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Abstract

Given most tissues are consist of abundant and diverse (sub-)cell types, an important yet unaddressed problem in bulk RNA-
seq analysis is to identify at which (sub-)cell type(s) the differential expression occurs. Single-cell RNA-sequencing (scRNA-seq)
technologies can answer the question, but they are often labor-intensive and cost-prohibitive. Here, we present LRcell, a computational
method aiming to identify specific (sub-)cell type(s) that drives the changes observed in a bulk RNA-seq experiment. In addition,
LRcell provides pre-embedded marker genes computed from putative scRNA-seq experiments as options to execute the analyses. We
conduct a simulation study to demonstrate the effectiveness and reliability of LRcell. Using three different real datasets, we show that
LRcell successfully identifies known cell types involved in psychiatric disorders. Applying LRcell to bulk RNA-seq results can produce a
hypothesis on which (sub-)cell type(s) contributes to the differential expression. LRcell is complementary to cell type deconvolution
methods.
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Background
Finding differentially expressed genes (DEGs) between
experimental conditions is a powerful approach to under-
stand the molecular basis of phenotypic variation. How-
ever, most tissues consist of tens or even hundreds of
diverse (sub-)cell types and DEGs may only occur in a
small subset of these (sub-)cell types, which are rele-
vant to the experimental condition. Bulk RNA-seq data
alone are unable to reveal the (sub-)cell types that drive
the DEGs.

The rapid development and proliferation of single-cell
technologies resulted in massive accumulation of single-
cell transcriptomics data (scRNA-seq) from diverse
tissue types. These data reveal substantial variations
in transcriptional regulation among different cell types
and offer an unprecedented close-up view of the modifi-
cations underlying important biological processes, espe-
cially for disease pathology, including which cell types
drive DEGs [1]. As an example, in a recent single-cell res-
olution analysis of Alzheimer’s disease (AD), Mathys et al.
[2] identified glial–neuronal interactions in response to
AD pathology. In another single-cell study, Ruzicka et al.
[3] found that neurons are the most affected cell type
for schizophrenia. However, steep cost and complicated

protocols prevent the widespread adoption of
scRNA-seq.

Over the past 10 years, many computational cell-type
deconvolution methods have been developed to infer
the proportions of different (sub-)cell types from bulk
transcriptomic data [1, 4–10]. Benchmark studies have
also been conducted to compare their performance
[11, 12].

In this study, we propose a novel computational tool
named LRcell. Given the result from a bulk RNA-seq
differential expression (DE) study, the goal of LRcell is to
delineate which (sub-)cell type(s) of the tissue underwent
substantial changes between the two experimental
conditions. LRcell is developed under the assumption
that expression change occurred at one or few subcell
type(s) between the two experimental conditions is the
major contributor to the DEGs observed at the bulk
tissue level. Cell-type deconvolution methods are not
designed to infer such changes. Exploiting cell-type-
specific marker genes identified from generic scRNA-seq
available from publicly available data repositories, LRcell
achieves the goal by surveying the enrichment of marker
genes across all (sub-)cell types in the tissue (Figure 1).
Thus, no scRNA-seq experiment matching the bulk
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Figure 1. Overview of LRcell workflow. As input, LRcell takes in the result from a case-control bulk RNA-seq experiment conducted on specific tissue. For
illustration purpose, assuming there are three (sub-)cell types within the tissue, and the marker genes derived from (unrelated) scRNA-seq experiment
on the three (sub-)cell types are available and taken into account by LRcell. Here, we use the blue color to indicate cell type A, the yellow color to indicate
cell type B and the green color to indicate cell type C. We map the marker genes to the entire gene list sorted by DE P-values from the most significant
DE to non-DE. Next, for each tissue type, we apply a regression analysis. When using the binary indicator of marker gene as the response variable, we
run a logistic regression (LR); when using the enrichment score of the marker gene produced by the Marques et al.’s method as the response variable, we
run a linear regression (LiR). In both cases, the explanatory variable is the −log transformed DE P-value. Next, the significance of the regression analysis
is calculated and converted to −log transformed FDR and plotted. In this illustrating example, LRcell result indicates cell type A is the most significant,
which suggests that cell type A is likely to play a significant role in the case-control experiment.

RNA-seq experimental condition is needed. When
applying LRcell to a diverse panel of bulk RNA-seq DE
experiments, we successfully identify known (sub-)cell
types involved in the pathogenesis of psychiatric dis-
orders as well as produce testable new hypotheses
that have the potential to produce fresh new biological
insights.

Results and discussion
In this work, we collect and curate a compendium
of marker genes from multiple published scRNA-seq
datasets. We then conduct LRcell analysis on multiple
bulk RNA-seq DE experiments to demonstrate its utility.

