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Abstract

Integrated modelling of biological systems is becoming a necessity for constructing models containing the major biochemical
processes of such systems in order to obtain a holistic understanding of their dynamics and to elucidate emergent behaviours.
Hybrid modelling methods are crucial to achieve integrated modelling of biological systems. This paper reviews currently popular
hybrid modelling methods, developed for systems biology, mainly revealing why they are proposed, how they are formed from single
modelling formalisms and how to simulate them. By doing this, we identify future research requirements regarding hybrid approaches
for further promoting integrated modelling of biological systems.
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Introduction

Systems biology [1, 2] aims to study the interactions
between the components of a biological system and how
these interactions cause the behaviour of the system as
a whole. Modelling and simulation play an essential role
in achieving this goal. So far, many modelling formalisms
have been proposed to represent biological systems
from different perspectives. The diversity of biological
phenomena and mechanisms result in the adoption of
distinct modelling approaches, e.g. ordinary differential
equations (ODEs) for describing deterministic systems
and stochastic methods for representing systems with
randomness. The degree of availability of kinetic data is
another reason for people to explore different modelling
formalisms. If kinetic data are sufficiently known, the
quantitative (ODEs or stochastic) approaches could be
appropriate options; otherwise, qualitative/uncertain
methods such as Boolean networks or fuzzy logic may
be adopted. Another important reason is due to the
multi-disciplinarity of researchers [3], who tend to
choose their favourite approaches. However, although
we have seen many modelling formalisms, we are far
from approaching the ultimate goal of systems biology,
i.e. to study the behaviour of a system as a whole.

From its inception until now, the mainstream mod-
elling work in this area has focused on fragments of bio-
logical systems, such as individual signalling networks,
gene regulatory networks and metabolic networks, which

however cannot give a complete view of the whole sys-
tem. In order to obtain a holistic understanding of the
cellular behaviour of the whole system, we need to inte-
grate stepwise the fragments into a more comprehen-
sive model which represents the system’s behaviour as
an ensemble. Fortunately, with the rapid development
of high-throughput experimental technologies such as
genomics and proteomics and the increase of measure-
ment data, hybrid integrated modelling of biological sys-
tems is becoming increasingly popular by offering a more
and more complete picture of the whole system [4].

Historically, hybrid modelling of biological systems has
mainly been motivated by the following observations.

• A biological system is inherently hybrid. The whole
system can be generally thought of as a continuous
model, but it may also comprise different kinds of dis-
crete stochastic events, e.g. the gene regulation (e.g.
activation or deactivation of genes) [5], the birth and
death of species and the crossing of concentration
thresholds of some species, all of which cause state
switching [6]. For such biological phenomena, hybrid
models that integrate discrete with continuous or
stochastic with deterministic methods could be more
appropriate.

• The availability of kinetic data usually differs for dis-
tinct components for most biological systems. In this
case, quantitative and qualitative formalisms may
have to be combined to form an integrated model [7].
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• Different time scales inherent to biological systems
also require hybrid modelling, i.e. components at
different time scales may adopt distinct modelling
formalisms, e.g. deterministic ones for large scales,
but stochastic ones for small scales [8].

• The relief of the computational burden associated
with simulation and analysis may be another reason
for hybrid modelling, e.g. approximating stochastic
dynamics by deterministic ODEs [9]. See [10] for a
comparison of continuous, stochastic and hybrid
simulation runtime using three biological models:
break-repair, circadian oscillation and T7 phage.
Taking the circadian oscillation as an example, the
simulation time for the continuous, stochastic and
hybrid models cost 0.197, 65342.273 and 53232.862 s,
respectively, i.e. the hybrid simulation substantially
decreases the computational burden due to stochas-
tic simulation. Therefore, a hybrid model may provide
a balance of accuracy and speed.

More recently hybrid modelling has attracted increas-
ing attention, and a variety of hybrid methods have been
proposed in the systems biology area. However, currently
most hybrid modelling approaches and tools only inte-
grate two single modelling formalisms, and thus only
support the construction of integrated models for a few
fragments of a biological system. Again, we are far from
approaching the ultimate goal of systems biology: to
construct comprehensive models of a biological system
by considering its main biochemical processes, with each
process being described by an appropriate modelling
formalism. In the current situation, hybrid modelling is
facing more and more challenges due to the wish for
integrated modelling of biological systems.

In this paper, we review currently popular hybrid mod-
elling methods developed for systems biology, mainly
revealing why each hybrid method is proposed, how they
are formed by different modelling formalisms and how
they are simulated. Based on this survey and the anal-
yses, we identify future prospects of hybrid approaches
for achieving a new quality in integrated modelling of
biological systems.

Considering that there are many different interpreta-
tions of the meaning of hybrid modelling, and a wide
variety of hybrid approaches does exist in the literature,
we set the boundary of our paper as follows. In this review
we focus on dynamic modelling methods in which the
behaviour of models can change with time. We also focus
on those hybrid approaches that have been implemented
by mainstream software tools in systems biology or have
been used by other researchers. Hence, readers will be
able to more easily understand which kinds of hybrid
approaches are supported by these software tools; this
in turn permits an informed decision regarding which
tools are most appropriate for the scenarios they want to
model. This paper basically aims to reach those readers
who want to know how to use hybrid approaches and

Figure 1. Popular modelling formalisms for biological systems. The
inner circle comprises the four basic modelling formalisms: topology-
based modelling, ordinary differential equations (ODEs), continuous time
Markov chain (CTMC) and Boolean logic modelling. Further, topology-
based modelling is extended to constraint-based modelling (CBM), and
Boolean logic to fuzzy logic. The outer ring is labelled with higher mod-
elling formalisms including Petri nets and rule-based modelling, which
can adopt the basic formalisms as underlying semantics.

related tools in systems biology, but it may also be of
interest for researchers devoted to developing new hybrid
algorithms.

Modelling formalisms
In this section, we briefly review some widely used
modelling formalisms (also called paradigms or meth-
ods) that usually contribute to the formation of hybrid
approaches in systems biology. These formalisms can
be roughly classified (see Figure 1) as: (1) basic mod-
elling formalisms, including topology-based modelling,
extended to constraint-based modelling (CBM), ODEs,
continuous time Markov chain (CTMC) and logic mod-
elling, extended to fuzzy logic; (2) higher modelling
formalisms which can adopt basic formalisms as
underlying semantics, including Petri nets (PNs) and rule-
based modelling (RBM). That is, PN and RBM can adopt
different semantics: purely qualitative, ODEs, CTMC or
even a combination of them. For example, stochastic or
continuous Petri nets (SPNs or CPNs) take the semantics
of a CTMC or a set of ODEs, respectively.

