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PROMINENT PET TRACERS IN ONCOLOGY

This article first discusses many of the most prominent PET imaging agents in late 

preclinical and early clinical development in oncology. These agents are intended to take 

advantage of the unique biological and physiologic characteristics of tumors to delineate 

malignant from normal tissues as a means of improving current methods of diagnosis. In 

addition, numerous PET imaging agents focus on probing the biological characteristics of 

cancers and other cell populations of interest in tumors to monitor and predict the efficacy of 

various therapeutic strategies.

Fibroblast Activation Protein Inhibitors

Cancer-associated fibroblasts and extracellular fibroblasts are among the most abundant cell 

types in solid cancers.1 These cells, which dominate the tumor stoma, have been found to 

play a significant role in regulating the antitumor immune response and thus have been 

a noteworthy target of interest for both diagnostic and therapeutic applications.1,2 Cancer-

associated fibroblasts overexpress the fibroblast activation protein (FAP), which has led to 

the development of fibroblast-activating protein inhibitors (FAPIs), as a means of selectively 
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targeting these cells to improve therapeutic outcomes.3 Although therapeutic radionuclides 

attach via chelators to FAPI and have been evaluated in numerous types of cancer, the focus 

here is on PET imaging applications. An extensive amount of research has focused on the 

preclinical and clinical evaluation of variations of the [68Ga]Ga-FAPI PET tracer, including 

[68Ga]Ga-FAPI-2, [68Ga]Ga-FAPI-4, [68Ga]Ga-FAPI-46, and [68Ga]Ga-FAPI-74 in various 

types of cancers.4–14

One such prominent study extensively assessed the use of [68Ga]Ga-FAPI-04 as an imaging 

agent in 28 different types of cancers. Images generated from this study are shown in 

Fig. 1.4 The standard uptake value (SUV) varied depending on the type of cancer, but 

the investigators reported tumor to background ratios greater than 3 for the moderate 

uptake groups and more than 6 for the high-intensity uptake groups.4 In addition, studies 

have been performed directly comparing the imaging capabilities of [68Ga]FAPI and [18F]-

fluorodeoxyglucose (FDG),9,11,12 and some physicians argue that this tracer could replace 

[18F]FDG, especially in cancers where surrounding tissues show high rates of metabolism 

resulting in high background signal.15 More recent work has explored the capabilities of 

an 18F-labeled FAPI imaging agent as a means of extending the radioactive half-life of the 

tracer to improve its availability to more remote locations.14 The results of these studies 

have shown the potential of these tracers in numerous types of cancer for both diagnostic 

and staging applications. There are currently 20 active clinical trials exploring the use of 

FAPI PET imaging agents in various cancers and diseases. There is significant optimism that 

these tracers could play a prominent role in addressing pitfalls in current standard of care 

techniques and improve patient outcomes.

Imaging Increased Rates of Cellular Proliferation

The 18F-labeled nucleoside analogue 3′-fluoro-3′deoxythymidine (FLT) is a PET imaging 

agent that has seen significant interest for its ability to quantify cellular proliferation. The 

capabilities of this tracer were initially reported in 1998, and have since sparked a large 

number of preclinical and clinical evaluations for its potential in overcoming the challenges 

associated with [18F]FDG.16 [18F]FLT has the potential to better delineate malignant tissues 

in areas with high metabolic rates, such as muscle, lymphocytes, brain tissue, as well as in 

head and neck cancers.17–19 In a clinical evaluation performed by Buck and colleagues,20 

the uptake of [18F]FLT better correlated with staging than [18F]FDG in soft tissue tumors, 

with mean SUVs of 0.7, 1.3, 4.1, and 6.1 in benign lesions, low-grade sarcoma, grade 2 

tumors, and grade 3 tumors respectively.

In addition, the ability to monitor cell proliferation has made [18F]FLT PET a promising 

tool to noninvasively monitor therapeutic response and predict outcomes in patients with 

a variety of cancers.21 Numerous studies have been performed to evaluate the potential of 

[18F]FLT to predict patient response to several treatment strategies. A recent study explored 

the use of [18F]FLT PET imaging to determine response to neoadjuvant chemotherapy 

targeting the c-met pathway in soft tissue sarcomas.19 Researchers observed, in a small 

subset of 15 patients, that 12 had observable changes in [18F]FLT accumulation, 8 patients 

showed response, and 4 progressed. The results of this pilot study support the potential 

of this tracer to monitor response, and further evaluation of this tracer is currently being 
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explored.19 [18F]FLT has been evaluated in numerous types of cancer.21 In some studies in 

head and neck cancer and non–small cell lung cancer, [18F]FLT performs worse or about the 

same as [18F]FDG in monitoring therapeutic response.22,23 In other studies in patients with 

ovarian cancer and lymphoma, [18F]FLT has better performance in determining therapeutic 

outcomes.24,25 Although results can vary depending on the type of cancer and treatment 

strategy, [18F]FLT is a prominent imaging agent that has significant potential in improving 

detection and monitoring therapeutic outcomes.

Prostate-Specific Membrane Antigen

The development of PET imaging agents targeting the prostate-specific membrane antigen 

(PSMA) has been an extensive area of research over the past decade, generating close to 

1000 research articles in the past 2 years alone. PSMA PET imaging has been implemented 

in the clinic as an improved method of staging and restaging patients as well as to monitor 

for recurrence and metastatic dissemination after therapy.26–28 More recent work has been 

designed to evaluate [68Ga]PSMA PET imaging for initial diagnosis that could potentially 

improve detection of early-stage recurrence in patients with only moderately increased levels 

of prostate-specific antigen.29 In addition, there is significant interest in using PSMA PET 

imaging to guide therapeutic strategies, such as radiotherapy and radioimmunotherapy, as 

well as predict patient outcomes.30–32

One of the most widely used PSMA targeted tracers is [68Ga]PSMA-11, which 

is the focus of numerous preclinical and clinical studies and has recently been 

approved by the US Food and Drug Administration (FDA) in patients with suspected 

metastatic and recurrent prostate cancer. A more novel tracer, [18F]PSMA-1007, 

is also being evaluated in the clinic and has the advantage of a longer 

physical half-life compared with [68Ga]PSMA-11.33 Another PSMA imaging agent in 

late phase development is [18F]F-2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-

amino]-pentyl}-ureido)-pentanedioic acid (DCFPyL). In a study of 262 patients with 

biochemically recurrent prostate cancer, 91.4% of lesions with an SUVpeak greater than 