Marker gene collection and sources
Genes that show substantial expression difference
between one (sub-)cell type and others in their native
state are regarded as marker genes [13]. Similar to a
collection of gene set for Gene Set Enrichment Analysis
(GSEA) [14], LRcell requires a compendium of high-
quality cell-type marker genes. Currently, LRcell package
provides users with multiple preloaded marker gene
sets from human blood, human brain and mouse
brain (Figure 2A), computed from scRNA-seq datasets
using method introduced in Marques et al.’s [15] study.
Additionally, LRcell package offers external cell markers
collected by Molecular Signatures Database (MSigDB)
[16] with certain criteria (for more details, see the
Methods section). The external makers all originate from
human species including midbrain, cord blood, ovary and
skeletal muscle. We store all cell-type-specific marker
gene sets into another R Bioconductor ExperimentHub
package named LRcellTypeMarkers. Additional marker

gene sets are being tested and will be added to the
collection.

Properties of selected marker genes
Since the method proposed by Marques et al. [15] does not
considers DEG’s fold changes, it is therefore of interest
to explore the fold changes exhibit by the marker genes
selected. We calculate the fold changes of each marker
gene in the (sub-)cell type that they are representing
versus others and plot the log10-transformed fold change
for each (sub-)cell type (Supplementary Figure S1A,
Supplementary data are available online at https://
academic.oup.com/bib). We observe that vast majority
of these marker genes show substantial (greater than
five) fold changes expect for certain neuronal (sub-)cell
types. We also provide a table (Supplementary Table S1,
Supplementary data are available online at https://
academic.oup.com/bib) listing how many marker genes
having fold changes greater than five. To put the results
above in context, we also calculate how many genes
in the whole genome in each (sub-)cell type with fold
changes larger than five (Supplementary Figure S1B,
Supplementary data are available online at https://
academic.oup.com/bib). As shown in the figure, the
number of such marker genes again varies substantially.

Simulation settings
Because the ground truth of changes in DEGs and cell-
type proportion is difficult to monitor and track, we con-
duct simulation studies to demonstrate the effectiveness
of LRcell.

In this simulation study, we consider experiments
between cases and controls involving DEGs and
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Figure 2. LRcell datasets and marker genes overlap between different brain regions. (A) summary of the all tissue-types in which marker genes have
been pre-embedded in LRcell. In (B–D), top 100 marker genes are selected for each cell type, and thus, the maximum overlap in these figures is 100.
(B) Heatmap illustrating the overlap of marker genes among cell types within the FC region derived from mouse whole brain scRNA-seq dataset. The
highlighted area describes the overlap between FC_11-3.unknown, FC_11-4.unknwon and FC_11-1.Microglia as an illustration for the similarity between
these three (sub-)cell types. (C) Heatmap illustrating the overlap of marker genes among cell types within the FC and cell types within the cerebellum
CB. (D) Heatmap illustrating the overlap of marker genes among cell types within the FC and cell types within the hippocampus.

proportion changes. We simulate both single-cell and
bulk RNA-seq data. Both types of data are generated
by scDesign2 [17] using the adult mouse frontal cortex
(FC) scRNA-seq dataset [18] as reference and we use the
marker genes previously derived from the dataset to
conduct our LRcell analysis. More details can be found
in the Methods section.

For simplicity, we consider two scenarios in our sim-
ulation study: (1) the proportions for all (sub-)cell types
remain the same during the condition change and DEGs
are found in one specific cell type; (2) (sub-)cell-type pro-
portions are different between case and control and no
DEG is found in any (sub-)cell type. Under each scenario,
we try to simulate different combinations.

Under the first scenario, we consider the following
settings: (a) cell-type proportion distribution (evenly or
unevenly distributed); (b) the total number of cells (1000;
5000 or 10 000 cells); (c) the number of DEGs occurred
in that specific (sub-)cell type (1000; 2000 or 3000 DEGs
out of 29 653 in the whole genome); and (d) fold change
direction of DEGs (2 or 0.5 times of the original gene
expression).

Under the second scenario, we consider the follow-
ing combinations: (a) cell-type proportion distribution
(evenly or unevenly distributed); (b) the total number
of cells (1000; 5000 or 10 000 cells); and (c) proportion
change in that specific (sub-)cell type (50; 80; 120 or 150%
of the original proportion).
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Additionally, to push the boundary of LRcell perfor-
mance when there are many more (sub-)cell types, we
simulate cases where there are 5, 10 and 15 (sub-)cell
types and altering the baseline proportions which are
evenly distributed in various ways.

Simulation results
For the simulation study, we take turns to alter each
individual (sub-)cell type, then run LRcell or MuSiC [6]
and track the rank of the altered (sub-)cell type as an
indicator of the performance.