Topology-based modelling
The simplest mathematical abstraction of a biological
network is the graph representation of its network topol-
ogy as a purely qualitative model, from which the stoi-
chiometric matrix is built and techniques of graph theory
are used for analysing the biological network with mea-
sures such as degree distribution and clustering coeffi-
cient. For a review about topology-based modelling, refer
to [11, 12].
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Topology-based modelling has been widely applied
to gene-based analyses, resulting in three families of
methods: enrichment analysis, pathway topology-based
and more recently mechanistic pathway activity (MPA)
[13]. Enrichment analysis methods usually consider lists
of genes without taking into account the functional
relations among genes, whereas pathway topology-based
methods do consider the relationships among genes.
To analyse more precisely the functional consequences
of the activity of pathways, MPA was proposed as a
new paradigm. MPA methods aim to study the specific
activities of internal elementary subpathways or circuits,
of which the whole pathway is composed. They were first
used for modelling signalling pathway activities and then
generalized to construct integrated models by combining
gene expression with metabolic modules. In order to
achieve their results, they employ dedicated signal and
flux propagation algorithms that iterate until the activity
value of each node converges [14].

Ordinary differential equations
Differential equations describe the rates of change of
continuous physical quantities, e.g. the species in biologi-
cal systems. ODEs are one of the widely used determinis-
tic modelling formalisms in systems biology [15] which
have been applied to all kinds of biological networks.
With ODEs, we can build a kinetic model for a biological
network to be studied, for which we can use numer-
ical simulation to thoroughly investigate its dynamic
behaviour. Notably, there is a wealth of related simulation
algorithms.

However, the use of ODEs for biological modelling has
a main drawback – we need to know the mechanism of
the system and we have to obtain sufficient kinetic data,
which, however, may not be available in many cases.
This hinders the construction of large-scale models as
it is very cumbersome to gather all necessary kinetic
parameters for the whole system. On the other hand,
the computational burden of numerical simulation of
a large number of ODEs, particularly if they are stiff,
makes the analysis of a large model extremely expensive.
Another disadvantage of ODEs for biological modelling
is the lack of graphical representation. This issue has
been addressed using the graphical representation of PNs
for describing ODEs, i.e. CPNs [16]. The semantics of a
CPN is thus equivalent to a set of ODEs. The family of
differential equations also includes stochastic differen-
tial equations and partial differential equations (PDEs).
The former can be used to model differential equation
models with stochastic effects, while the latter offers
spatial deterministic simulation capabilities.

Continuous time Markov chain
When constructing biological models where biochemical
processes are characterized by interactions of molecular
species of low numbers, stochasticity may have to
be considered as the effect of randomness because
the low numbers of molecules are not ignorable. One

popular stochastic modelling method is the CTMC
[17], which may be generated by, e.g. SPNs [18], and
solved using stochastic simulation algorithms (SSAs) [19].
Stochastic simulation considers each chemical reaction
as a random process and thus is more accurate than
other deterministic simulation methods. The popular
SSAs include Gillespie’s first reaction method and direct
method [19], τ -leap method [20], δ-leap method [21]
and Gibson–Bruck’s algorithm [22]. However, stochastic
simulation is often computationally expensive as it may
consume much runtime to accomplish the discrete and
individual firing of all reactions.

Logic modelling
Logic modelling [23] was proposed to overcome the limi-
tations of quantitative modelling imposed by the lack of
kinetic data and thus precise kinetic parameters. Boolean
networks [24] are among the simplest logic models, in
which each variable, representing, e.g. the presence of a
protein or the state of a gene, takes two values, 0 or 1,
Boolean rules describe the state transition of a system,
and Boolean logic is used to achieve the reasoning. Later,
the variables in Boolean networks were extended to allow
multiple values, which refines the description of the
states and thus yields more precise behaviour of a sys-
tem. Finally, fuzzy logic achieves continuous regulations
of variables by extending their values to an interval [0,1]
of belonging instead of two crisp values 0 and 1. Moreover,
fuzzy logic allows the fusion of human-like reasoning
into the construction of biological models, which offers
a powerful way to incorporate biologists’ experience into
a model [25].

Constraint-based modelling
CBM allows for rapid analysis of large networks under
the steady-state assumption (i.e. no transient behaviour
is analysed) by overcoming the limitations due to the lack
of kinetic information required by kinetic models. One
of the commonly used CBM approaches is flux balance
analysis (FBA) [26, 27] for metabolic networks. With FBA,
a metabolic network is first represented as a stoichio-
metric matrix in terms of the stoichiometric coefficients
of each reaction, which imposes the mass balance con-
straints for the network. Together with the capability
constraints imposed by the lower and upper bounds
of reactions, the model describes an allowable solution
space. Then an objective function is defined and solved
by linear programming, producing a particular flux dis-
tribution. The merit of FBA is that it can be used to con-
struct genome-scale metabolic networks and to analyse
the flow of metabolites. But FBA does not consider kinetic
parameters, and thus cannot analyse metabolite con-
centrations or transient behaviour. Typically, FBA cannot
take into account regulatory effects.

Petri nets
A PN [28] is a bipartite graph consisting of two types
of nodes, places and transitions, connected by directed
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arcs (also called edges). Places usually represent inactive
objects like biological species. Places hold tokens which
can describe quantities of species such as the number
of molecules. Transitions represent actions or changes of
objects like translation and transcription of species in the
biological context. The execution of a PN is to randomly
fire transitions that are enabled, which remove tokens
from input places and add tokens to output places. PNs
have been extended in many ways. For example, arcs
have been enhanced to include read arcs, inhibitor arcs
and marking-dependent arcs, the latter giving rise to self-
modifying nets [29]. These merely qualitative Petri nets
have been further extended to involve timing aspects,
e.g. time Petri nets (TPNs) [30] associate transitions with
deterministic time delays, SPNs with exponentially dis-
tributed random delays (stochastic rates) and CPNs with
deterministic rates [16].

Orthogonal to these extensions are coloured Petri nets
(ColPNs), which combine programming language con-
cepts with PNs. PNs have been widely applied in systems
biology to model different types of networks; see [31, 32]
for reviews. Moreover, ColPNs and their extensions are
suitable for spatial, multilevel and multiscale modelling
of biological systems; see [33] for a review.

Rule-based modelling
RBM [34] uses notations similar to the chemical reaction
equations to represent biological systems. Once a rule-
based model is constructed, it can be interpreted as a
set of ODEs if the state of species is considered as con-
tinuous concentrations, or as stochastic processes if the
state of species is regarded as discrete numbers. Many
variants of rule-based methods have been proposed, e.g.
by allowing species with attributes or rules with reac-
tant patterns [35]. Rule-based models offer an intuitive
form that transparently represents biological networks.
Analogue to RBM, Process Algebra [36] offers another
popular modelling method to describe chemical reaction
equations.

