
posing as a cancer therapy [4]. This has allowed us to 
analyse associations in the baseline data between imag-
ing measures and tumour biological processes as inferred 
from sequencing of RNA from the biopsies.

Tracer kinetics are commonly estimated using multi-
compartment models [5], nonparametric models [6–8] 
and graphical methods such as the Patlak plot [9]. The 
abilities of these models to describe tumour TACs 
have been studied previously [8, 10–12]. Relationships 
between FDG uptake in PET scans and expression of 
tumour molecular markers and genes have also been 
quantified [13–18], finding several involved pathways but 
with little consistency. To develop the utility of FDG-PET 
further it is important to understand more fully the con-
nections between FDG uptake and underlying tumour 
biology. Moreover, the relative strengths of associations 
between the biology and static imaging measures and the 
various kinetic measures provided by different models 
have not been inter-compared, despite this being a key 
issue for interpretation of images as markers of tumour 
physiology.

Here, we use gene set enrichment analysis (GSEA) [19, 
20] to identify biological pathways significantly associ-
ated with FDG uptake in breast cancers. Tracer uptake 
is quantified via the standardised uptake value (SUV) 
and tumour-to-blood ratio (TBR) static measures, and 
by kinetic indices obtained from fits of several models 
to dynamic data. Common elements of pathways asso-
ciated with these measures are identified, and heatmaps 
are constructed showing the strengths of correlations 
between imaging measures and genes related to the com-
mon elements.

Methods
Patient data
Patients
The metformin study was prospectively approved 
by NHS Oxfordshire Research Ethics Committee A 
and registered with the ClinicalTrials.gov identifier 
NCT01266486. Between May 2011 and November 2013, 
41 female patients from three UK centres gave informed 
consent and were recruited shortly after diagnosis with 
primary breast cancer and before instigation of any can-
cer therapy. Study eligibility criteria are described else-
where [3]. Key inclusion criteria were primary tumour 
diameter ≥ 2  cm, Eastern Cooperative Oncology Group 
performance status 0–1, and fasting or random serum 
glucose < 7 mmol/L. Exclusion criteria included diabetes, 
treatments with metformin in the last year, and estimated 
glomerular filtration rate ≤ 45 mL/min. All patients had a 
magnetic resonance imaging scan as part of their routine 
clinical workup.

Complete baseline imaging and RNA sequencing data 
were available for 31 patients but analysed for 30 (median 
age 50  years), one AIF of the omitted patient having a 
sharp discontinuity, perhaps due to movement. Table  1 
summarises patient and tumour characteristics.

PET‑CT
After fasting overnight, patients were positioned supine 
and CT scanned for localization and attenuation correc-
tion. Dynamic PET tumour imaging was carried out for 
45 min at a single bed position, injecting FDG (3 MBq/kg, 
up to 400 MBq maximum) 30 s after initiating data col-
lection and grouping data into the time-frame sequence 

Patlak K was associated with more pathways than were the flux-constants of more complex kinetic models. On the 
basis of these results Patlak analysis of dynamic FDG-PET scans is advantageous, compared to other kinetic analyses or 
static imaging, in studies seeking to infer tumour-to-tumour differences in biology from differences in imaging.

Trial registration NCT01266486, December 24th 2010.
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{1 × 30 s, 12 × 5 s, 6 × 10 s, 5 × 30 s, 10 × 60 s, 6 × 300 s}. 
At 60 min post-injection tumours were imaged again as 
part of a 30 min static PET scan from skull-base to mid-
thigh in which data were collected for four minutes at 
each of several bed positions [3].

Scanning was performed using GE Discovery 690 (GE 
Healthcare, Chicago) and Siemens Biograph mCT-128 
(Siemens Healthineers, Munich) PET-CT cameras oper-
ated in 3D-mode, both accredited for use in multicen-
tre studies by the NCRI UK PET Core Laboratory. PET 
images were reconstructed on 5.5 × 5.5 × 3.3  mm3 voxel 
grids, using the FORE + FBP algorithm for the dynamic 
image sequence and two iterations of a 24 subset TOF-
OSEM algorithm for static tumour images collected 
60 min post-injection. One patient’s static FDG image is 
shown in Fig. 1.