3.5 and 95.5% of lesions with an SUVpeak greater than 4.0 were considered malignant on 

[18F]F-DCFPyL PET.34

Although prostate cancer has been the main area of focus in most of the studies performed 

to date, more recent work has begun to elucidate the significance of PSMA expression 

in other types of cancers. PSMA expression in the neovasculature of many different 

cancers has been shown to be increased, and thus recent research has aimed to take 

advantage of this increased expression in cancers such as breast cancer, non–small cell lung 

cancer, colorectal cancer, renal cell carcinoma, pancreatic cancer, and highly vascularized 

gliomas, such as glioblastoma multiforme.28,35,36 One such example includes a recent study 

evaluating the use of [68Ga]PSMA-11 to detect and stage primary and metastatic breast 

cancer lesions.37 The researchers reported promising detection rates in lesions identified by 

[18F] FDG.37 These results along with numerous preclinical and clinical evaluations support 

the prominent role PSMA targeted PET tracers may have on the diagnosis and therapeutic 

outcomes in patients with prostate cancer and other cancers with PSMA expression in their 

neovasculature.
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Deltalike Protein 3

The deltalike protein 3 (DLL3) is an inhibitory ligand of the Notch pathway and is 

upregulated in 85% of small cell lung cancers and other neuroendocrine cancers, whereas 

nonneuroendocrine cancers and normal tissues do not express DLL3.38 Castration-resistant 

neuroendocrine prostate cancers also show increased expression of DLL3 and thus this 

ligand has received attention in recent years for its potential as a target in immunotherapies 

such as rovalpituzumab teserine (SC16LD6.5),39 and radioimmunotherapies including 225Ac 

and 177Lu labeled anti-DLL3 monoclonal antibodies.40 Several multicenter clinical trials 

have been performed exploring the use of rovalpituzumab teserine as a therapy in small cell 

lung cancer.

The use of PET imaging to guide therapies is of significant interest in these indications 

because conventional methods of analyzing DLL3 expression are limited. These limitations 

include insufficient contemporaneous analysis of DLL3 expression, sampling bias resulting 

from intratumoral and intertumoral heterogeneity, and the inherently high false-negative rate 

for histopathologic assessment of DLL3 expression.41 The implementation of PET imaging 

can overcome many of these limitations and thus has been of significant interest in this field. 

Sharma and colleagues41 reported the preclinical evaluation of an [89Zr]Zr-DFO-SC16 PET 

imaging agent in small cell lung cancer xenografts as a means of noninvasively quantifying 

DLL3 expression. In this work, statistically significant differences in tumor accumulation 

were observed between the high and low DLL3-expressing small cell lung cancer xenograft 

models. In addition, uptake of the [89Zr]Zr-DFO-SC16 correlated with therapeutic response, 

highlighting the potential of these tracers to predict patient outcome.41 With the promising 

results of this preclinical analysis, a clinical trial (NCT04199741) was initiated to evaluate 

the use of [89Zr]Zr-DFO-SC16.56 to noninvasively monitor DLL3 expression in patients, 

and is currently ongoing.

Poly(ADP-ribose) Polymerase 1

Poly(ADP-ribose) polymerase 1 (PARP1) is part of a family of proteins tasked with 

repairing single-strand DNA breaks as part of the base excision repair pathway.42 With 

increased rates of metabolism and proliferation, cancer cells are more prone to developing 

single-strand breaks and thus show increased expression and activity of PARP1.43,44 The 

increased reliance on DNA repair pathways is a prominent characteristic of many types 

of cancer, and thus a significant amount of research has been aimed at targeting these 

pathways to prevent DNA repair, ultimately leading to cell death.42,45–47 There are currently 

4 FDA-approved inhibitors of PARP1: olaparib, niraparib, rucaparib, and talazoparib.46

A significant volume of research is focused on the development of imaging agents that are 

based on these PARP inhibitor (PARPi) scaffolds for their potential applications in cancer 

diagnosis, patient stratification, and monitoring therapy.48 As a diagnostic, these imaging 

agents are particularly focused on improving current standard-of-care modalities such as 

[18F]FDG, which has limitations in certain areas of the body because of high background 

signal in normal tissues. Several PARP-selective tracers have been developed and evaluated 

in preclinical and/or clinical studies, including [18F]FluorThanatrace and [18F]PARPi.49–53 

The [18F]PARPi tracer was developed based on the FDA-approved olaparib scaffold, and 
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the [18F]PARPi tracer was evaluated extensively in preclinical settings as a diagnostic and 

a means of monitoring the accumulation and retention of PARPi in the tumor.54,55 This 

tracer has since been used in clinical trials (NCT04173104 and NCT03631017) for multiple 

types of cancer and has shown promising results, as shown in Fig. 2. Continued development 

of these tracers will likely lead to multiple novel radiotracers that can provide improved 

contrast in PET images, stratify patients, and identify tumors that are likely to respond to 

therapies targeting the PARP enzyme.

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1)/programmed 

death-ligand 1 (PD-L1) and cytotoxic T lymphocyte–associated protein 4 (CTLA-4) have 

received significant attention for their impressive results in some patients.56,57 However, 

one of the major limitations of these therapies is the lack of a marker that can be used to 

stratify patients who are likely to respond to immune checkpoint blockade.58,59 There are 

several possible explanations as to why traditional immunohistochemistry quantification of 

expression for the ligands that play a role in immune activity does not correlate with patient 

outcomes. Many in the field believe that heterogeneous expression and the dynamic nature 

of the ligand expression are the leading factors preventing clinicians from determining 

whether a patient is likely to respond.60,61 PET imaging has the potential of overcoming 

these 2 limitations and thus has led to a significant effort to develop an effective PET tracer 

that can noninvasively monitor expression and correlate well with patient outcomes.62

One strategy is to prepare 89Zr-labeled monoclonal antibodies that selectively bind with 

the particular immune checkpoint ligand. There are several monoclonal antibodies to date 

that have been approved by the FDA for use in immune checkpoint therapies.63 One such 

monoclonal antibody is pembrolizumab, one of the earliest FDA-approved and widely 

implemented immune checkpoint inhibitors.63 There are several researchers who have 

prepared 89Zr-labeled versions of the pembrolizumab antibody to evaluate its potential 

in quantifying PD-1 expression using varying approaches.64–66 Several clinical trials 

(NCT02760225, NCT04605614, and NCT03065764) have also been initiated to evaluate 

PET tracers based on the pembrolizumab antibody in the clinic. Additional clinical trials 

are also underway for PET tracers based on other FDA-approved antibodies, including 

ipilimumab, atezolizumab, and avelumab.