Spatial modelling
Space plays an important role in many phenomena
where molecular mobility, e.g. diffusion of substrates or
transport of molecules, has to be considered, especially
in the integrated modelling scenario. The popular spatial
modelling approaches can be classified into mesh-
based, lattice-based, volume-based and off-lattice [37].
The widely used PDE approach is mesh-based, which
realizes spatial modelling in a deterministic way. Cellular
automata (CA) [38] is a lattice-based method, which
runs on a lattice with a number of states that evolve
in a discrete way. Each site on the lattice has single or
multiple molecules. Other lattice-based methods include
lattice gas CA [39]. The spatial Gillespie approach [40]
evolved from SSAs is a volume-based method, where the
whole volume is divided into a number of subvolumes. In
each subvolume, all species are assumed to be uniformly

distributed. Off-lattice methods, compared with lattice-
based ones, offer a more realistic representation of
spatial positions of cells, i.e. they do not need to be
uniformly spaced on a fixed lattice [41]. As one of the off-
lattice methods, agent-based modelling [42] considers
a set of autonomous decision-making entities, called
agents, which are located in space and individually sense
the environment and make decisions based on a set of
rules.

Artificial intelligence methods
The aforementioned modelling formalisms can be classi-
fied as classical theory-based (or physics-based) methods
[43], in which a model usually represents causal rela-
tionships between inputs and outputs. With the arrival
of big data, data-driven modelling has attracted much
attention, where a model represents correlation rela-
tionships between one set of data and another set of
data [43]. Data-driven modelling has many limitations,
such as being incapable of representing causal relation-
ships between inputs and outputs and of coping with
changing circumstances. Data-driven modelling is usu-
ally achieved with artificial intelligence (AI) techniques,
including data mining and machine learning. So far, AI
techniques are mostly applied in bioinformatics, but they
are starting to be applied in systems biology in various
ways [44, 45], e.g. for identifying principal factors for
constructing models, or building regression models to
predict system behaviour. AI techniques such as neural
networks (NNs) have also been applied to reconstruct
gene regulatory networks from pseudo-time-series gene
expression data [46].

Comparison of the formalisms
We have briefly reviewed some popular modelling
formalisms that usually contribute to the formation
of hybrid approaches. These modelling formalisms
can be categorized in many ways, e.g. continuous and
discrete, qualitative and quantitative, deterministic
and stochastic [3, 47]. No single formalism covers all
required features and thus each single formalism only
partially fulfils the requirements of integrated modelling
of biological systems. To better classify and clarify the
different hybrid approaches that will be discussed below,
we briefly summarize the features of each modelling
formalism in Table 1.

Hybrid modelling methods
A hybrid method refers to a combination of at least two
distinct modelling formalisms, each properly character-
izing a part of the system to be studied, by embrac-
ing complementarity of these formalisms. The comple-
mentarity of formalisms can be driven by several rea-
sons, e.g. computational efficiency, data availability or
the modellers’ individual preferences [48].

In this section, we review some popular hybrid mod-
elling methods that may be suitable for addressing the
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future integrated modelling requirements for systems
biology. For each class of hybrid methods, basically given
chronologically ordered, we focus on clarifying why they
are presented, how they are formed from single mod-
elling formalisms and how to simulate them. Doing this
will enable us to identify in the Discussion section future
research requirements regarding hybrid approaches for
promoting integrated modelling of biological systems.

Hybrid discrete/continuous methods (HDCMs)
In this class of hybrid discrete/continuous methods,
some components of a biological system with continuous
concentration changes are described using ODEs (events
occur continuously and deterministically), while other
components are represented as discrete quantities,
where events occur according to deterministic time
delays. This approach was motivated by the observation
that ODEs can model well many biological phenomena,
but cannot represent some mechanisms such as the
switching and control of genes, which has to be modelled
in a discrete way.

Hybrid functional Petri nets (HFPNs) [5] are one of
the prominent methods falling into this category. HFPNs
integrate discrete and continuous processes in one model
with the unifying graphical representation as PNs (like
a combination of TPNs and CPNs). In an HFPN, there
are four types of nodes: continuous places/transitions
and discrete places/transitions, and three kinds of arcs:
standard, inhibitory and testing. A continuous transition
has a property rate being a function of the marking
of its corresponding preplaces. In contrast, a discrete
transition has a property delay, which may be read as
the time that a chemical reaction requires [49]. Contin-
uous transitions fire continuously in terms of specified
rates, which are processed with numerical ODEs solvers.
Discrete transitions fire spontaneously when enabling
conditions and firing delays are satisfied. The simulation
procedure of an HFPN model is intuitive: integrating
the ODEs for each continuous transition and firing each
discrete transition according to the given firing rules and
time constraints [5].

Initially, a software tool, called Genomic Object Net,
was developed for representing and simulating HFPNs,
which provided an editor and also a simulator for HFPNs
with graphical user interface (GUI) support [5]. Later,
Cell Illustrator [50] was developed to support the mod-
elling and simulation of HFPNs with an easy-to-use user
interface. Moreover, Cell Illustrator offers a rich library
of icons for different biological elements and processes,
which facilitates that biologists construct models with
user-friendly icons of substrates and reactions. Cell Illus-
trator has been recognized as a useful hybrid modelling
and simulation tool for biological networks for a long
time due to the intuitive user interface, captivating icons
of biological elements and simple simulation operations.
However, the main drawbacks of this tool are obvious. It
is commercial, which limits the wide application of this
hybrid modelling tool. Moreover, Cell Illustrator does not
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support hierarchical modelling, which may be required
to construct larger models. HFPNs have been used to
construct and analyse models of different types of bio-
chemical networks including gene regulatory networks,
metabolic pathways and signalling pathways. For exam-
ple, in the HFPN model of the λ phage genetic switch
system [49], the switching mechanism of the λ phage is
considered as a discrete component and the others as
continuous ones. In the HFPN model of the glycolytic
pathway and lac operon gene regulatory mechanism of
Escherichia coli [5], the lac operon gene regulatory mech-
anism is modelled as a discrete component, where the
switch of lac operon transcription is represented as a
discrete transition with a fixed delay, while the glycolytic
pathway is modelled as a continuous component. More-
over, [5] gave several other HFPN models of, e.g. the Fas-
induced apoptosis and Drosophila circadian mechanism.
See [51, 52] for some more sophisticated HFPN models.