RNA sequencing and gene expression
Tumour biopsy samples were collected 1–7  days after 
PET imaging. They were acquired under ultrasound 
guidance from primary tumour peripheries to avoid cen-
trally-located hypoxic regions. Within one minute biopsy 
material was snap-frozen in liquid nitrogen prior to stor-
age at − 80 °C. RNA sequencing was carried out for these 
samples at the Oxford Genomics Centre core facility of 
the Wellcome Trust Centre for Human Genetics. Data 
pre-processing was performed as previously reported [3], 
obtaining normalised gene expression levels as fragments 
per kilobase of transcript per million mapped reads 
(FPKM). Transcripts with zero values were removed, 
leaving approximately 17,000 genes whose expression 
values were base 2 logged.

Image analysis
Maximum and mean SUV values, SUVmax and SUVmean, 
were obtained from activity concentrations within 
tumour contours delineated on 60-min static PET images 
by a nuclear medicine radiologist with eight years expe-
rience. TBRmax and TBRmean values were calculated from 
the SUV measures and mean concentrations within con-
tours (average volume 32  cm3) drawn on the descend-
ing aorta. Contours were transferred to corresponding 
dynamic PET scans, and decay-corrected 45  min-long 
tumour TACs and AIFs (Fig. 1) were generated using the 
Hermes Hybrid Viewer (Hermes Medical Solutions AB, 
Stockholm).

A three-exponential model [21] was least-squares fitted 
to the AIFs, weighting data-points according to

where �Ti , Ai and ti are the duration, measured radioac-
tivity concentration and mid-time post-injection of the 
ith time-frame, and � is the 18F decay constant [22]. The 
fitted AIFs provided input terms for the kinetic models, 
which in turn were fitted to tumour TACs.

Tracer kinetic models
Several compartment models were investigated: standard 
irreversible and reversible two-tissue compartment mod-
els with 3 and 4 rate-constants (2C3K/2C4K), an irrevers-
ible three-tissue model with 5 rate-constants (3C5K), and 
the Patlak plot which is essentially a simple irreversible 
one-tissue model [3, 9, 10]. All are summarised graphi-
cally in Fig.  1. Model micro-parameters comprising the 
rate-constants and tumour fractional blood volume, Vb, 
were adjusted to achieve the best fits of modelled time-
courses of tumour tracer concentration to measured 
tumour TACs.

We also investigated a nonparametric ‘spline-residue’ 
kinetic model [7]

in which K1 describes blood flow into the tumour and 
R(t) is a residue function describing the fraction of tracer 
remaining within the tumour at time t post-injection. In 
this model R(t) comprises a sum of B-spline basis func-
tions with weights adjusted to achieve the best fits of 
Eq. (2) to measured tumour TACs.

Flux-constants, kflux, describe the rate of tumour tracer 
uptake given a steady unit concentration of tracer in the 
blood, and provide measures of long-term FDG uptake 
corrected for patient-to-patient differences in AIF. For 
the compartment models investigated, flux-constants are 

(1)wi =
�Ti

Ai

exp (−�ti)

(2)TAC(t) = K1

t

∫
0
AIF(s)R(t − s)ds + VbAIF(t)

Table 1  Patient and tumour characteristics

Patients (N)

Total recruited 41

With PET data available 36

With PET and mRNA sequencing data available 31

Analysed 30

ER/HER2 status (N)

ER positive/negative 22/8

HER2 positive/negative 5/25

Triple negative (ER negative and HER2 negative) 8

Tumour type (N)

Ductal/lobular/mixed carcinoma 24/4/2

Grade 1/2/3 1/15/14

Characteristics of 30 patients analysed (median, range)

Age at study entry (years) 50 (34–67)

Tumour size on MRI scan (mm) 48 (30–118)

Body mass index 26.2 (19.6–44.9)
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Fig. 1  Overview of the FDG-PET imaging data and kinetic analysis. a Schematic diagrams of compartment models of FDG uptake. b Arterial and 
tumour time-activity-curves obtained from a patient’s dynamic FDG-PET scan. c Coronal maximum intensity projection through the patient’s 
static FDG-PET scan collected after dynamic imaging. The primary tumour lies at the centre of the dashed circle. Activity is also pronounced in 
the brain, heart kidneys and bladder. The static scan comprised data acquired at several bed positions whereas the dynamic scan comprised 
sequential images collected at one bed position. d Correlations between SUV, TBR and kinetic model flux-constants. e Interquartile ranges of model 
parameters
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given by the micro-parameter combinations shown in 
Fig.  1. For nonparametric models kflux can be estimated 
as K1 R(Tscan) provided the residue function gradient 
approaches zero by Tscan, the scan duration. Flux-con-
stants of reversible compartment models strictly equal 
zero when viewed over long timescales, but operationally 
values of K1 R(Tscan) can be used for these models too, 
calculated from residue functions R corresponding to the 
fitted models.