Another prominent approach that has seen success in preclinical settings attempts to monitor 

T-cell activation as a consequence of immune checkpoint therapies using PET/computed 

tomography (CT) by administering the 18-fluoro-9-(β-D-arabinofuranosyl) guanine ([18F]F-

AraG) imaging agent. [18F]F-AraG has been established as selective for activated T 

lymphocytes,67 and accumulation of [18F]F-AraG paralleled the course of adaptive immune 

response in a preclinical colorectal cancer model.68 Multiple clinical trials are currently 

investigating the ability of this tracer to monitor T-cell activation in response to immune 

checkpoint blockade in several types of cancer.
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Imaging Extracellular Acidic and Hypoxic Conditions

There are several distinct characteristics of cancer that allow researchers and clinicians to 

develop novel therapeutic and diagnostic agents that specifically target tumors. One such 

characteristic is the reduced pH and hypoxic conditions within the extracellular environment 

of most tumors as a result of the poorly formed vasculature as well as aberrant and increased 

rates of metabolism and cell proliferation.69,70 This characteristic has led to a significant 

research effort to devise unique and clever ways to take advantage of this phenomenon. 

These efforts have brought to fruition numerous pH-sensitive cleavable linkers that can 

improve the selectivity and efficacy of drug molecules, peptides that can alter their structure 

as a result of pH and insert themselves into the membrane of cells, and radiolabeled 

molecules that are metabolized by cells that have altered metabolic pathways as a result of 

environmental stimuli.70–76

The evaluation of the family of pH (low) insertion peptides has produced promising results 

and has shown the capabilities of targeting the acidic microenvironment within tumors. 

These peptides alter their structures in a low-pH environment, forming a transmembrane 

alpha helix that inserts itself into the cell membrane.72,73,77 These peptides have been 

labeled with several different isotopes for PET imaging, including 18F and 64Cu.73,77 The 

research performed to date evaluating these peptides has focused on their potential as 

diagnostic agents as well as discerning which patients or tumors are likely to respond to pH 

low insertion peptide (pHLIP) variants designed for delivery of therapeutic payloads.78 At 

present, a clinical trial has been initiated for an 18F-labeled version of the pHLIP peptide 

to evaluate its efficacy for imaging the low-pH environments in patients with breast cancer 

(NCT04054986).

Another strategy for imaging tumor microenvironment focuses on the hypoxic conditions 

in the extracellular matrix and the variations in cell metabolism that result.74,79 The 

tracer [18F]fluoro-misonidazole ([18F]FMISO) is reduced by hypoxic cells and accumulates 

in regions of the body where these conditions exist. Imaging hypoxia has several 

clinically relevant applications. These agents can act as a companion diagnostic in 

regions of the body where imaging metabolism using [18F]FDG is insufficient in 

diagnosing cancer and/or the presence of hypoxia could alter the therapeutic plan.80 

Imaging hypoxia can act as a prognostic indicator and guide therapeutic strategy, and 

also has a significant impact on radiotherapy where hypoxic cells are much more 

radiation resistant than normoxic cells, thus requiring increased radiation dose to obtain 

sufficient therapeutic efficacy.74 Although [18F]FMISO seems to be the most prominent 

tracer currently being explored, many other tracers are also in development, including 

[18F]fluoroazomycin arabinoside ([18F]FAZA),80–82 with numerous ongoing clinical 

trials such as NCT03418818, NCT04395469, and NCT02701699, and [64Cu]Cu-diacetyl-

bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM)83–85 also with ongoing clinical trials 

NCT03951337.

Radiolabeled Analogues of Bioactive Molecules

As researchers continue to elucidate the complex mechanisms involved in cancer biology 

and metabolism, many novel radiotracers have been developed based on bioactive molecules 
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such as amino acids, hormones, and antibodies that target or interact with processes more 

specifically associated with cancer. Many of the tracers mentioned previously would be 

considered among this class of tracers. Although a complete list of novel and promising PET 

tracers is beyond the scope of this article, briefly, the following tracers are examples of this 

diverse and powerful field and will likely make their way into clinical settings in the very 

near future if they have not already.

The PET tracers 3,4-dihydroxy-6[18F]fluoro-L-phenylalanine ([18F]FDOPA), 

L-[11C]methionine ([11C]MET), and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]F-FET) are 

amino acid analogues of particular interest for their potential in improving diagnosis 

of primary brain tumors, including glioblastoma.86–90 These tracers improve on current 

standard of care because they are capable of passing through an intact blood-brain barrier 

and have much improved tumor/normal brain uptake ratio compared with [18F]FDG. Each of 

these tracers is currently under investigation in ongoing clinical trials. Another example of 

radiolabeled amino acids is the (4S)-4-(3[18F]fluoropropyl)-L-glutamic acid ([18F]F-FSPG) 

PET tracer. This tracer is of particular interest for its ability to determine drug resistance 

because the tumor uptake can indicate the upregulation of antioxidant pathways. This 

tracer has been shown to provide an early indicator for tumor response in preclinical 

studies, preceding other standard methods such as tumor size regression or reduced glucose 

metabolism.91 These results have led to several clinical trials that are evaluating the ability 

of these tracers to act as a diagnostic and monitor therapeutic response in patients.

A tracer that uses a radiolabeled hormone analogue is the 16α-[18F]fluoroestradiol ([18F]F-

FES), which is capable of providing a method of noninvasively assessing estrogen 

expression within a tumor and was approved by the FDA in June of 2020. This 

tracer has been studied as a diagnostic for recurrent and metastatic breast cancer 

in patients with a history of estrogen-positive primary cancer.92,93 Ongoing clinical 

trials, such as NCT02398773, are evaluating the ability of [18F]FES to improve 

current diagnostic techniques for assessing recurrent and metastatic breast cancer as 

well as predict patient response to endocrine therapies. Additional hormone analogues 

currently under study include 21-[18F]fluoro-furanyl-norprogesterone ([18F]FFNP) as a 

means of evaluating progesterone expression in breast cancers (NCT03212170), as well 

as the 16β-[18F]fluoro-5α-dihydrotestosterone ([18F]F-FDHT) to diagnose recurrent and 

metastatic prostate cancer and evaluate androgen receptor expression to guide therapeutic 

strategies.93–95 These tracers have provided promising results with high selectivity and 

sensitivity, noninvasive quantitation of receptor expression to inform therapeutic strategies, 

and the capability of monitoring changes in hormone receptor expression as a result of 

endocrine therapies.