Hybrid spatial/continuous methods (HSCMs) [41, 53,
54] make another large subclass of hybrid discrete/con-
tinuous methods (HDCMs). These methods usually cou-
ple spatial methods with ODEs or PDEs. The spatial meth-
ods represent in a discrete way each individual cell, the
interactions between individual cells and between cells
and their environment, while the continuous methods
describe the biological reactions inside each individual
cells. Take the hybrid CA/ODEs approach as an example.
The simulation can be executed as follows. At each time
step, inside each cell, the set of ODEs associated with
this cell is integrated to obtain a new state; with the
new state, each cell is updated in terms of discrete rules:
remain, move or die. Repeat this computation until the
termination condition is met. Other types of HSCMs can
follow a similar simulation strategy. HSCMs have been
applied in many scenarios, e.g. tumour or cancer mod-
elling [54], or pattern formation [37].

A brief summary. HFPNs are a widely used graphical
modelling method for constructing different types of bio-
logical networks, which are usually employed for intra-
cellular modelling. HFPNs are in nature a quantitative
method, which means accurate kinetic parameters are
necessary to be obtained. Although HFPNs and Cell Illus-
trator are known to be a popular tool for constructing
and analysing hybrid models of biological systems, their
applications in fact are limited. The reasons for this may
be mainly 2-fold. One is the commercial licensing of the
Cell Illustrator tool, and the other is due to limitations of
the HFPN method, e.g. it only allows discrete transitions
to have fixed time delays. However, another HFPN tool
called VANESA [55] could further promote the applica-
tion of HFPNs due to its open-source release.

HSCMs are a group of methods belonging to the
HDCMs class, which usually work in multilevel or
multiscale scenarios. In these methods, the activities
inside each individual cell (lower levels) are usually
modelled as a continuous model, while the interactions
between individual cells and between cells and their
environment (upper levels) are modelled in a discrete

way. Therefore, HFPNs and HSCMs aim at different
biological modelling aspects. HSCMs also belong to
another biological modelling branch of considerable
size, spatial modelling, which mainly aim at multiscale
modelling. Please note that many multiscale models are
inherently hybrid, but this is not always the case (for a
discussion see, e.g. [56]). There has been already a lot
of work within this branch. Due to the space limit, we
will not elaborate on HSCMs in this paper. The interested
reader is referred to [41, 53, 54].

Hybrid stochastic/deterministic methods
(HSDMs)
To alleviate the computational burden of stochastic sim-
ulation, a class of hybrid simulation methods has been
proposed by combining stochastic and continuous sim-
ulation, with the latter being inherently deterministic.
Some molecular species are considered as continuous
quantities and the related reactions as deterministic pro-
cesses, occurring continuously; this model component is
described by ODEs. The molecular species represented as
discrete quantities undergo stochastic events occurring
in a discrete way. This class of hybrid simulation merges
exact stochastic and deterministic algorithms, approx-
imating stochasticity by considering the mean only. It
improves the computational efficiency, while avoiding
unacceptable result inaccuracy.

The hybrid simulation of HSDMs works as follows [10].
It first partitions the set of species into discrete and
continuous ones and the reactions into stochastic and
deterministic (continuous) ones. Then a system of ODEs
is constructed for the deterministic regime. The system
of ODEs is numerically integrated until a stochastic reac-
tion is to occur, which is then fired. By repeating this
procedure we obtain the simulation traces for the given
simulation time.

The original hybrid simulation algorithm developed for
this class was given in [9], discussing in detail how to
derive a hybrid simulation algorithm based on Gillespie’s
direct method. To improve the hybrid simulation effi-
ciency, much research has been undertaken (see, e.g. [57,
58]). For a review of many hybrid simulation algorithms
belonging to this class, see [59]. The implementation of
hybrid simulation is usually a tough task as it requires
to deal with ODE integration, stochastic simulation and
interplay of both. Therefore, efficient software tools are
necessary for aiding the development and execution of
hybrid models.

Currently, there are three popular tools available for
this class of hybrid simulation: COPASI [60], Virtual Cell
[61] and Snoopy’s hybrid simulator [8]. COPASI does not
provide graphical notations but uses tables to specify
reactions and species of biological systems. It offers three
hybrid algorithms: hybrid Runge–Kutta/Gibson–Bruck’s
SSA (inefficient), hybrid LSODA/Gibson–Bruck’s SSA and
hybrid RK-45/Gibson–Bruck’s SSA. In addition COPASI
supports SBML models. Virtual cell also provides a mod-
ule to construct and simulate hybrid models involving
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the RBM method and offers three hybrid algorithms:
hybrid Gibson–Bruck’s SSA algorithm/Euler–Maruyama,
hybrid Gibson–Bruck’s SSA algorithm/Milstein and
hybrid adaptive Gibson–Bruck’s SSA algorithm/Milstein.
Snoopy’s hybrid simulator exploits generalized hybrid
Petri nets to describe a hybrid system. It does not provide
a fixed combination of an ODE integrator and an SSA.
Instead, it supports a flexible combination of popular
stiff/non-stiff ODE solvers with Gillespie’s popular SSAs,
and achieves performance gains by differentiating
structural dependencies between the stochastic and
deterministic subnets [62]. Snoopy’s hybrid simulator
offers the hierarchical modelling capability and also
a parameterized language, coloured hybrid Petri nets
(CHPNs), to support the construction of large models.

All three tools are platform-independent and available
free of charge. In summary, these three tools offer similar
hybrid stochastic/deterministic simulation capabilities
for analysing biological networks, where we consider
events of lower frequency as stochastic ones and events
of high frequency as deterministic ones.

For example, the Eukaryotic cell cycle control system
contains some components (e.g. volume growth) which
are better to be represented as deterministic processes,
and also some reactions of low rates which are appropri-
ate to be represented as stochastic processes. To address
this issue, a hybrid SPN model was proposed [63], in
which all reactions affecting mRNAs are represented as
stochastic transitions, while such processes as volume
growth are modelled as continuous transitions. Another
similar hybrid model was also proposed for the Eukary-
otic cell cycle in [64], which was simulated using the
Haseltine and Rawlings approach given in [9]. Recently,
Ahmadian et al. [65] proposed another hybrid stochastic
model of the budding yeast cell cycle and simulated
their model with the hybrid simulation algorithm given
by [64]. Besides, some other hybrid models with HSDMs
can be found, e.g. the hybrid model of the Yeast cell
cycle based on multisite phosphorylation in [66], and
the hybrid model of calcium dynamics inside a dendritic
spine in [67].

A brief summary. In contrast to HDCMs in which each
discrete reaction is associated with a fixed delay, HSDMs
employ a random delay for each stochastic reaction and
SSAs to simulate the stochastic components. In sum-
mary, there are many biological networks that are appro-
priately represented as hybrid stochastic/deterministic
models due to their very nature. That is, this class of
HSDMs may have a big potential to be widely used for
the modelling of large biological networks.