GSEA and statistics
Pearson and Spearman coefficients were calculated for 
correlations between logged baseline expression levels 
of individual genes and imaging measures, and the genes 
were ordered according to the correlation coefficients 
[19] using a random ties method for genes with identi-
cal coefficients. Ordered gene lists were parsed using the 
Bioconductor FGSEA simple algorithm [23] and enrich-
ment scores were generated for pathways defined in 
the MSigDB-curated KEGG gene set [19, 24, 25]. These 
scores were compared with null-distributions obtained 
via 10,000 gene-wise permutations, an approach that can 
overestimate significance [26].

A nominal Bonferroni-adjusted p-value threshold of 
0.035/N was set when identifying which pathways, from a 
set of N, were associated with each imaging measure. To 
check the true significance of the numbers of pathways 
identified as being associated with the various measures, 
we compared them with numbers of false-positive path-
ways in 100 synthetic datasets generated by permuting 
values of SUVmax, SUVmean, Patlak K or the 2C3K model 
flux-constant. We also created 100 bootstrap resamples 
of the original baseline dataset, sampling patients with 
replacement. Significances of differences in the real data-
set between numbers of pathways associated with any 
two imaging measures were determined from the distri-
butions of differences in the bootstraps, using the paired 
t-test.

Leading-edge genes [27] shared by pathways associated 
with imaging measures were identified, and heatmaps 
were plotted of the Pearson coefficients of correlations 
between the imaging measures and a gene set related to 
the shared leading-edge genes. The Wilcoxon signed-
rank test was used to assess significances of differences 
between distributions of Pearson coefficients obtained 
for different imaging measures.

Model fits to tumour TACs were inter-compared using 
leave-one-out cross-validation (LOOCV) and a residual 
sum-of-squares goodness-of-fit metric weighted accord-
ing to Eq.  (1). The significance of structure in model 
residuals was determined using the Wald-Wolfowitz runs 
test. Uncertainties on fitted kinetic model parameter val-
ues were calculated using a profile-likelihood method 

based on the weighted residual sum-of-squares, scaled 
by a factor in principle related to PET camera sensitiv-
ity and in practice obtained as the ratio of the degrees-
of-freedom of the fit of the best model to the weighted 
sum-of-squares for that model fit. All reported p-values 
are two-sided.

Results
Imaging measures
Strengths of correlations amongst baseline imaging 
measures are plotted in Figs. 1 and S1 for the 30-patient 
cohort. All of SUVmax, SUVmean, TBRmax, TBRmean and 
the kinetic model flux-constants were strongly inter-
correlated, although 3C5K kflux was less tightly correlated 
than the rest. Interquartile ranges (IQRs) of the imaging 
measures are also shown in Fig.  1. Some micro-param-
eters of the reversible two-tissue and irreversible three-
tissue models had IQRs much larger than their median 
values, suggesting these models may have over-fitted the 
data.

Glycolysis/gluconeogenesis and immune pathways were 
positively associated with FDG uptake flux‑constants
Figure  2 shows KEGG pathways significantly associated 
with baseline imaging measures according to enrich-
ment scores based on Pearson correlations. In total 38 
pathways were significantly associated with the flux-
constants or SUV or TBR measures, all these associations 
being positive. These 38 pathways included 28 related to 
immune response or inflammation, for example T and 
B cell receptor signalling pathways. They also included 
the glycolysis/gluconeogenesis (‘GLYC-GLUC’) pathway 
which involves glucose transporters and hexokinases 
that mediate FDG uptake [13, 28], and which was signifi-
cantly associated with flux-constants of the Patlak, 2C4K 
and spline-residue models, but not with the SUV or TBR 
measures.

Both Patlak K and the spline-residue model flux-con-
stant were associated with 29 pathways, more than for 
any other imaging measure. Fewer pathways, 21, were 
associated with the flux-constant of the irreversible 3C5K 
model than with flux-constants of other models. How-
ever, differences between numbers of pathways associ-
ated with the various model flux-constants and with the 
SUV and TBR measures were not significant.