Antibodies and the various fragments that can be engineered from portions of the antibody 

is an expansive and invaluable area of research that has generated an extensive and 

ever-growing library of highly specific therapeutic and diagnostic agents that have seen 

tremendous success in preclinical and clinical studies.96 The investigators of the Antibodies 

to Watch series presented an excellent breakdown of the current field of antibody-based 

therapeutics for treatment in multiple diseases from academic and industrial laboratories that 

are at varying stages of clinical development.96 As antibodies are evaluated and confirmed to 
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be effective therapeutics, novel PET imaging agents can readily be prepared by labeling 

these antibodies with chelators capable of incorporating radioactive isotopes. Thus, as 

the number of viable and effective therapeutic antibodies continues to grow, so does the 

library of imaging agents with the potential of improving diagnostic capabilities, stratifying 

patients who are more likely to respond to therapy, and more quickly and accurately 

monitoring patient response. Some examples of approved antibodies that have been adapted 

as PET imaging agents include [89Zr]Zr-durvalumab for imaging PD-L1 expression in 

head and neck cancers as well as lymphoma (NCT03610061, NCT03829007), [89Zr]Zr-

ramucirumab for imaging VEGFR-2 expression in prostate cancer,97 and [64Cu]Cu-Bn-

NOTA-hu14.18K322A, a humanized version of the chimeric antibody dinutuximab, used to 

image disialoganglioside GD2 expression in neuroblastoma and osteosarcoma.98 In addition, 

some of the previously discussed imaging agents were developed from approved antibodies 

such as [89Zr]Zr-atezolizumab (NCT04564482, NCT03850028, NCT04222426), [89Zr]Zr-

avelumab (NCT03514719), and [89Zr]Zr-ipilimumab (NCT04029181, NCT03313323).

RADIOPHARMACEUTICALS FOR PET IMAGING IN NEUROLOGY

Highlighted here are the radiopharmaceuticals, for nononcology neurologic PET imaging, 

that are either FDA approved or in late-stage clinical trials. Nononcology neurologic PET 

imaging focuses on a range of neurologic disorders,99,100 with an emphasis placed on 

neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease (AD). 

Such neurodegenerative disorders are notable for the accumulation of protein inclusions in 

the brain and their impact on neurotransmission.

To illustrate this point, patients with PD experience a degeneration of the nigrostriatal 

pathway that results in the loss of dopaminergic neurons. This neuronal loss has been shown 

to correlate with the aggregation of protein α-synuclein in the neuronal perikarya, forming 

the characteristic Lewy body.101 In addition, the primary pathology features of AD is the 

aggregate burden of 2 proteins: β-amyloid, the principal component of neurotic plaques, and 

tau protein, a component of neurofibrillary tangles.102 Impairment of the cholinergic system 

is also thought to play a significant role in the cognitive decline experienced by patients with 

AD.103

These unique disease indications, in combination with the chronic inflammation they 

produce, are used as potential targets in the development and use of radiopharmaceuticals 

for the PET imaging of neurologic disorders.

Protein-Targeted Imaging

One of the primary pathology features in neurodegenerative diseases such as PD and AD 

is protein aggregation. Thus, protein-targeted imaging is an especially notable modality in 

AD, which has a significant aggregate burden of amyloid-beta (Aβ) plaques and tau protein. 

Note that preclinical targeting of the PD aggregate protein α-synuclein has met with limited 

success to date, with recent efforts showing promise.104

The clinical relevance of imaging agents targeting Aβ plaques and tau protein in AD are 

discussed next.
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β-Amyloid imaging agents—The accumulation of β-amyloid into Aβ plaques is one of 

the hallmarks of AD. The first widely used PET imaging agent for detecting these plaques, 

[11C]PiB (2-[4-([11C]methylamino)phenyl]-1,3-benzothiazol-6-ol; Pittsburgh compound B), 

continues to have widespread use in research ever since its first use in human studies in 

the early 2000s.105 Although this tracer is not approved for clinical use by the FDA, it is 

notable for its high specificity for Aβ plaques and ability to differentiate AD from other 

types of neurodegeneration that do not involve Aβ deposition, such as frontotemporal lobar 

degeneration (FTLD).106 For this reason, [11C]PiB has been used as a comparative standard 

in the development of new β-amyloid imaging agents. There is also increasing evidence for 

the presence of comorbidities in neurodegenerative disorders, such as the presence of Aβ 
plaques in some patients with PD.107,108 [11C]PiB is being used in clinical trials to measure 

the amyloid burden in PD (NCT03555292), to evaluate the potential presence of comorbid 

AD. The results of this trial could provide unique clinical insight into the disease burden of 

Aβ plaques in PD and other types of neurodegeneration.

Beyond [11C]C-PiB, 3 18F-labeled amyloid imaging agents have been approved for use by 

the FDA, within the last decade, for the detection of Aβ plaques in patients undergoing 

evaluation for cognitive impairment with AD as a potential cause. These 3 tracers 

are [18F]florbetapir (4-[(E)-2-[6-[2-[2-(2-[18F]fluoranylethoxy)ethoxy]ethoxy]pyridin-3-

yl]ethenyl]-N-methylaniline; Amyvid), [18F]florbetaben (4-

[(E)-2-[4-[2-[2-(2-[18F]fluoranylethoxy)ethoxy]ethoxy]phenyl]ethenyl]-N-methylaniline; 

NeuraCeq), and [18F]flutemetamol (2-[3-[18F]fluoranyl-4-(methylamino)phenyl]-1,3-

benzothiazol-6-ol; Vizamyl), and have proven efficacy in several clinical trials.109–111 The 

tracers can be used to estimate the Aβ plaque density in patients with suspected AD but 

are not indicated to diagnose AD or other neurodegenerative disorders based on imaging 

alone. These 3 tracers continue to undergo clinical development and are commonly used as a 

standard with which to compare novel tracers. For example, florbetaben is being examined, 

similarly to [11C]C-PiB, as a means to quantify the comorbid Aβ plaque burden experienced 

by patients with other neurodegenerative diseases, such as PD.112

There are 2 next-generation radiopharmaceuticals for imaging β-amyloid 

that have potential for clinical impact in the coming years: 

[18F]FIBT (2-(p-methylaminophenyl)-7-(2-[18F]fluoroethoxy)imidazo-[2,1-b]benzothiazole) 

and [18F]NAV4694 (2-[2-[18F]fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol). In a 

human study involving 6 patients with AD, [18F]FIBT showed imaging quality comparable 

with [11C]PiB.113 [18F]FIBT was also shown to have a higher binding affinity and 

specificity for Aβ plaques. This study followed the first human study for [18F]FIBT in 

2015, which involved 2 patients: 1 patient with AD and 1 control. In this preliminary 

study, [18F]FIBT was able to successfully differentiate the patient with AD from the control 

and showed a strong pattern of tracer uptake consistent with AD.114 Because of the small 

number of subjects in these studies, larger clinical trials are required to further understand 

the utility of these agents.