Hybrid FBA-based methods (HFMs)
FBA has been successfully applied to study large-scale
metabolic networks; however the steady-state assump-
tion of this method makes it impossible to consider any
dynamic behaviour of species. Moreover, it cannot be eas-
ily used for modelling integrated networks consisting of
more than one type of networks such as both metabolic

and signalling networks, which often involve multiple
time scales.

To address these issues, many hybrid methods based
on FBA have been proposed. For example, regulatory flux
balance analysis (rFBA) [68] combines FBA with Boolean
rules, where FBA is used for modelling metabolic net-
works and Boolean rules for representing regulatory net-
works. Thus, rFBA achieves the integrated modelling of
both metabolic and regulatory networks in a qualitative
manner.

Integrated FBA (iFBA) [69] further allows the combina-
tion of rFBA with ODEs, where ODEs are used for mod-
elling specific subnetworks whose dynamic behaviour
plays an essential role and their kinetic parameters are
available. The simulation of iFBA takes the following
steps. First, specify the initial conditions (states) for all
the species. After that in parallel perform the follow-
ing steps: calculate the regulatory protein states and
gene and protein expression for the Boolean regulatory
subnetwork; and solve the ODEs for the ODE subnet-
work using an ODE numerical solver. Then determine
the metabolic flux constraints and compute the flux
distribution. Finally, update the conditions of all species.
By repeating these steps, the analysis is done at each
time step. The iFBA algorithm has been implemented
in Matlab, which can be accessed freely, but (obviously)
depends on Matlab. This algorithm has been used to
explore an iFBA model of Escherichia coli consisting of a
flux-balance-based central carbon metabolic network, a
transcriptional regulatory component with Boolean net-
works, and an ODE-based detailed component of carbo-
hydrate uptake control.

In addition, integrated dynamic FBA (idFBA) further
considers metabolic, regulatory and signalling networks
within one model [70] in a similar way to that of [69]. Both
iFBA and idFBA methods offer a hybrid qualitative/quan-
titative way for analysing integrated biological networks.

Fisher et al. [71] further proposed a more powerful
hybrid method called quasi steady state Petri nets
(QSSPN) by combining FBA with a class of extended PNs,
where FBA is used for modelling metabolic reactions
and PNs for representing other molecular interactions
such as signalling pathways and gene regulation. PNs,
extended with inhibitor and read arcs and enjoying
rich semantics such as deterministic firing in terms
of numerical integration of ODEs and stochastic firing
according to the Gillespie algorithm, greatly strengthen
the modelling capabilities of dynamic networks. The
simulation procedure of QSSPN is briefly described as
follows. First, set the states of all species and initialize
the simulation. Then set the bounds of fluxes in the
quasi-steady state flux part of the model according to
the state of the constraint places and further evaluate
the objective function specified by a particular objective
place with FBA. After that, deal with the PN part of the
model by firing the deterministic, stochastic, delayed and
scheduled transitions, respectively. Repeating these steps
produces the traces of the QSSPN simulation. QSSPN
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is implemented as a command-line tool by extending
the SurreyFBA software [72] and adding the simulation
algorithm described above; Mac OSX and Linux binaries
of the tool are offered for free. Besides, the PN models are
built with Snoopy [73]. QSSPN has been used to construct
a genome-scale metabolic network in human cell, using
bile acid homeostasis in human hepatocytes as a case
study. In this model PNs are used to represent different
classes of molecular interactions. QSSPN as described
in [71] is able to simulate genome-scale molecular
interaction networks involving all classes of molecular
interactions.

Later, MUFINS [74] was presented extending the QSSPN
method and adding a GUI, which facilitates the construc-
tion and analysis of hybrid FBA models. MUFINS supports
the integration of stochastic simulation, deterministic
ODE simulation, parameter-free simulation [75] and FBA
in a single software platform with GUI, offering multi-
formalism functionality for modelling multiscale bio-
logical systems. Likewise, MUFINS is a free open-source
software available under GNU GPL licence.

In a further development, Simone et al. [76] proposed
another hybrid modelling framework by integrating FBA
and PNs, in which PNs are used to model the dynamics
of a system with the GreatSPN tool. The resulting model
is then automatically transformed into a corresponding
ODEs. The subsequent simulation runs on the hybrid FBA
and ODEs model. A pancreatic ductal adenocarcinoma
model has been developed to illustrate the approach.

A brief summary. Hybrid FBA-based methods make
it possible to construct and analyse large-scale biolog-
ical networks, which have gained increasing attentions
these years. So far several such methods have proposed,
some of them are discussed above. iFBA is an extended
version of rFBA by modelling dynamic behaviour with
ODEs, achieving a simple integration of metabolic, regu-
latory and signalling networks, but only allows for deter-
ministic semantics. QSSPN further extends the hybrid
modelling capability with the powerful PN formalism,
allowing for the modelling of any kind of molecular inter-
actions and both deterministic and stochastic simulation
of dynamic behaviour. Moreover, MUFINS offers a GUI
platform. Besides, note that rFBA is still a qualitative
approach, but iFBA, idFBA and QSSPN contain both qual-
itative and quantitative components.

Hybrid logic/quantitative methods (HLQMs)
Modelling of biological systems often comes with
challenges due to the lack of kinetic data or insufficient
understanding of their internal mechanisms, which
motivates researchers to investigate the use of qualita-
tive logic methods, such as Boolean networks and fuzzy
logic. By combining quantitative and logic methods, a
new type of hybrid methods is obtained, which we call
HLQMs. HLQMs model different components of a system
with Boolean networks or fuzzy logic, complemented
by a quantitative method, each component taking an
appropriate formalism.

In this category, the integration of Boolean logic and
ODEs consists of a simple hybrid method, which we call
HBO. For example, Ryll et al. [77] presented a hybrid
method linking Boolean models of signal transduction as
well as gene regulation to ODE models of metabolic pro-
cesses in their model of hormonal regulation of glucose
homeostasis. They achieved the integration by convert-
ing the Boolean models into a set of logic-based ODEs and
thus experimental data are needed for calibrating the
newly added kinetic parameters due to the conversion.

Singhania et al. [78] gave a hybrid model of mam-
malian cell cycle regulation, in which Boolean logic is
used to represent the activities of the regulatory proteins,
while continuous differential equations describe cyclin
levels. They simulate their model in two steps: creating
complete ‘life histories’ for cells and finding the DNA and
cyclin levels of each cell. During each step, they resolve
the piecewise differential equations and compute the
state transition for the Boolean model in a stochastic way.