Because under the first scenario, there is no pro-
portion change hence we do not test the performance
of MuSiC. The ranking results are summarized in
Supplementary Figure S2A and B, Supplementary data
are available online at https://academic.oup.com/bib,
and LRcell is able to correctly identify most of the
(sub-)cell-type changes. The cases in which incorrect
identification made are those with the smallest number
of DEGs (in other word, where 1000 DEGs are simulated).

For the second scenario, we compare LRcell, MuSiC
and GSEA (using marker genes as gene set). The results
are summarized in Supplementary Figure S2C–E, Supple-
mentary data are available online at https://academic.
oup.com/bib. We observe that MuSiC performs steadily
well under all settings while LRcell produces a few errors.
This is fully expected since the scenario matches the
assumption of MuSiC but not LRcell because it is not a
cell-type proportion deconvolution method.

We also compare LRcell, MuSiC and GSEA under the
scenario when there are more (sub-)cell types. The
results are summarized in Supplementary Figure S2F–K,
Supplementary data are available online at https://
academic.oup.com/bib. We notice that when there are
10 (sub-)cell types, LRcell and MuSiC work equally well
and when there are 15 (sub-)cell types, LRcell performs
slightly better than MuSiC when adding up the ranks. In
particular, for the setting of 1000 cells with 20% increase
of proportion, both LRcell and MuSiC detect an incorrect
but similar (sub-)cell type. A specific showcase has been
presented in Supplementary Figure S3, Supplementary
data are available online at https://academic.oup.com/
bib, to show an overall performance regarding all
(sub-)cell types. Under all settings, LRcell and MuSiC
outperform GSEA.

Microglia highly enriched in neurodegenerative
dementia
After the simulation study, we conduct LRcell in real
data analysis. In a recent neurodegenerative dementia
study, Swarup and colleagues contrasted TPR50 mice
expressing tau mutant with wild type mice using bulk
RNA-seq in order to identify gene networks mediating
dementia [19] (‘the mouse AD study’ afterward). To iden-
tify the cell type(s) most involved in the condition, we
apply LRcell to the DEG list using pre-embedded marker
genes from adult mouse FC region [18]. From LRcell result,
we observe that Microglia show up as highly significant

(Figure 3A) which is concordant with previous studies
[20]. Additionally, the FC_11-3.unknown and FC_11–4.
unknown (sub-)cell types also show high level of signifi-
cance. No annotation is available for these two cell clus-
ters in the original publication. However, pairwise com-
parison of marker genes among all cell clusters reveal
that these two unknown cell clusters have considerable
overlaps with the FC_11-1, which is also a Microglia cell
type (Figure 2B), which explains the pattern we observe.

CD16+ monocytes highly enriched in
posttraumatic stress disorder
In a recent study, Breen and colleagues conducted a
bulk whole-transcriptome study using peripheral blood
leukocytes collected from U.S. Marines, among which
some developed posttraumatic stress disorder (PTSD)
postdeployment [21] (‘the human PTSD study’ after-
ward). Using this dataset, we generate a list of DEGs that
show significant difference between the PTSD group and
the control group at the predeployment time point.

Using human marker genes derived from a single-cell
transcriptomic study on peripheral blood mononuclear
cell (PBMC) [22], LRcell analysis finds that cells annotated
as CD16+ nonclassical monocytes shows up as the most
significant among all cell types in PBMC (Figure 3D).
Our finding makes biological sense because as stated in
previous studies [23], heterogeneity exists in monocytes
distinguished by CD16 surface proteins and nonclassi-
cal monocytes have been validated to regulate immune
responses in trauma [24, 25].

Marker genes from different region or time points
To apply LRcell, an important question is that which
marker gene sets to use, i.e. how to select single-cell RNA-
seq data where the source of the tissue match the tissue
type profiled in the bulk transcriptomic study. This is
particularly important for complex tissues such as brain.
To address this issue, we use the mouse AD study [19] as
an example, which contains information from four brain
regions: cortex, hippocampus (HC), cerebellum (CB) and
brain stem. Brain stem is excluded from our analysis due
to the lack of marker gene information from that region
of the brain.