The second radiopharmaceutical, [18F]NAV4694 (also known as [18F]AZD4694), has been 

shown to have imaging characteristics nearly identical to those of [11C]PiB115 and has 

recently undergone phase 2 and phase 3 trials (NCT01886820, NCT01680588). Despite its 
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demonstrated efficacy, a recently conducted human trial showed low uptake of the tracer in 

the preclinical phase of AD, suggesting a limit for its clinical use.116 However, this tracer 

remains promising for future clinical use because of its favorable imaging characteristics.

Tau imaging agents—Tau protein is most associated with cognitive decline in 

neurodegenerative diseases such as AD. Note that tau protein accumulation is not a specific 

biomarker for AD; the protein is also present during acute brain conditions such as stroke.117 

In addition, different forms of tau accumulate in different neurodegenerative diseases, and 

PET tracers targeting tau typically bind preferentially to certain forms of tau.118 However, 

research has shown that measuring the buildup of tau, which can occur before the formation 

of Aβ plaques, may be important in detecting AD in early stages.119 Studies such as 

these suggest the important complementary role nonspecific protein imaging can play in 

disease-targeted imaging.

There are 3 radiopharmaceuticals that have been widely studied in the targeting 

of tau protein: [18F]THK5351 ((2S)-1-[18F]fluoranyl-3-[2-[6-(methylamino)pyridin-3-

yl]quinolin-6-yl]oxypropan-2-ol), [18F]AV1451 (7-(6-fluoropyridine-3-yl)-5H-pyrido[4,3-

b]indole), [11C]PBB3 (2-((1E,3E)-4-(6-(11C-methylamino)pyridine-3-yl)buta-1,3-

dienyl)benzo[d]thiazol-6-ol). In general, these 3 tracers were found to have excellent 

selectivity for tau protein compared with Aβ plaques with some off-target binding.120 For 

example, [18F]THK5351 binds to monoamine oxidase B and [11C]PBB3 has been shown 

to bind to α-synuclein.121 A study with [18F]AV1451 involving 8 patients with AD and 

8 healthy controls showed some age-related uptake of the compound among the healthy 

controls, indicating some off-target uptake.122

Beyond these 3 compounds, a new generation of tau tracers were designed to 

reduce off-target binding. Among these new radiopharmaceuticals, [18F]MK-6240 

(6-[18F]fluoranyl-3-pyrrolo[2,3-c]pyridin-1-ylisoquinolin-5-amine) and [18F]RO-6958948 

(2-(6-[18F]fluoro-pyridin-3-yl)-9H-1,6,9-triaza-fluorene) have shown promising results. The 

safety and efficacy of [18F]MK-6240 has been shown preclinically123 and is currently the 

subject of several active clinical trials (NCT04104659, NCT03706261). Large clinical trials 

have shown that [18F]MK-6240 is able to identify individuals with AD with high fidelity and 

accuracy.121 The tracer has also been an important tool in developing a better understanding 

of the role the tau protein plays in AD progression.

A human trial comparing [11C]PiB and [18F]MK-6240 showed patients with increased Aβ 
burden experience cognitive decline largely accounted for by the level of tau protein.124 

This trial highlights a potentially important role for future tau imaging to monitor disease 

progression. In addition, the short half-life of [11C]PiB could allow the imaging of Aβ 
plaques and tau protein in the same patient on the same day (Fig. 3).

The tracer [18F]RO-6958948 has undergone preclinical testing in mice, which showed 

its highly specific binding to tau and rapid kinetics.125 The tracer has also recently 

completed several phase 1 trials testing for safety and efficiency in humans (NCT02792179, 

NCT02187627). Future clinical trials showing its clinical relevance in targeting tau protein 

are expected in the future.
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Neurotransmission-Targeted Imaging

Dopaminergic system imaging—Patients with PD are known to experience a 

neurodegeneration affecting the nigrostriatal system, one of the 4 dopaminergic pathways 

in the brain. A well-established tracer for dopamine metabolism is [18F]FDOPA.126 This 

tracer is a substrate for aromatic acid decarboxylase (AADC), an enzyme necessary 

for the conversion of aromatic amino acids into neurotransmitters such as dopamine. 

This tracer was approved by the FDA in 2019 for the evaluation of adult patients with 

suspected parkinsonian syndromes, including PD, through the visualization dopaminergic 

nerve terminals. Human trials have shown that this tracer is both highly sensitive and highly 

specific.127

The design of the next generation of radiopharmaceuticals in this area is primarily focused 

on targeting 2 additional proteins: dopamine transporter (DAT) and vesicular monoamine 

transporter 2 (VMAT2). There are 2 novel tracers of interest related to these protein 

targets: [18F]FP-CIT (methyl(1R,2S,3S,5S)-8-(3-fluoropropyl)-3-(4-[18F]fluorophenyl)-8-

azabicyclo[3.2.1]octane2-carboxylate) and [18F]FE-PE2I ((E)-N-(3-iodoprop-2-enyl)-2β-

carbo[18F]fluoroethoxy-3β-(4′-methyl-phenyl)nortropane). In the case of FP-CIT, its 123I-

labeled form, ioflupane, is used clinically for single-photon emission computed tomography 

(SPECT) imaging in patients with suspected PD. An analysis of 6 PET clinical studies 

showed that [18F]FP-CIT is a potential biomarker for early PD diagnosis.128 In addition, 

a study with 9 patients with early PD was conducted using [18F]FE-PE2I, which was 

successful in differentiating healthy controls and patients with early PD.129 This same 

compound also showed good repeatability and reliability and is a possible marker to 

monitor the progress of DAT decline.130 There has also been interest in imaging vesicular 

acetylcholine transporter, which has been associated with PD, using the PET ligand 

(2R,3R)-5-[18F]fluoroethoxybenzovesamicol.131

Inflammation-Targeted Imaging and Synaptic Density

There is considerable evidence that both chronic inflammation132 and reduced synaptic 

density133 are associated with neurodegenerative disorders. As a result, there is interest 

in identifying markers for these two conditions associated with neurodegeneration. Of 

particular interest for inflammation is the translocator protein (TSPO) that is upregulated 

with high density in many neurologic disorders.134 Markers of interest for synaptic density 

include high-density neural synapse proteins, one of which is synaptic vesicle protein 2A 

(SV2A).135 The loss or decrease in density of these synaptic proteins indicates disease 

progression.