Selvaggio et al. [79] proposed an HBO method for
hierarchical models with different abstraction levels, in
which they use ODEs to represent the bottom layer in
a fine-grained manner and Boolean logic to represent
the regulative interactions of higher layers in a coarse-
grained fashion. They also applied their approach to
simulating the pattern development of the Delta-Notch
pathway. The hybrid simulation algorithm works as
follows. They first threshold the internal variable V
of all the modules and generate a logic matrix. They
then apply the logical rules on the logic matrix and
obtain a dependent input of each module. By feeding
the dependent and independent inputs, each module
is integrated until the internal variable V crosses the
quantization threshold. This process will be repeated
until the break condition is met.

Compared with [77], the approaches of both [78] and
[79] do not require recasting to a common description
of ODEs and thus re-parameterization. These approaches
are a good attempt to combine the pros of different mod-
elling formalisms by overcoming the lack of quantitative
information with a qualitative description that models
activation and inhibition processes.

Another type of HLQMs is fuzzy hybrid functional
Petri nets (FHFPNs) proposed by Windhager [80] based
on HFPNs [5], in which an arc of an HFPN model can be
associated with a fuzzy inference system (FIS). Thus, an
FHFPN model consists of two parts: the FIS one and the
HFPN model. That is, if a component of the system to
be studied lacks measurement data, it can be modelled
with FISs. Another hybrid method in this classification is
the fuzzy ODE approach [81], in which the quantitative
method takes the ODE formalism. Besides, fuzzy contin-
uous Petri nets (FCPNs) [82, 83] have also been proposed,
which are similar to the fuzzy ODE approach, where
FCPNs are used to graphically describe a set of ODEs.

All these three approaches are similar in modelling a
biological system by dividing a system into two parts:
uncertain and certain, and thus modelling them using
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FISs and quantitative methods, respectively. The biggest
merit of this class of methods is that they facilitate
the integration of expert knowledge with quantitative
models.

The simulation of FHFPNs or FCPNs takes a similar
idea. (1) Initialize the simulation. (2) At each time step,
perform the following two steps in parallel: numerically
solving the quantitative part (usually a set of ODEs) of
the model, and performing reasoning of each FIS in the
model. (3) Update the concentration of each species by
considering both computation steps. (4) Repeat the steps
(2) and (3) until the simulation reaches the end time. For
the construction and simulation of large HLQM models,
Liu et al. developed a platform-independent FCPN tool
which comes with a detailed user manual and some
examples [83].

Windhager [80] discussed the modelling of common
network motifs, such as feed-forward loop, negative feed-
back oscillator, positive feedback toggle switch and pos-
itive feedback one-way switch, using FHFPNs. He also
applied FHFPNs to the modelling of green fluorescent
protein (GFP) expression in a cell-free in vitro transcrip-
tion/translation system. Bordon et al. used the fuzzy ODE
approach to model a three-gene repressilator, where they
represented the transcription rate of mRNA as an FIS
and the other model parts as ODEs [81]. Liu et al. [83]
modelled the Mercaptopurine metabolic pathway using
FCPNs and used fuzzy NNs to learn fuzzy parameters of
the model. These examples show that HLQMs are good at
integrating experts’ knowledge with measurement data,
to overcome to some degree the uncertain modelling
challenges.

Besides these two aforementioned types of HLQMs, Liu
et al. [7] proposed SPNs and CPNs with fuzzy kinetic
parameters, where each kinetic parameter is either a
crisp value or a fuzzy number if this parameter cannot
be precisely estimated. To tackle even more complicated
biological scenarios, Assaf et al. [84, 85] further proposed
fuzzy hybrid PNs, and the coloured counterparts for these
three fuzzy quantitative PN classes.

A brief summary. Currently, integrated modelling of
biological systems is faced with the uncertainties due
to the lack of kinetic data or insufficient knowledge
about the mechanisms of biological systems. In this case,
HLQMs offer a flexible way to integrate both quantitative
data and qualitative knowledge within one model.

Spatial hybrid methods (SHMs)
Species perform their functions in space. Integrated
modelling may have to consider the impact of space
if there are diffusion or mobility of substrates. Current
SHMs usually mean a combination of spatial stochastic
and deterministic methods, which have been supported
by several tools that will be discussed below.

SmartCell [86] developed its own graphical notation
for constructing biological models, and offers an SHM
by combining the deterministic ODE method with the
stochastic next reaction/next subvolume method. A

model built by SmartCell runs on a cell or part of a
cell, being divided into a group of voxels. Three kinds
of species movements in the cell can be defined: the
diffusion inside a compartment, the diffusion between
two compartments and the active transport between two
compartments.

Virtual cell [87] employs a rule-based formalism to rep-
resent hybrid models and becomes an SHM [88] by com-
bining the deterministic PDE method, solved by a finite
volume method, and the stochastic method based on
particles, solved by Smoldyn [89], a particle-based fixed
time step Monte Carlo package. Virtual cell supports
several ways, e.g. equation, image or mesh, to define a 1D,
2D or 3D geometry. This hybrid method has been applied
to simulating a model of spontaneous emergence of cell
polarity [88].

Besides, Snoopy uses CHPNs [8] to implement spatial
hybrid modelling by combining CPNs and SPNs running
on a lattice that is divided into 1D, 2D or 3D grids. This
method has been used for constructing a dendritic spine
model describing calcium dynamics [67], where the dif-
fusion reactions are treated deterministically, and all
others stochastically.

A brief summary. The three SHMs given above are
different from each other in terms of model represen-
tation and simulation algorithms, which can be chosen
in suitable scenarios. However, neither of these SHMs
has obtained wide-spread use. The main reason could be
the hard to obtain kinetic parameters, particularly in the
spatial context. However, it will have to play a crucial role
in the future integrated modelling of biological systems.

More complicated hybrid methods
In a cell, there exist a variety of molecular processes, such
as molecular binding, enzymatic catalysis and molecular
diffusion. To represent and analyse these physical and
chemical processes, many simulation algorithms have
been proposed. In order to consider multiple molecular
processes in one model, usually more than one method
has to be adopted.