To understand how marker genes vary across brain
regions, we first define marker genes in all regions of the
brain to explore their spatial pattern (Figure 2C and D).
We observe that glia cells, such as Astrocytes, from
different regions have higher number of overlap-
ping marker genes which indicates the homogene-
ity of glia cells across the brain. In contrast, neu-
rons and interneurons share very few marker genes
across different brain regions. We then apply pre-
embedded adult mouse brain marker genes from
FC, HC and CB to bulk DEGs obtained from cortex,
HC and CB, respectively (Supplementary Figure S4,
Supplementary data are available online at https://
academic.oup.com/bib). We observe that Microglia
cells are highly enriched in all three brain regions
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Figure 3. Applying LRcell to real cases. (A) LRcell result of mapping the bulk neurodegenerative dementia DEGs to the mouse brain FC region. (B) GSEA
result of mapping the bulk neurodegenerative dementia DEGs using the same marker genes used in LRcell (mouse brain FC) as input. (C) Cell-type
proportions for control and disease samples calculated by MuSiC. Each box contains 17 individuals. The x-axis is ordered by the t-test significance
between the two conditions. (D) LRcell result of mapping bulk PTSD DEGs to human PBMC. CD16+ monocytes is shown as the most significant cell
type. (E) GSEA result of mapping bulk PTSD DEGs to human PBMC using the same marker genes used in LRcell (human PBMC) as input. (F) Cell-type
proportions for control and disease samples calculated by MuSiC. The x-axis is ordered by the t-test significance between two conditions.

whereas Astrocytes are particularly highly enriched
in CB (Supplementary Figure S4B, D and E, Supplemen-
tary data are available online at https://academic.
oup.com/bib). Especially when applying CB marker
genes to CB bulk DE experiment (Supplementary
Figure S4B, Supplementary data are available online at

https://academic.oup.com/bib), we notice that one (sub-)
cell type of Astrocytes is highly enriched compared
to others. Our observations demonstrate that selected
cell types are heterogeneous spatially; meaning marker
genes are highly specific not only for the cell type, but
also which region the cell belongs to. Because of this
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finding, it is highly desirable to run LRcell using marker
genes of cell types located in closely matched brain
regions.

We are also curious whether marker genes curated
from scRNA-seq experiments conducted on nonnormal
samples is acceptable as the reference. To address
this question, we use data from the HIV vaccine
study [22]. We observe that the expression of cell-
type-specific marker genes is mostly consistent across
different time points within the same cell type (such
as CD8 cells), and distinct across different cell types
(Supplementary Figure S5A and B, Supplementary data
are available online at https://academic.oup.com/bib).
For example, B (sub-)cell types share a considerable
number of marker genes across time points, while
sharing fewer with other cell types. We also try using
marker genes identified from samples collected from
different time points to conduct LRcell analysis and
observe that the enrichment signals are almost the
same (Supplementary Figure S6A–C, Supplementary
data are available online at https://academic.oup.com/
bib). Thus, although default marker genes used in LRcell
are collected from control samples, we believe that
marker genes identified from nonnormal samples are
acceptable when scRNA-seq data from normal samples
are not available.

Comparison to GSEA
GSEA [14] is a powerful tool to determine whether a
predefined gene set show concordant shift in expression
when comparing two biological conditions. One could
potentially replace LRcell with GSEA to identify DEG-
driving cell types by treating cell-type-specific marker
genes as predefined gene sets. To compare performance
of the two methods, we repeat the analyses done in the
mouse AD study and the human PTSD study using GSEA.
The GSEA result from the mouse AD study (Figure 3B)
yields several equally significant (sub-)cell types includ-
ing astrocyte, endothelial, microglia, mural, oligodendro-
cyte and polydendrocyte. The tied significances lead to
difficulties in determining which (sub-)cell type(s) poten-
tially participated in dementia pathogenesis. Similar pat-
tern is observed in the GSEA result on the human PTSD
study (Figure 3E) which shows that monocytes, dendritic
cells and some T (sub-)cell types are equally enriched.
Based on the above observations, we conclude that LRcell
is more effective than GSEA to identify (sub-)cell types
that are most impacted by the condition change in bulk
DE experiments.

Specificity, robustness and running time of LRcell
It is of interest to evaluate whether LRcell shows good
specificity, i.e. low false positive rate. To do this, we
simulated null scenario where there is no significant DEG
in any of the (sub-)cell type. When apply LRcell to such
null bulk RNA-seq data, we found that LRcell produce
either no or much fewer and weaker significant result,

illustrating good sensitivity of LRcell. More details can be
found in the Supplementary Data.

To analyze the robustness of LRcell analysis, we run
experiments from two perspectives: (i) whether the num-
ber of marker genes strongly affects LRcell results and (ii)
whether a different DEGs detection method affects LRcell
results.

We first conduct LRcell using different marker gene
number derived from PBMC scRNA-seq dataset on the
human PTSD study and we get similar enrichment per-
formances (Supplementary Figure S7, Supplementary
data are available online at https://academic.oup.com/
bib). This indicates the robustness of the LRcell analysis.

In addition to DESeq2, we use Voom [26] with Limma
[27] to perform DEGs analysis on the mouse AD study and
the human PTSD study. Details of the usage can be found
in the Supplementary Data. With the same marker genes
set, we notice that the enrichment patterns are similar
as FC_11-1. Microglia is highly enriched along with other
(sub-)cell types (Supplementary Figure S8, Supplemen-
tary data are available online at https://academic.oup.
com/bib).