Translocator protein imaging—TSPO is a transmembrane protein upregulated during 

periods of neuroinflammation, following the activation of microglial cells.134 One of 

the first radiopharmaceuticals targeting this protein was [11C]PK-11195 (N-sec-butyl-1-(2-

chlorophenyl)-N-[11C]methyl-3-isoquinolinecarboxamide), which was widely used in 

research for several decades. However, clinical use of this compound was limited by 

nonspecific binding, low brain uptake, and the short half-life of 11C.136
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A second generation of TSPO-targeting radiopharmaceuticals was developed to address 

these limitations. Compounds in this second generation include [11C]DAA1106 

(N-(5-fluoro-2-phenoxyphenyl)-N-[(5-methoxy-2-[11C]methoxyphenyl) methyl]acetamide), 

[11C]PBR28 (N-[(2-[11C]methoxyphenyl)methyl]-N-(6-phenoxypyridin-3-

yl)acetamide), [18F]FEPPA (N-[[2-(2-[18F]fluoranylethoxy)phenyl]methyl]-

N-(4-phenoxypyridin-3-yl)acetamide), [18F]PBR06 (N-[(2,5-

dimethoxyphenyl)methyl]-2-[18F]fluoranyl-N-(2-phenoxyphenyl)acetamide), 

[18F]PBR11 (2-(6-chloro-2-(4-(3-[18F]fluoropropoxy)phenyl)imidazo[1,2-a]pyridin-3-

yl)-N,N-diethylacetamide), and [18F]DPA714 

([N,N-diethyl-2-(2-(4-(2[18F]fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-

yl)acetamide]). Many of these new compounds showed higher brain uptake and 

greater specificity for the TSPO target compared with [11C]PK-11195.137 However, 

additional studies also revealed that genetic variation in the TSPO gene among participants 

resulted in TSPO expression with varied the binding affinity for the tracer, leading to the 

classification of so-called high-affinity, low-affinity, and mixed-affinity binding groups.138 

Patients with low-affinity TSPO binding present a significant clinical contraindication 

for TSPO-targeted imaging and have been excluded from some clinical trials. Despite 

this limitation, the largest improvement in TSPO-targeted imaging with second-generation 

radiopharmaceuticals was the development of 18F-labeled compounds, which benefit from a 

longer half-life compared with their 11C-labeled counterparts to allow more widespread use.

TSPO-targeted imaging studies of neurodegenerative disorders with second-generation 

DPA-714 modeled acute inflammation in rats and showed that [18F]DPA-714 is a selective 

and reliable biomarker139 with a more favorable signal/noise ratio than [11C]PK-11195.140 

However, one of the first human trials, involving 10 patients with AD and 6 healthy 

controls, showed no significant difference in [18F]DPA-714 uptake between the two 

groups.141 Note that no information on the binding status of the participants of this trial 

was available for this study. A subsequent human trial, involving 64 patients with AD 

and 32 controls, specifically studied high-affinity and mixed-affinity binders. The results 

of the trial showed greater TSPO uptake among high-affinity and mixed-affinity binders 

compared with healthy controls and also showed that participants with a greater uptake 

of TSPO had a slower disease progression over a period of 2 years, indicating a possible 

protective effect provided by TSPO.142 The results of these 2 clinical trials introduce new 

questions regarding the use of [18F]DPA-714 in identifying neurodegeneration and the 

potential importance of binding status on TSPO-targeted imaging. Further exploration of 

this compound continues, including current clinical trials to determine whether patients 

who experience higher neuroinflammation have more symptoms from neuroinflammatory 

diseases (NCT03759522). Overall, the development of second-generation TSPO imaging 

agents has shown promise regarding binding specificity and brain uptake, but continued 

developments may improve image quality and diagnostic utility.143

Synaptic vesicle protein 2A—SV2A is a membrane protein localized to the synapse in 

neural cells.135 Many neurodegenerative diseases are known to reduce the density of these 

synapses, thereby reducing the amount of SV2A.144 As a result, SV2A has been investigated 

as a clinical marker for neurodegeneration.
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Among the first-generation SV2A tracers, 3 have been identified with potential clinical 

relevance: [18F]UCB-H, [11C]UCB-A, and [11C]UCB-J (4R)-1-(3-([11C]methylpyridin-4-

yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one. A preclinical analysis of these 3 

compounds found [11C]UCB-J to have superior imaging characteristics, including rapid 

brain uptake, and fast, reversible binding with high specificity to SV2A.144 Compared with 

[11C]UCB-J, [11C]UCB-A was found to have a slower kinetics, whereas [18F]UCB-H had 

less specific binding.

To date, there have been several clinical trials that have shown the efficacy of these 

3 compounds as a diagnostic measure in neurodegenerative disorders (NCT03577262, 

NCT04243304). The safety and efficacy of [18F]UCB-H as a means of studying synaptic 

density was first shown in a small human study involving 4 healthy subjects.145 Similar 

efficacy was shown in a clinical trial of [11C] UCB-J involving 10 patients with AD and 

11 healthy controls, which found a significant reduction of SV2A in areas of the brain 

associated with the progression of AD disease.146 A larger clinical trial of [18F]UCB-H 

involving 24 patients with AD and 19 healthy controls also showed a significantly reduced 

uptake of the tracer in areas of the brain related to cognitive decline in patients with AD.147

Out of the 3 first-generation SV2A tracers, [11C] UCB-J, is considered the best in its 

class because of its rapid uptake, fast kinetics, and specific binding. However, the short 

half-life of 11C presents a limitation for widespread use, similar to the first-generation 

TSPO-targeting compound [11C]PK-11195. Independent attempts to synthesize a longer-

lived 18F derivative were met with success by 2 research groups, who synthesized 

a compound that was jointly named [18F]SynVesT-1 (4R)-1-(3-([18F]methylpyridin-4-

yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one.148 In a preliminary study comparing 

the efficacy of [18F]FSDM-8 and [11C]UCB-J, the former was found to have imaging 

properties comparable with the first-generation compound with the added benefit of a longer 

half-life.149 Current clinical trials with this second generation of SV2A tracers are ongoing 

or recently completed (NCT03587649).