For the same 0.035/N nominal Bonferroni-adjusted 
p-value cut-off used to categorise associations as sig-
nificant in the real dataset, numbers of pathways asso-
ciated with randomly permuted SUVmean values had a 
median value of 1 (range 0–26) in 100 synthetic data-
sets, with ≤ 20 pathways being associated in 95% of 
the datasets. Comparable numbers were also obtained 
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Fig. 2  Pearson-based associations between KEGG pathways and image measures. a Plot showing pathways significantly associated with each 
imaging measure. The associated pathways are shaded by their normalised enrichment scores (NES) and GLYC-GLUC and immune-related pathways 
highlighted by green and orange arrows. b Numbers of pathways associated with model flux-constants and SUV and TBR measures. c Cumulative 
distribution function (CDF) showing numbers of pathways (false positives) associated with permuted SUVmax values in 100 synthetic datasets
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for randomly permuted SUVmax, Patlak K and 2C3K 
kflux data. The numbers of pathways significantly asso-
ciated with the real unpermuted flux-constants and 
with SUVmax, SUVmean and TBRmax thus lie above levels 
expected by chance.

Overlaps between leading-edge genes in the pathways 
associated with Patlak K are shown in Fig.  3. Eleven 
KEGG pathways had up to 17 genes of the human leu-
kocyte antigen (HLA) group in common (circled), and 
these genes code cell surface proteins which regulate 
the immune system. Antigen processing and presenta-
tion was one of the eleven pathways, and had the high-
est Pearson-based normalised enrichment score of any 
pathway for correlations with Patlak K. Figure 4 shows a 
heatmap of Pearson correlations between imaging meas-
ures and the individual genes of this pathway, excluding 
those with low counts. Overall, the genes were corre-
lated significantly more positively with Patlak K than with 
SUVmax, SUVmean, the micro-parameters of any model, or 
the flux-constants of the other models apart from 2C3K.

Similar results were obtained for enrichment scores 
based on Spearman correlations, as shown in Fig. 5. For 
these scores, though, the numbers of pathways associated 
with Patlak K (32) and 2C4K kflux (25) were significantly 
greater than the number associated with 3C5K kflux (6) 
(p = 0.027 and p = 0.033 respectively).

More pathways were associated with kinetic flux‑constants 
than with micro‑parameters
Between them the various kinetic models comprised 
18 micro-parameters, and according to Pearson-based 
enrichment scores each micro-parameter was associ-
ated with fewer pathways than was the flux-constant 
of the model to which the micro-parameter belonged 
(Fig.  2). These differences were significant (p < 0.05) for 
8 micro-parameters and borderline significant (p < 0.10) 
for another 8. In all, the micro-parameters were asso-
ciated with 28 pathways, a group that included only 3 
pathways related to immune-response and inflamma-
tion and excluded GLYC-GLUC. In total there were 37 
negative and 13 positive associations between pathways 
and micro-parameters, in distinction to the exclusively 
positive associations seen between pathways and the 
flux-constants and SUV and TBR measures. One micro-
parameter was associated with 13 pathways, another two 
with 7 pathways, and the rest with less, numbers that lie 
around levels expected by chance.

Results for Spearman-based enrichment scores were 
similar, again with more pathways being associated with 
flux-constants than with individual model micro-param-
eters, except for the 3C5K model (Fig. 5).

Fits of the three‑tissue compartment model had the largest 
errors
Goodness-of-fit statistics are listed in (Additional file  1: 
Table S1) for model fits to tumour TACs, excluding the 
Patlak model which is not fitted to early time-points. 
Of the compartment models, the irreversible two- and 
three-tissue models 2C3K and 3C5K had the lowest and 
highest median errors on LOOCV, respectively. Overall, 
the nonparametric spline-residue model had the low-
est LOOCV error. Fits of two patients’ tumour TACs are 
plotted (in Additional file 1: Fig. S2) to illustrate the dif-
ferent descriptions of the kinetics of tumour FDG uptake 
provided by the various models.

Fit uncertainties were less for kflux 
than for micro‑parameters of the 2C3K model
For the 2C3K model, calculated root-mean-squares of 
one standard deviation uncertainties obtained for fits to 
all tumour TACs were 11% of the mean parameter value 
for kflux versus 16%, 26%, 28% and 21% for K1, k2, k3 and 
Vb.