In addition, we analyze the execution time among
LRcell, GSEA and MuSiC under different simulation
scenarios (Supplementary Figure S9, Supplementary
data are available online at https://academic.oup.com/
bib). We observe that LRcell and GSEA are steadily fast,
while the execution time of MuSiC increases when the
number of reference cells increases. LRcell takes about 3–
4 s on average for each run on a typical laptop computer.

Discussions
Detecting transcriptional activity changes at the indi-
vidual cell type level, especially their modifications in
disease samples, is crucial for understanding the mecha-
nisms of diseases development. In this study, we propose
a novel strategy named LRcell which conducts enrich-
ment analysis of cell-type-specific marker genes among
the top (or bottom) DEGs identified by bulk transcriptome
studies. Cell types that show the most enrichment are
likely to play an important role in the condition alter-
ation. When applying to real datasets, we found that
LRcell can successfully identify the involvement of the
Microglia and Astrocytes in the mouse AD study and rare
monocytes in the human PTSD study.

Many computational methods have been developed to
infer the proportions of different (sub-)cell types from
bulk transcriptomic data [1, 4–12]. LRcell is not designed
for estimating cell-type proportions. We assume that
different proportion of (sub-)cell types in cases and
control samples is not the major source of the DEGs
observed at the bulk tissue level. Rather, expression
changes occur at one or few (sub-)cell type(s) between
case and control samples is the major contributor to the
DEGs observed at the bulk tissue level. Recent studies
showed supports for our assumption. For example,
Segerstolpe et al. [28] showed no significant shift of
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cell-type proportions in pancreatic islet between type
2 diabetes patient samples and control samples, but
the amount of DEGs vary substantially across (sub-
)cell types. Based on this assumption, we designed LRcell
to identify which (sub-)cell types may be involved in
the experimental condition change and thus follow up
experiments can be designed to explore the mechanisms
of the involvement of the specific (sub-)cell type(s) in the
experimental condition.

Although based on different assumptions, out of
curiosity and also in order to put LRcell results in context,
we apply MuSiC [6], a well-established deconvolution
method to the mouse AD study [19] data. Because some
layers of neurons are predicted to have almost zero
proportion (Figure 3C) when using all 81 (sub-)cell types,
we merge the original (sub-)clusters into 15 major cell
types in order to achieve a better representation. Despite
this, MuSiC does not detect significant difference in
Microglia or Astrocyte in terms of their proportions
between the two conditions. When applied to the human
PTSD study [21] data, using the original cell cluster
annotations, MuSiC shows that most of the T (sub-)cell
types have zero proportion and the proportion of CD14+
monocytes is up to 60% (Figure 3F). In contrast, LRcell
produces more sensible results because it is not limited
by the number of cell types as it can detect the subtle
differences among (sub-)cell types.

Interestingly, from our simulation studies, LRcell is also
capable of detecting (sub-)cell types that undergo propor-
tion changes, albeit with slightly lower accuracy compar-
ing to state-of-the-art deconvolution methods.

A key advantage of LRcell lies in its ability to handle
a large number of (sub-)cell types. This is because LRcell
analyzes (sub-)cell types one-by-one, whereas deconvo-
lution methods have to do the analysis jointly which
leads to higher computation burden and poorer perfor-
mance [11].

In spirit, LRcell operates similarly as GSEA, but LRcell
is much more sensitive to minor differences in marker
genes of (sub-)cell types, similar to the advantage of
LRpath showed when comparing to GSEA [29]. This indi-
cates LRcell’s potential to detect changes in (sub-)cell
types caused by disease conditions. Simulation studies
comparing LRcell with GSEA suggest very similar pat-
terns as observed from real data analysis. Additionally,
when compared to existing bulk deconvolution meth-
ods, LRcell is more stable in its ability to handle the
similarities among (sub-)cell types. Thus, LRcell enables
researchers to glean new biological insights from the
bulk transcriptomics experiments with no need of redo-
ing the experiment using single-cell technology. We are
currently applying LRcell to a diverse set of clinical stud-
ies (Sharma, personal communication) to generate more
biological insights.

How to select marker genes representing (sub-)cell
types is an important research question. Plenty of meth-
ods have been developed to optimize the selection pro-
cess [15, 30, 31]. However, due to the dramatic diversity
among (sub-)cell types and tissues, there is no consensus

universal criteria on the selection criteria that can make
the marker gene set representative and complete, which
is also dependent on the goal of the study including cell
clustering, cell-type calling and cell-type deconvolution,
among others. For LRcell, our experience leads us to adopt
the method introduced in Marques et al. for its simplicity
and computation efficiency. We have performed empir-
ical studies to illustrate the effectiveness of the marker
genes selected by the adopted method. More details can
be found in the Supplementary Data. Alternatively, pre-
compiled marker gene sets from emerging databases
[32] cover more and more tissue types which are great
resources.