RADIOPHARMACEUTICALS FOR CARDIOVASCULAR PET IMAGING

Most cardiac PET imaging has focused on blood flow (82Rb and [13N]NH3) and metabolism 

([18F] FDG). Research into newer agents for both of these areas continues and is 

complemented by additional compounds in imaging of atherosclerosis and angiogenesis.

PET Agents for Myocardial Perfusion Imaging

Although the approval of 82Rb and [13N]NH3 has enabled widespread cardiac PET imaging, 

the very short half-lives of 82Rb and 13N make these studies accessible only at sites with 

access to an 82Sr/82Rb generator or an on-site cyclotron. Thus, there has been significant 

research into longer-lived imaging agents for this purpose.

[18F]Flurpiridaz (2-tert-butyl-4-chloro-5-[4-(2-[18F]fluoroethoxymethyl)-benzyloxy]-2H-

pyridazin-3–1) is under investigation for myocardial perfusion imaging in late-stage clinical 

trials.150 A phase III clinical trial recently reported that, although the imaging study was 

not as specific as other available agents, the sensitivity was significantly higher than SPECT 
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agents, as shown in Fig. 4. Studies comparing imaging characteristics of [18F]flurpiridaz 

with those of [13N]NH3 showed no significant differences between parameters derived 

from images with either agent.151 Other agents labeled with 18F and 68Ga are also under 

investigation in preclinical studies.152,153

PET Agents for Imaging of Cardiac Metabolism

[18F]FDG is widely available and has been used for cardiac metabolism and sarcoidosis. 

However, complementary agents have provided additional insight into cardiac function.

[11C]Acetate has long been used for imaging of metabolism in a variety of disease states. 

In the research setting, this imaging strategy has been used to study cardiac metabolism 

in several investigations. For example, in a study of asymptomatic men with chromic 

alcohol consumption, investigators showed that [11C]acetate PET/CT could be used to detect 

metabolic changes in the myocardium.154 Newer imaging analysis techniques combined 

with dynamic imaging have also shown the feasibility of oxygen consumption, myocardial 

external efficiency, and blood flow in a single scan.155,156

Imaging of fatty acid metabolism has also been an ongoing area of study in cardiac 

research. In particular, [11C]palmitate has been used for many years in basic metabolism 

studies.157 In a multiple tracer study involving [15O]water and [1-11C] glucose, palmitate, 

and leucine, investigators were able to image myocardial metabolic changes associated with 

Barth syndrome.158 Newer fatty acid agents such as [18F]fluoro-4-thiapalmitate (FTP) are 

also being studied in ongoing clinical trials in cardiac metabolism. In a paired study with 

lean controls and diabetic glycemically controlled volunteers, investigators found fatty acid 

oxidation was higher in the diabetic group and could be altered in both groups by the 

administration of insulin.159

PET Agents for Imaging of Cardiovascular Disease

As mentioned earlier, there are several agents that have shown utility in assessment 

of amyloid burden in patients with cognitive impairment. Atherosclerosis has also been 

shown to contain amyloid proteins. Thus, imaging using previously developed agents for β-

amyloid has been investigated in atherosclerosis and cardiac amyloidosis. Other biomarkers, 

including CCR2, are also currently being studied.

Amyloid imaging—Preliminary human imaging studies using [18F]flutemetamol showed 

visible uptake in carotid arteries, with male gender associated with enhanced uptake.160 In 

a recent study in patients with suspected cardiac amyloidosis, imaging with [18F]florbetaben 

at delayed timepoints allowed the differentiation of immunoglobulin light chain–derived 

amyloidosis from transthyretin-related amyloidosis.161 Similar results were also reported 

using [11C]PiB in multiple studies.162,163 However, in several recent [18F]flutemetamol 

studies in patients with cardiac amyloidosis, results were mixed, with 1 group reporting that 

PET/CT could be used to differentiate between patients with transthyretin amyloidosis and 

another reporting that the diagnostic yield from images acquired was low.164,165 Additional 

clinical trials in this area are ongoing (NCT01683825, NCT04105634, NCT02641145, 

NCT04392960).
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Other targets in atherosclerosis—Macrophages and other inflammatory cells are 

known to be associated with atherosclerotic processes.166 Existing agents targeting TSPO 

and somatostatin receptors have been investigated for imaging of inflammatory processes 

with some success in preclinical models and several clinical trials.166 For example, in a 

study involving 42 patients with atherosclerosis [68Ga]DOTATATE out-performed [18F]FDG 

for the evaluation of high-risk versus low-risk coronary lesions (NCT02021188).167 Newer 

agents such as [64Cu] DOTA-ECL1i, which targets CCR2, are currently in clinical trials 

(NCT04537403) in patients with carotid and femoral artery disease.

Prominent and novel tracers, along with their current status, are listed in Table 1.

Abbreviation Chemical Name

FAPI Fibroblast activation protein inhibitor

FLT 3′-Fluoro-3′ deoxythymidine

FDG Fluorodeoxyglucose

PSMA Prostate-specific membrane antigen

[18F]DCFPyL 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-

amino]-pentyl}-ureido)-pentanedioic acid

DFO Deferoxamine

DLL3 Deltalike protein 3

PARP1 Poly(ADP-ribose) polymerase 1

[18F]F-AraG [18F]fluoro-9-(β-D-arabinofuranosyl) guanine

pHLIP pH low insertion peptide

[18F]FMISO [18F]fluoro-misonidazole

[18F]FAZA [18F]fluoroazomycin arabinoside

[64Cu]Cu-ATSM [64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone)

[11C]MET L-[11C]methionine

[18F]FET O-(2-[18F]fluoroethyl)-L-tyrosine

[18F]FSPG (4S)-4-(3[18F]fluoropropyl)-L-glutamic acid

[18F]FES 16α-[18F]fluoroestradiol

[18F]FFNP 21-[18F]F-fluoro-furanyl-norprogesterone

[18F]FDHT 16β-[18F]F-fluoro-5α-dihydrotestosterone

[11C]PiB 2-[4-([11C]methylamino)phenyl]-1,3-benzothiazol-6-ol
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[18F]Florbetapir 4-