Discussion
Immune pathways were associated with FDG 
flux‑constants and static uptake
Of the 38 pathways significantly associated with kinetic 
model flux-constants or with SUV or TBR measures 
according to enrichment scores based on Pearson cor-
relations, 28 were related to immune-response or 
inflammation, 6 to proliferation or DNA repair and 4 to 
metabolism. All these associations were positive, and this 
was the case too for Spearman-based enrichment scores. 
While the pathway analysis does not determine locations 
or types of immune cells in detail, these positive asso-
ciations suggest that enrichment of the immune-related 
pathways reflects a balance towards immune suppres-
sion, since higher FDG uptake is associated with a poorer 
prognosis for breast cancer [29]. Relatedly, SUVmax has 
been found to be positively correlated with concen-
trations of tumour infiltrating lymphocytes in breast 
tumours, and with expression of the programmed death 
protein 1 (PD-1) and serum levels of the chemokine 
CCL18 released by tumour-associated macrophages in 
non-small cell lung cancers [30–32]. Activation of natu-
ral killer, B, T and other immune cells is known to trigger 
high consumption of glucose via glycolysis [33], spark-
ing investigations of whether tumour metabolism can be 
modified to improve immunity [34].

GLYC‑GLUC was associated with FDG flux‑constants 
but not static uptake
The GLYC-GLUC pathway which mediates FDG uptake 
was significantly and positively associated with the 
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Fig. 3  Overlaps between leading-edge genes belonging to pathways significantly associated with Patlak K according to Pearson-based scores. 
Each column shows in red genes belonging to a particular pathway. The yellow ellipse picks out 17 genes of the human leucocyte antigen group 
which contribute to 11 of the pathways
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Fig. 4  Pearson r coefficients of correlations between image measures and antigen presentation and processing pathway genes. a Heatmap of 
correlations between the image measures and gene expression. b Violin plots of r values for Patlak K and SUVmax
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flux-constants of the Patlak, 2C3K and spline-residue mod-
els according to Pearson- and Spearman-based enrichment 
scores, but not with SUV or TBR measures. The differ-
ence between GLYC-GLUC’s strength of association with 
the flux-constants versus static measures was substantial. 
Of the 29 pathways significantly associated with Patlak K 
according to Pearson-based scores, GLYC-GLUC was the 
15th most strongly associated, with an unadjusted p-value 
only 1.12 times that of the most strongly associated path-
way. On the other hand, 26 pathways were significantly 
associated with SUVmax, but GLYC-GLUC was only the 
44th most strongly associated pathway and the unadjusted 
p-value of its association was 400 times that of the most 
significantly associated pathway. Spearman-based results 
were similar.

More pathways were associated with Patlak K 
than with other measures
Across the Pearson- and Spearman-based analyses, more 
pathways were associated with the simple Patlak model 
flux-constant K than with any other image measure. For 
Pearson-based scores, differences between the numbers 
of pathways associated with Patlak K and with other flux-
constants and the SUV and TBR measures were not sig-
nificant; however, for Spearman-based scores significantly 
more pathways were associated with Patlak K than with the 
flux-constant of the most complex compartment model 
studied, 3C5K. This concurs with the poorer LOOCV 
scores obtained for fits of the 3C5K model to tumour 
TACs, which along with the large interquartile ranges of 
some 3C5K micro-parameters suggests the model over-
fitted the data.

These results are consistent with the heatmap of cor-
relations between image measures and genes of the anti-
gen processing and presentation pathway shown in Fig. 4. 
Overall the genes in this map were correlated significantly 
more strongly with Patlak K than with SUVmax, SUVmean 
or any other flux-constant apart from that of the relatively 
simple 2C3K model.

Taken together, these findings suggest the simple Patlak 
model has advantages over the more complex kinetic mod-
els, and potentially over SUVmax and SUVmean, since more 
pathways were associated with Patlak K than with the flux-
constants of other models or static uptake measures, and 
these pathways included GLYC-GLUC which was not asso-
ciated with SUV or TBR measures. This in turn is congru-
ent with results of Dunnwald et al.[35] who reported that 
survival in a cohort of patients with locally advanced breast 

cancer was significantly associated with kinetic but not 
static measures of FDG uptake.