To enable straightforward comparison, currently, we
select a fix number of 100 marker genes from each
(sub-)cell type. Understandably, the number of marker
genes for different cell types varies; it is desirable to allow
flexibility in choosing the number of marker genes based
on the transcriptomic patterns across cell types. How-
ever, different numbers of marker genes post challenge
for conducting enrichment analyses fairly across all cell
types. This will be investigated in our future studies.

LRcell currently provides embedded marker genes from
human blood, human brain and mouse brain calculated
from scRNA-seq experiments along with markers from
66 cell types in four tissues (midbrain, cord blood, ovary
and skeletal muscle) adopted from MSigDB. We are work-
ing to include more tissue types in the future releases of
LRcell which will make it more widely applicable.

Conclusions
In summary, we develop LRcell, an R Bioconductor
package for identifying (sub-)cell type(s) that drive the
changes observed in bulk comparative transcriptomic
studies, taking advantages of newly emerged scRNA-
seq data. The rationale of LRcell is that we believe
marker genes of the modifying cell types tend to be
enriched toward the top (or bottom) of the DEG lists.
We conduct comprehensive surveys applying LRcell
across various experimental conditions and successfully
identify cell types that play important roles in the mouse
AD study and the human PTSD study. Hence, we believe
that LRcell can provide researchers important and new
biological insights in terms of the source of the biological
changes at the (sub-)cell-type level, without the need of
conducting costly and laborious scRNA-seq experiments.

Our findings from both simulated data as well as
real data suggest that LRcell is complementary to cell-
type deconvolution methods. Therefore, we recommend
including LRcell to bulk RNA-seq analysis to gain a holistic
understanding of changes occur at the (sub-)cell-type
level inside complex tissues.

Methods
Basic assumptions
The goal of LRcell is to identify the most affected (sub-)cell
type(s) during the transition of experimental
conditions using only bulk transcriptomic data. Based
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on the assumptions that cell-type-specific marker genes
of key cell types tend to be overrepresented among the
significant DEGs in bulk transcriptomic studies, LRcell can
discover which cell type(s) is involved in certain disease
or condition change. In recent years, computational
methods have been developed to deconvolve bulk RNA-
seq data to delineate cell-type proportion changes,
which could be borrowed to answer the same question.
However, whenever there are more (sub-)cell types, the
results from deconvolution methods become unreliable.
In contrast, LRcell enables comparison across many more
cell types which is important for complex tissues such
as brain.

The development of LRcell is inspired by LRpath [29],
which is designed for linking experimental changes to
biological pathways or a predefined gene set. In LRcell,
we treat cell-type-specific marker genes as gene sets and
calculate the enrichment of each cell type when compar-
ing two biological conditions. We believe that the most
enriched cell type(s) is highly likely to play an important
role in the experimental condition change.

scRNA-seq data preprocessing
In this study, we include marker genes from mouse
whole brain, human prefrontal cortex (pFC) and human
PBMC, along with 66 cell-types’ markers from four
tissues (midbrain, cord blood, ovary and skeletal muscle)
adopted from MSigDB. For each scRNA-seq dataset, we
first retrieve raw read count matrix. Next, we filter
out low-quality cells and genes and apply column-wise
normalization and log transformation on the data.

The mouse whole brain scRNA-seq dataset [18] pro-
duced using the Drop-seq technology [33] contains nine
brain regions from adult mice. The data provided has
already been prefiltered by the authors. For cell types
other than neurons, we directly utilize the information
provided on the study website (http://dropviz.org/). For
neurons and interneurons, we curate the (sub-)cell types
following the original study.

The human pFC scRNA-seq dataset [34], produced
by 10X Genomics Chromium, is derived from the pFC
region (specifically BA9). The dataset contains two
conditions: healthy controls and major depressive
disorder. We split the data matrix into two parts and
filter out cells expressing less than 10 genes and genes
expressed in less than 10 cells, respectively. We also
filter out mitochondrial, ribosomal genes and genes
from annotation clusters (Astros_1, Mix_1, Mix_2, Mix_3,
Mix_4, Mix_5 and Inhib_4_SST).

The PBMC dataset [22], generated by CITE-seq tech-
nology [35], is derived from an HIV vaccine trial study
which involves eight volunteers at three time points:
immediately before, three days and seven days after the
vaccine. The study contains 161 764 cells in total. To
accelerate the marker gene selection, we separate the
count matrix according to the time label and filter out
low-quality cells and genes (mitochondrial, ribosomal
genes and those expressed in less than 1000 cells). The
cluster annotated as ‘Doublet’ is filtered out.