[(E)-2-[6-[2-[2-(2-[
18F]fluoranylethoxy)ethoxy]ethoxy]pyridin-3-yl]ethenyl]-

N-methylaniline

[18F]Florbetaben 4-

[(E)-2-[4-[2-[2-(2-[
18F]fluoranylethoxy)ethoxy]ethoxy]phenyl]ethenyl]-N-

methylaniline

[18F]Flutemetamol 2-[3-[18F]fluoranyl-4-(methylamino)phenyl]-1,3-

benzothiazol-6-ol

[18F]FIBT 2-(p-

Methylaminophenyl)-7-(2-[18F]fluoroethoxy)imidazo-[2,1-

b]benzothiazole

[18F]NAV4694 2-[2-18F-fluoro-6-(methylamino)-3-pyridinyl]-1-

benzofuran-5-ol

[18F]THK5351 (2S)-1-[18F]fluoranyl-3-[2-[6-(methylamino)pyridin-3-

yl]quinolin-6-yl]oxypropan-2-ol 7-(6-fluoropyridine-3-

yl)-5H-pyrido[4,3-b]indole

[11C]PBB3 2-((1E,3E)-4-(6-(11C-methylamino)pyridine-3-yl)buta-1,3-

dienyl)benzo[d]thiazol-6-ol

[18F]MK-6240 6-[18F]fluoranyl-3-pyrrolo[2,3-c]pyridin-1-ylisoquinolin-5-

amine

[18F]Ro-6958948 2-(6-[18F]fluoro-pyridin-3-yl)-9H-1,6,9-triaza-fluorene

[18F]FDOPA (2S)-2-amino-3-(2-[18F]fluoro-4,5-

dihydroxyphenyl)propanoic acid

[18F]FP-CIT Methyl(1R,2S,3S,5S)-8-(3-

fluoropropyl)-3-(4-[18F]fluorophenyl)-8-azabicyclo 

[3.2.1]octane2-carboxylate

[18F]FE-PE2I (E)-N-(3-iodoprop-2-enyl)-2β-

carbo[18F]fluoroethoxy-3β-(4′-methyl-phenyl)nortropane)

[18F]FEOBV (2R,3R)-5-[18F]fluoroethoxybenzovesamicol

[11C]CPK-11195 N-sec-Butyl-1-(2-chlorophenyl)-N-[11C]methyl-3-

isoquinolinecarboxamide

[11C]DAA1106 N-(5-Fluoro-2-phenoxyphenyl)-N-[(5-

methoxy-2-[11C]methoxyphenyl)methyl] acetamide
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[11C]PBR28 N-[(2-[11C]methoxyphenyl)methyl]-N-(6-

phenoxypyridin-3-yl)acetamide

[18F]FEPPA N-[[2-(2-[18F]fluoranylethoxy)phenyl]methyl]-N-(4-

phenoxypyridin-3-yl)acetamide

[18F]PBR06 N-[(2,5-Dimethoxyphenyl)methyl]-2-[18F]fluoranyl-N-(2-

phenoxyphenyl)acetamide

[18F]PBR11 2-(6-

Chloro-2-(4-(3-[18F]fluoropropoxy)phenyl)imidazo[1,2-

a]pyridin-3-yl)-N, N-diethylacetamide

[18F]DPA714 [N,N-

diethyl-2-(2-(4-(2[18F]fluoroethoxy)phenyl)5,7dimethylpy

razolo[1,5a] pyrimidin-3-yl)acetamide]

[11C]UCB-J (4R)-1-((3-([11C]methylpyridin-4-yl)methyl)-4-(3,4,5-

trifluorophenyl)pyrrolidin-2-one

[18F]SynVesT-1 (4R)-1-((3-([18F]methylpyridin-4-yl)methyl)-4-(3,4,5-

trifluorophenyl)pyrrolidin-2-one
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KEY POINTS

• New radiopharmaceuticals can enable imaging strategies for the better 

understanding of disease states in oncology, neurology, and cardiovascular 

disease.

• Oncologic PET imaging agents are intended to probe the biological 

characteristics of cancers to improve diagnostics and the efficacy of 

therapeutic strategies.

• Nononcology neurologic PET imaging focuses on a range of neurologic 

disorders with an emphasis placed on neurodegenerative diseases such as 

Parkinson disease and Alzheimer disease.

• Most cardiac PET imaging has focused on blood flow and metabolism and is 

complemented by additional compounds for imaging of atherosclerosis.
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Fig. 1. 
[68Ga] fibroblast-activating protein inhibitor-4 imaging in multiple types of cancer. Ca, 

cancer; CCC, circulating cancer cell; CUP, cancer of unknown primary; MTC, medullary 

thyroid cancer; NET, neuroendocrine tumor. (From Kratochwil C, Flechsig P, Lindner T, 

et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med. 

2019;60(6):801–805.)
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Fig. 2. 
[18F]F-PARPi imaging in a patient with benign and malignant lesions within the brain. (A) 

Lesion from patient confirmed to be cancerous (B) Lesion from patient confirmed to be non-

cancerous. (From Young RJ, Demétrio De Souza França P, Pirovano G, et al. Preclinical and 

first-in-human-brain-cancer applications of [18F]poly-(ADP-ribose) polymerase inhibitor 

PET/MR. Neuro-Oncology Advances. 2020.)
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Fig. 3. 
MK-6240 and PiB PET/CT images, and biomarker group stratification. (A) PET/CT images 

of the [11C]PiB and [18F]MK6240 tracers in different patient groups. (B) Quantrant plots 

representing the relationship between global PiB distribution volume ratio (DVR) and 

MK6240 standard uptake value ratio (SUVR) in entorhinal cortex. Results suggest that 

changes in PiB precede detectable changes in MK-6240 in most cases. Individuals with mild 

cognitive impairment at PET (triangles) were more likely to be both amyloid (A) and tau (T) 

positive than any other group. (From Betthauser TJ, Koscik RL, Jonaitis EM, et al. Amyloid 

and tau imaging biomarkers explain cognitive decline from late middle-age. Brain. Jan 1 

2020;143(1):320–335. https://doi.org/10.1093/brain/awz378.)
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Fig. 4. 
Rest and pharmacological stress SPECT and [18F]flurpiridaz PET images. This 82-year-old 

male patient without a history of myocardial infarction had 100% proximal obtuse marginal 

occlusion as well as 56% proximal and 80% distal left circumflex stenoses. Both studies 

are true-positive, but stress and rest perfusion defects in the lateral wall are more prominent 

and larger on PET than on SPECT images. (From Maddahi J, Lazewatsky J, Udelson JE, 

et al. Phase-III Clinical Trial of Fluorine-18 Flurpiridaz Positron Emission Tomography for 

Evaluation of Coronary Artery Disease. Journal of the American College of Cardiology. 

2020/07/28/ 2020;76(4):391–401.)
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