More pathways were associated with kinetic flux‑constants 
or static uptake than with micro‑parameters
Greater numbers of pathways were significantly associated 
with kinetic model flux-constants or SUV or TBR meas-
ures than with individual micro-parameters. This could be 
because micro-parameters represent specific FDG uptake 
steps (Fig. 1) whereas flux-constants are a composite meas-
ure of the whole process, or because micro-parameters are 
often determined less precisely than flux-constants in PET 
kinetic analyses [6, 10, 11, 36] as confirmed in our analysis 
for 2C3K, the compartment model with the lowest mean 
error on cross-validation.

Whereas flux-constants were significantly associated 
with GLYC-GLUC and many immune-related pathways, 
micro-parameters were associated with fewer immune-
related pathways and not with GLYC-GLUC. And while all 
the associations were positive for flux-constants, for micro-
parameters there were both positive and negative asso-
ciations. These differences may reflect an absence of much 
real information in the associations with micro-parame-
ters, since the numbers of associated pathways lay around 
levels expected by chance. Interestingly, though, the 3C5K 
k4 micro-parameter was associated with the oxidative 
phosphorylation (OXPHOS) and Huntingdon’s, Parkin-
son’s and Alzheimer’s Disease pathways. These pathways 
have several genes in common related to mitochondrial 
function, and previously we found post-metformin changes 
in the 2C3K model flux-constant of FDG uptake were asso-
ciated with changes in OXPHOS expression [3].

Study limitations
The study cohort comprised patients with a mix of tumour 
molecular subtypes, 22 of 30 patients being ER positive, 
and 25 being HER2 negative (Table 1). Regulation of signal-
ling pathways and uptake of FDG differ between molecu-
lar subtypes [37, 38], and therefore associations between 
imaging measures and pathways may vary from subtype to 
subtype. Nevertheless, the associations reported here were 
significant in the heterogeneous cohort studied, in which 
the majority of patients (17/30) were both ER positive and 
HER2 negative.

Although biopsy samples used for RNAseq analysis were 
collected 1–7  days after PET imaging, samples were also 
collected 14–28  days ahead of imaging for routine diag-
nostic purposes. This earlier biopsy collection could lead 

Fig. 5  Spearman-based associations between KEGG pathways and image measures. a Plot showing pathways significantly associated with each 
imaging measure. The associated pathways are shaded by their normalised enrichment scores (NES) and GLYC-GLUC and immune-related pathways 
highlighted by green and orange arrows. b Numbers of pathways associated with model flux-constants and SUV and TBR measures. c Cumulative 
distribution function (CDF) showing numbers of pathways (false positives) associated with permuted SUVmax values in 100 synthetic datasets

(See figure on next page.)
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to inflammatory changes, potentially influencing the study 
results. However, the relative timing of the routine biopsy 
collection and PET imaging corresponds well with rou-
tine scheduling of the clinical workup for breast cancer 
in which FDG-PET is commonly used, and so biological 
pathways associated with FDG images in this study are also 
likely to be associated with routinely collected images. And 
most biological pathways linked to the FDG uptake differ-
ences were immune-related.

Conclusions
In GSEA of pre-treatment data from this breast cancer 
study, the GLYC-GLUC pathway which mediates FDG 
uptake was associated with kinetic model flux-constants, 
but not with SUVmean or TBRmean. Most other KEGG 
pathways associated with flux-constants or with SUVmean 
or TBRmean were immune-related. The associations were 
positive, suggesting that in breast tumours enrichment 
of these pathways reflects greater immune suppression, 
consistent with previous findings that depletion of glu-
cose in the tumour microenvironment by cancer cells 
may drive nutrient competition as a metabolic mecha-
nism of immunosuppression [39]. More pathways were 
significantly associated with the Patlak flux-constant K  
than with any other index of FDG uptake. Substantially 
fewer pathways were associated with individual kinetic 
micro-parameters.

In these patients, then, tumour-to-tumour differences 
in biology were linked more strongly to differences in 
FDG uptake measured by Patlak analysis of dynamic 
scans than to measures obtained from other kinetic 
analyses or static imaging, making the Patlak approach 
advantageous when seeking to infer differences in biology 
from differences in images. And most of the biological 
pathways linked to the differences in FDG uptake were 
immune-related.
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