Marker gene selection
After obtaining the log-normalized gene expression
matrix along with high-quality (sub-)cell-type clus-
ters, we calculate the enrichment scores for each
(sub-)cell type using the marker gene selection method
described in Marques et al. [15]. The cluster-specific gene
enrichment is defined as the average gene expression
levels of cells in that cluster divided by the average
gene expression levels in all cells. The enrichment score
is adjusted by introducing a penalty representing the
fraction of cells in that cluster expressing the marker
gene. Combined, this score allows the identification of
genes with cluster-specific high expression values to
be selected as marker genes. The description below is
adapted from the original publication.

Suppose there are a total of M genes, L different clus-
ters each with Nj cells and the total number of cells are N.
Let E = {Eijk} represent the gene by cell read count matrix.
Here i = 1, . . . , M, j = 1, . . . , L, k = 1, . . . , Nj and N = ∑L

j=1Nj.
The overall average expression of the ith gene across all
cells is defined as

Ei.. = 1
N

L∑
j=1

Nj∑
k=1

Eijk.

The average expression of gene i in the jth cluster is
defined as

Eij. = 1
Nj

Nj∑
k=1

Eijk.

The enrichment for gene i in the jth cluster as

Enrichmenti,j = Eij.

Ei.

Next, we consider the proportion expressing the gene i
in the jth cluster as

Propi,j = 1
Nj

Nj∑
k=1

I
(
Eijk > 0

)
.

The I(•) is an indicator function.
The enrichment score for gene i in the jth cluster is

computed as

Scorei,j = Enrichmenti,j ×
(
Propi,j

)power
,

where ‘power’ is a hyperparameter to be tuned manually
to control the penalization for the cell cluster proportion
term. The power parameter is set to 1 throughout this
study. After calculating the weighed gene enrichment
scores in each cluster, we ranked genes based on the
scores and selected the top 100 genes as the marker
genes for each cluster.

http://dropviz.org/
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MSigDB marker genes
We download cell marker gene sets from MSigDB cat-
egory C8—cell type signature gene sets. Since not all
tissue types are suitable for LRcell, we apply the following
criteria to select tissues: (i) nonfetal tissues; (ii) have
more than eight (sub-)cell types; (iii) minimum number
of marker gene greater than 50 and (iv) median number
of marker genes greater than 80. In the end, four tissue
types—the midbrain, cord blood, ovary and skeletal mus-
cle—remain.

Simulation strategy
Simulated scRNA-seq data are generated using scDe-
sign2 [17], which is capable of generating synthetic
scRNA-seq data using intrinsic statistical parameters
learned from real scRNA-seq datasets. We generate three
synthetic scRNA-seq dataset as control samples using
parameters learned from the adult mouse FC scRNA-
seq data. The (sub-)cell types used in the simulation
study are summarized in Supplementary Table S2,
Supplementary data are available online at https://
academic.oup.com/bib. For the three case samples, we
use the same statistical model but either alter the
expression level of selected genes or the proportion of
one (sub-)cell type. We then sum up corresponding read
counts to obtain the bulk RNA-seq data and use them to
detect DEGs between case and control samples. For LRcell
analysis, we use the marker genes computed from the
original scRNA-seq dataset as input. For MuSiC analysis,
we use the three control replicates as the reference
scRNA-seq dataset.

For implementing the scenario where only DEGs occur,
we first generate three control replicates and randomly
select 1000, 2000 and 3000 out of 29 653 genes. We then
either double or halve the gene expressions of those
genes in the specific (sub-)cell type being tested. To add
certain noises, we use a normal distribution with SD as
0.1 to generate random fold change which fluctuates
around 2 or 0.5.

As for the scenario where only proportion changes, we
directly use the parameter named cell_type_prop from
the function simulate_count_scDesign2() to change the
simulated proportions. We decide two different propor-
tion distributions when there are five (sub-)cell types:
one is evenly distributed with all (sub-)cell types having
20% proportion and the other one is unevenly distributed
with 40, 30, 10, 10 and 10%. When testing for the robust-
ness of LRcell under more (sub-)cell types, we only use
even distribution on cell-type proportions for illustration
purpose.

Bulk RNA-seq data preprocessing
The raw count of mouse bulk RNA-seq study on neurode-
generative dementia is downloaded from Gene Expres-
sion Omnibus (GEO) (Accession number: GSE90693). DE
analysis is performed using DESeq2 [36] to obtain DEGs
in each brain region.

The raw count of bulk RNA-seq study on PTSD is down-
loaded from Recount2 [37]. We extract out the experi-
ment contrasting PTSD cases and healthy controls with
time point of preemployment and perform DESeq2 to
obtain DEGs.