To address this issue, Takahashi et al. [90] proposed
a multi-algorithm, multi-timescale method for cell
simulation, which depends on the design of a powerful
meta-algorithm (which we call Takahashi’s method).
The meta-algorithm contains three components: a
data structure for model definition and execution, a
driver algorithm that describes how interactions of sub-
modules are handled and an algorithm for ODE integra-
tion. In their algorithm, a model is defined as a vector of
state variables and a set of Steppers. A Stepper represents
a computational unit of a model. According to Zeigler’s
simulation framework [91], they defined three Stepper
subclasses: DiscreteEventStepper, DiscreteTimeStepper
and DifferentialStepper. They adopted a variant of the
Runge–Kutta algorithm for ODE integration and the
next reaction method for stochastic simulation. The
simulation algorithm basically works as follows. (1)
Initialize the simulator and obtain the dependencies
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of each Stepper. (2) Pick the Stepper Si that has the
minimum scheduled time and update its local time. (3)
Integrate each continuous variable. (4) Call transition
functions, if Si is a discrete Stepper. (5) Si notifies the
change of the variables to other Steppers. (6) Repeat the
procedure until the simulation termination condition is
reached. This algorithm has been implemented with the
C++ language as part of E-Cell.

This meta-algorithm can be used to simulate a cell
with different continuous and SSAs. The advantage of the
meta-algorithm is that it uses Zeigler’s discrete and con-
tinuous simulation framework. Thus, it can efficiently
integrate different simulation algorithms in one model
with little intrusive modification to the algorithms them-
selves. More importantly, other algorithms can be easily
added to this meta-algorithm.

Karr et al. [92] developed in 2012 the first whole-cell
computational model of the life cycle of the human
pathogen Mycoplasma genitalium, which consists of
all of its molecular components and their interactions
(which we call Karr’s model). In their work, they
integrated 28 submodels into a unified model, each
submodel adopting a specific modelling formalism
(ODEs, FBA or Boolean logic) that may be different from
others. In order to connect these submodels and simulate
them as a whole, they made the following assumption:
all the submodels are approximately independent on a
small time scale less than 1 s. The simulation procedure
they adopted is briefly described as follows. (1) Initialize
the state variables of the cell. (2) At each time step,
perform simulation independently for each submodel
with the values of the state variables at the previous
time step. (3) Update the values of the state variables of
the cell. (4) Repeat these steps until either the cell divides
or the simulation termination time is reached.

The distinguishing feature of the model is that it con-
siders all the molecular components and their interac-
tions of a cell and several modelling formalisms are
combined to achieve this purpose. This provides a way
to simulate a very complicated hybrid model. However,
this approach has several drawbacks. Each submodel
and its simulation algorithm was hardcoded together
and implemented with Matlab. Thus, any modification of
the model representation could affect the corresponding
simulation algorithm. Moreover, such a model can hardly
be understood and manipulated by any biologist.

A brief summary. The two approaches described above
were proposed to model complicated biochemical pro-
cesses inside a cell. The approach given by Takahashi et
al. is a general method which can be applied to model
any cell. In contrast, the second approach is only specific
to the human pathogen Mycoplasma genitalium, which
cannot be easily extended to model other types of cells.

Hybrid methods incorporating AI models
As mentioned above, the purpose of classical theory-
based modelling is totally different from that of data-
driven modelling. So far, AI techniques are usually

employed to complement theory-based biological mod-
elling, e.g. for selecting molecular features which are
used as inputs of FBA models [93], aiding to generate
constraint-based models by determining more precise
flux boundaries [94], and analysing simulation results
with AI techniques [94]. However, this kind of integration
does not belong to the focus of our review of hybrid
modelling methods, where we expect to see at least
two modelling formalisms, each representing a part of
a system.

At present, there are only a few genuine hybrid models,
which actually combine theory-based modelling and AI
techniques. For example, Khan et al. [46] presented a
hybrid model by combining recurrent NNs and S-systems
for the reconstruction of gene regulatory networks from
pseudo-time-series gene expression data of Escherichia
coli. Gerlee et al. [95] proposed a hybrid cellular automa-
ton model of clonal evolution in cancer, in which the deci-
sion mechanism that determines the behaviour of a cell
based on the cell genotype and its micro-environment is
modelled with an artificial feed-forward NN. They also
gave a detailed analysis and simulation procedure to
explore the impact of the environment on the growth
dynamics of the tumour. These are very early attempts
to incorporate AI techniques into dynamic modelling of
biological systems.

A brief summary. So far AI techniques are basically
applied to aid the construction and analysis of biological
models in the systems biology field by taking advantage
of the special abilities of AI, e.g. classification, regres-
sion and clustering. This complementary power is very
important for biological modelling by overcoming the
disadvantages of classical theory-based modelling meth-
ods. However, strictly speaking, this integration is not
within our hybrid definition. The genuine hybrid models
combining theory-based modelling and AI techniques
are very few by now, which is probably due to the nature
of theory-based modelling and data-driven modelling.
How to combine these two classes of methods to form
a complementary modelling approach was discussed in
detail in [43], which could be considered for the construc-
tion of biological models in the future. Besides, Camacho
et al. [96] discussed in detail opportunities and challenges
at the intersection of machine learning and network
biology, which could also help to widen the application
of machine learning in systems biology.

Comparison of the hybrid methods
We have reviewed popular hybrid modelling methods
that were developed for systems biology, and provide
a comparison in Table 2. These hybrid methods were
proposed for different purposes and biological issues.
Almost all hybrid methods only cover two modelling
formalisms, each addressing one particular aspect of
biological modelling, but not all aspects. Thus, they
are hardly capable of constructing more complicated
integrated models. Most hybrid methods contain two
quantitative modelling formalisms, and thus are still
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Table 2. A comparison of the hybrid methods discussed in Sections 3.1–3.7.

Category Hybrid Single methods Type Tool Website
method contained

Hybrid discrete/ Hybrid functional Petri
nets

TPNs (Discrete)+CPNs
(ODEs)

QT Cell Illustrator http://www.cellillustrator.com

continuous method Hybrid
spatial/continuous
methods

e.g. CA+ODEs or PDEs QT See Table 1 of [54] for a list of
tools.

Hybrid stochastic/ Hybrid stochastic/ Table (SSAs+ODEs) QT COPASI http://www.copasi.org
deterministic method deterministic method Rule-based (SSAs+ODEs) QT Virtual Cell https://vcell.org/

CPNs (ODEs)+SPNs (SSAs) QT Snoopy https://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/
Snoopy

Hybrid FBA-based Regulatory FBA FBA+Boolean rules QL None None
method Integrated FBA FBA+Boolean rules+ODEs QL/QT Matlab codes https://simtk.org/projects/ifba

Quasi steady state Petri
nets

FBA+CPNs (ODEs)+SPNs
(SSAs)

QT QSSPN tool http://sysbio3.fhms.surrey.ac.
uk/qsspn/

MUFINS http://sysbio3.fhms.surrey.ac.
uk/mufins/

Hybrid logic/ Hybrid Boolean
logic/ODE method

ODEs+Boolean logic QL/QT Pseudocode See [79].

quantitative method Fuzzy hybrid functional
Petri nets

CPNs (ODEs)+fuzzy logic QL/QT None None

Fuzzy continuous Petri
nets

CPNs (ODEs)+fuzzy logic QL/QT FCPN tool https://github.com/liufei2016/
FCPN

Spatial hybrid method SmartCell’s method Spatial SSAs+ODEs QT SmartCell http://software.crg.es/
smartcell/

Virtual Cell’s method Particle simulation+PDEs QT VCell https://vcell.org/
Snoop’s method Spatial SSAs+ODEs QT Snoopy https://www-dssz.informatik.

tu-cottbus.de/DSSZ/Software/
Snoopy

Others Takahashi’s method ODEs+next reaction
method

QT E-Cell http://www.e-cell.org/

Karr’s model ODEs+FBA+Boolean logic
etc.