LRcell analysis
LRcell is inspired by LRpath, which was designed for iden-
tifying sets of predefined gene sets that show enrichment
with differentially expressed transcripts in microarray
experiments. LRcell uses logistic regression (LR) or linear
regression to assess whether marker genes (as defined in
the Marker Gene Selection subsection above) of a specific
cell type are more likely to be DEGs in a particular bulk
RNA-seq study. The linear regression option is added
to handle the continuous enrichment scores of marker
genes. Users can choose accordingly. To facilitate our
analysis, we assume that the major (sub-)cell types of the
tissue their marker genes are known a priori.

We apply LRcell to each cell type independently. The
required input includes a list of DEGs ranked by the level
of significance and a set of marker genes for each cell
type. Then, LRcell runs a LR as

log
θ

1 − θ
= α + βx

and

θ = P (Y = 1) .

In which Y = 1 denotes that gene is a marker gene
and Y = 0 otherwise. Hence, θ represents the chance
that the gene is a marker gene. We use − log(P − value)

as the explanatory variable x. Whether a specific cell
type is involved in the experimental condition change
is evaluated by testing the null hypothesis that β =
0 against the alternative that β �= 0 using the Wald
test. Typically, we run LRcell on all (sub-)cell types found
in the tissue to see which (sub-)cell type(s) drives the
changes.

Similar to LR, linear regression directly performs

Y = α + βx,

where Y indicates the enrichment scores of genes. Same
as LR, the P-value can be obtained from testing the null
hypothesis that β = 0 against the alternative that β �= 0
using the t-test.

Once the P-values are obtained, we calculate false
discover rate (FDR) using P adjust() function in R to adjust
P-values with Benjamini–Hochberg method.

Input and output
LRcell requires two inputs: (i) a ranked list of genes
with DE P-values in a bulk RNA-seq experiment and
(ii) sets of marker genes from all (sub-)cell types of the
bulk tissue acquired from scRNA-seq datasets a priori
or from MSigDB C8—cell-type signature gene sets. For

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac063#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
GSE90693
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those cell markers derived from scRNA-seq datasets,
we offer choices for users to choose between species
as human or mouse and the region indicates the specific
brain region or PBMC. For MSigDB cell markers, we store
the marker genes into the LRcellTypeMarkers packages
which can be easily downloaded. When running LRcell()
function, the LR option is set as the default, while users
can also set the method option as LiR if linear regression
is desired. For linear regression, an enrichment score is
needed as input for each gene whereas gene sets are
sufficient for LR. For MSigDB cell-type signature gene
set, LR option is recommended as there is no enrichment
score information available. For customized input, i.e. a
scRNA-seq data, we offer a LRcell_gene_enriched_scores
function which takes the read counts matrix and cell
annotation as input to generate enrichment scores
for genes in each cell type. For further subsetting,
get_markergenes can be used for generating marker
genes for more specific (sub-)cell types.

The output is a list of significance P-value (or FDR),
one for each (sub-)cell type. For visualization, LRcell
produces Manhattan plot, which can be drawn through
plot_manhattan_enrich function. We also provided
a plot (plot_marker_dist function) indicating where
certain cell-type-specific marker genes locate on the
bulk DEGs. The bulk DEGs are sorted using log10(P-
value) × sign(log2FoldChange) which could potentially
give information on both up/downregulated directions.
More detailed information about LRcell is available
at http://bioconductor.org/packages/release/bioc/html/
LRcell.html.

LRcell requires an R version beyond 4.1 and a prerequi-
site installation of BiocManager.
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W.M. and Z.S.Q. summarized the results and wrote the
manuscript. All authors have read and approved the
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Key Points

• We present a novel computational method named LRcell
aiming to identify specific (sub-)cell type(s) that drives
the changes observed in a bulk RNA-seq experiment.

• LRcell provides pre-embedded marker genes of multiple
tissues computed from single-cell RNA-seq experiments
as options to execute the analyses.

• Using real datasets, we show that LRcell successfully
identifies known cell types involved in neurodegenera-
tive dementia and posttraumatic stress disorder.

• LRcell is computational efficient, capable of handling a
large number of different (sub-)cell types and is com-
plementary to cell-type deconvolution methods in the
analysis of bulk RNA-seq data.
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Supplementary data are available online at https://
academic.oup.com/bib.
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mouse whole brain [18] (GSE116470), human pFC [34]
(GSE144136), human PBMC [22] (GSE164378), the mouse
AD study [19] (GSE90696) and the human PTSD study [21]
(GSE64814). The R package is freely available on Biocon-
ductor (https://doi.org/doi:10.18129/B9.bioc.LRcell) and
the external marker genes are stored in another R pack-
age named LRcellTypeMarkers on Bioconductor (https://
doi.org/doi:10.18129/B9.bioc.LRcellTypeMarkers).
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