QL/QT Matlab codes https://simtk.org/projects/
wholecell

Hybrid methods Hybrid neural
network/ODE method

NNs+ODEs QT None None

incorporating AI models

QL and QT refer to qualitative and quantitative, respectively. None means not found.

quantitative methods, which means they are only
applicable when kinetic data are available. Therefore,
these quantitative hybrid methods cannot address
the modelling issue that many components are not
mechanistically well understood and lack measurement
data. On the other hand, this issue could be addressed by
hybrid methods combining qualitative and quantitative
ones, e,g. those integrating Boolean rules or fuzzy logic.
However, current applications of these hybrid methods
are still very limited. In order to address all these issues,
hybrid methods have to be greatly enhanced by allowing
more modelling formalisms in one model, as, e.g. Karr et
al. did in [92], and more sophisticated modelling tools
need to be developed. Besides, AI techniques should
be extensively explored w.r.t. their power to support
the development of hybrid models by making use of
their specific advantages, e.g. selecting the principle
factors of models, estimating kinetic parameter values
or narrowing the boundaries of parameter values.

Discussion
Integrated modelling of biological systems is required in
many scenarios. In the systems biology field, compre-
hensive models for a cell, an organ or an organism [97]

that incorporate all the relevant major processes have to
be constructed by utilizing diverse and different sources
of data as well as multiple modelling formalisms. This
enables researcher to obtain a deeper understanding
of the system dynamics, to identify limits of current
knowledge and to elucidate emergent behaviour across
multiple networks. In the synthetic biology field, the
creation of a new biological system requires the assembly
of different existing components. In order to support the
analysis of the behaviour of the new system, a model
needs to be constructed by integrating the models which
describe the various components [23].

In the following text, we discuss how to enhance hybrid
modelling research as a next step to more powerfully
support the integrated modelling of biological systems.

A flexible multi-formalism modelling framework and
powerful tool is indispensable. The next generation of
hybrid biological models has to incorporate more than
two formalisms, developed collaboratively by a group of
people, just like in other fields such as manufacturing. In
order to support different (experienced or not) modellers
to adopt appropriate modelling formalisms for distinct
components of a biological system, a flexible multi-
formalism modelling framework and a corresponding
powerful tool have to be developed, which at least
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https://vcell.org/
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
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https://github.com/liufei2016/FCPN
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enjoy the following features: (1) containing a number of
popular modelling formalisms, e.g. those given in the
second section; (2) offering friendly GUIs for model
construction; (3) supporting the conversion among
different modelling formalisms.

Modular development of hybrid biological models
is becoming a necessity. To support the collaborative
development of large hybrid models, the modulariza-
tion of components will become necessary. This comes
with several benefits. For example, it facilitates the man-
agement of components, e.g. easily adding new compo-
nents, and deleting, updating or reusing existing com-
ponents. With the rapid development of hybrid mod-
elling techniques, reusability will become more and more
imperative just like in many other engineering and soft-
ware application areas [98, 99]. Moreover, each modular
component can be developed independently and easily
exploit distinct simulation algorithms.

A standard model format for hybrid modelling of
biological systems is essential. Currently, SBML [100] is
the widely used model format in the systems biology
area. However, it does not support hybrid modelling
comprising multiple popular modelling formalisms.
Therefore, a new standard model format for hybrid
modelling is necessary, which should be capable of
addressing the following issues: (1) representing models
developed with currently popular modelling formalisms,
e.g. those given above, (2) representing multiple scales
in time and space and (3) facilitating the information
exchange among different modelling formalisms. In
addition a unified exchange format among different
modelling formalisms may have to be defined.

A powerful simulation engine that solves different
types of modelling formalisms is needed. In order to
support larger hybrid models, many different modelling
formalisms have to be integrated into a single frame-
work. To simulate such large models, a flexible and pow-
erful simulation engine is necessary, which should be
able to solve different types of models built with distinct
formalisms. Such a simulation engine should enjoy the
following features: (1) offering the simulation of models
with popular modelling formalisms, (2) offering mul-
tiple time management mechanisms such as discrete
event, discrete time and continuous time, (3) supporting a
model to adopt different simulation algorithms without
modifying the model representation and (4) supporting
high-performance parallel simulation of hybrid models
with, e.g. message passing interface [101] or GPU tech-
nologies.

Powerful analysis techniques for hybrid models
should be developed. A hybrid model constructed with
multiple modelling formalism usually cannot be directly
analysed by those techniques applicable for each indi-
vidual formalism. For example, model checking usually
considers discrete transition systems like qualitative PNs.
One strategy is to reuse the techniques of each formalism
for the submodel developed with that formalism and
then to analyse the interaction between submodels.

However, this strategy cannot analyse the emergent
behaviour of all the submodels as a whole. On the other
hand, simulative model checking [102] is a promising
technique, which could be used to analyse simulation
traces from hybrid models after the simulation has been
performed. However, this effectively performs a black-
box analysis. In order to assure the correctness of the
hybrid model, more powerful analysis techniques have
to be developed, which should pay attention to analysing
the interactions among submodels and the behaviour of
the whole model.

Key Points

• Hybrid modelling methods are crucial to achieve inte-
grated modelling of biological systems with the aim to
construct comprehensive models of a biological system
by considering its main biochemical processes.

• This paper reviews currently popular hybrid modelling
methods, developed for systems biology, mainly reveal-
ing why they are proposed, how they are formed from
single modelling formalisms, and how to simulate them.

• The paper concludes with identifying future research
requirements regarding hybrid approaches for promot-
ing integrated modelling of biological systems.
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CBM: constraint-based modelling
CHPNs: coloured hybrid Petri nets
ColPNs: coloured Petri nets
CPNs: continuous Petri nets
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FHFPNs: fuzzy hybrid functional Petri nets
FIS: fuzzy inference system
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HSDM: hybrid stochastic/deterministic method
iFBA: integrated FBA
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