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Abstract

Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the
inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies
in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the
identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs
are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods
complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications
of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening
methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based
methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized.
In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are
introduced. Finally, the challenges and future work for SL prediction are discussed.

Keywords: synthetic lethality, computational methods, deep learning, machine learning

Introduction
Synthetic lethality (SL) is originally defined as the setting
in which abnormal expression of either of two genes
alone has little effect on cell viability but abnormalities
in the expression of both genes concurrently lead to
cell death [1]. Basically, ‘SL’ can be categorized into two
classes: (i) SL, which occurs between genes with loss-of-
function mutations (gene A) and their partner gene (gene
B). (ii) Synthetic dosage lethality (SDL), which occurs
between the overexpressed gene (gene A) and their part-
ner gene (gene B) [2] (Figure 1). In cancer, the application
of SL has the following significances: (i) SL provides an

approach for targeted therapy. Abnormalities of gene A
can be regarded as cancer-specific biomarkers and phar-
macological inhibition of gene B leads to the selective
killing of cancer cells [3]. (ii) SL expands the space of drug-
gable targets. SL points the way to indirect targeting the
genes that are not classically ‘druggable,’ owing to their
molecular structure or because they are loss of function
mutations [1, 4]. poly(ADP-ribose) polymerase inhibitor
(PARPi) is the first successful clinical example based on
SL [1, 5–7] and SL-based therapy has been regarded as
one of the most effective anticancer treatments in the
last decade [8]. The encouraging results of PARPi led to
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Figure 1. The concept of SL and SDL.

an increasing amount of drug candidates focusing on SL
interactions. We list some recent clinical trials related to
SL interactions in Table 1 [8, 9].

Despite the attractive concept of SL-based therapeu-
tics, only PARPi has progressed to the clinic so far. A major
hurdle might be the identification of clinically relevant,
robust SL pairs [10]. Identifying potential SL gene
pairs is mainly achieved by two methods: laboratory-
based methods and computational-based methods.
The most common laboratory-based methods include
yeast screening, drug screening, RNA interference
(RNAi) screening, clustered regularly interspaced short
palindromic repeat (CRISPR) screening [8]. The limitation
of yeast screening is that only a small portion of yeast
genes (∼2000) have human orthologs [11], which limits
the potential of this method. Drug screening tests drugs
on various cell lines with specific mutations to identify
SL gene pairs. SL gene pairs identified by drug screening
would be easier to achieve clinical translation. However,
the effect and specificity of drug inhibition tend to be
lower than gene knockdown [8] and SL–gene pairs are
limited in druggable gene targets. With the advent of
RNAi and CRISPR/Cas9 technology, it is now possible to
screen human cells for SL gene pairs. However, due to
a large number of gene combinations (∼200 million in
a mammalian cell) [12], it is impractical to screen all
potential SL pairs by these laboratory-based methods.

To overcome the abovementioned disadvantages, a
variety of computational methods have been proposed,
which can reduce the search space of SL gene pairs.
These methods can be divided into four categories:
statistics-based methods, network-based methods,
classic machine learning-based methods and deep
learning-based methods. Statistics-based methods are

based on certain hypotheses to predict SL gene pairs.
For instance, Jerby-Arnon et al. [13] developed a data-
driven model called data mining synthetic lethality
identification pipeline (DAISY) for SL prediction based on
the assumption that SL genes tend to be co-expressed but
seldom coinactivation. Network-based methods identify
SL gene pairs through constructing protein–protein
interaction (PPI) [14–17] network, signaling network
[18, 19] or metabolism network [20–22]. With the rapid
development of machine learning, various algorithms
have been applied for SL prediction, including random
forest (RF) [23–27], matrix factorization [28–30] and so
on. Deep learning-based methods have recently emerged
as useful methods to identify SL gene pairs, especially
graph neural network (GNN) [31–33].

The rest of this review is organized as follows. The
next section introduces SL-related databases, including
label databases, feature databases and other related
databases. The third section summarizes the compu-
tational methods for SL prediction. After that, negative
sampling methods applied in these computational
methods are explained in the fourth section. The
subsequent section introduces available tools to predict
SL interactions. Finally, challenges and future work are
discussed in the last section.

SL-related databases
Due to the development of high-throughput screening
technologies, a large amount of SL data have been iden-
tified. Many databases are developed to gather SL pairs,
which are listed in Table 2. Among these databases, Syn-
LethDB [34] is a unique comprehensive database for
SL. Other databases are based on yeast screening, RNAi
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Table 1. Some recent clinical trials related to SL (https://clinicaltrials.gov/ct2/home). All of the listed agents are inhibitors

Agent Target gene Mutate/overex-
pressed
gene

Cancer type Phase and
ClinicalTrials.gov
identifier

First posted

Olaparib PARP BRCA1/2 Platinum sensitive relapsed ovarian
cancer and metastatic breast cancer

IV, NCT04330040 1 April 2020

Niraparib Advanced pancreatic adenocarcinoma II, NCT03601923 26 July 2018
Rucaparib Metastatic and recurrent endometrial

cancer
II, NCT03617679 6 August 2018

Talazoparib Leukemia I, NCT03974217 4 June 2019
AZD6738 ATR TP53 Recurrent, persistent or progressive

myelodysplastic syndrome (MDS) or
chronic myelomonocytic leukemia

I, NCT03770429 10 December 2018

BAY1895344 ATR ATM Advanced solid tumors and
lymphomas (ATM loss and/or ATM
deleterious mutations will be
included)

I, NCT03188965 16 June 2017

SRA737 CHK1 CCNE1, TP53, BRCA1,
BRCA2, MYC, RAD50

Advanced solid tumors or
Non-Hodgkin’s Lymphoma

I and II,
NCT02797964

14 June 2016

Prexasertib
(LY2606368)

BRCA BRCA1/2 mutation associated breast
or ovarian cancer, triple-negative
breast cancer, and high grade serous
ovarian cancer

II, NCT02203513 30 June 2014

MYC, CCNE1, Rb,
FBXW7, BRCA1,
BRCA2, PALB2,
RAD51C, RAD51D,
ATR, ATM, CHK2

Advanced solid tumors II, NCT02873975 22 August 2016

Adavosertib
(AZD1775)

WEE1 TP53 Uterine Serous Carcinoma II, NCT04590248 19 October 2020

SETD2 Advanced/metastatic solid tumors II, NCT03284385 15 September
2017

BRCA Advanced refractory
cancers/lym-
phomas/multiple
myeloma

II, NCT04439227 19 June 2020

CYC140 PLK1 KRAS Advanced leukemias or
Myelodysplastic syndromes

I, NCT03884829 21 March 2019

BI 6727 Advanced, nonresectable and/or
metastatic solid tumor

I, NCT01145885 17 June 2010

GSK461364 Advanced solid tumor or
Non-Hodgkin’s lymphoma that has
relapsed or is refractory to standard
therapies

I, NCT00536835 28 September
2007

Sotorasib (AMG
510)

CD274/PD-L1 Stage IV non-small cell lung cancer II, NCT04933695 22 June 2021

AZD2014 4EBP1 MYC High-risk prostate cancer I, NCT02064608 17 February 2014
CC-115 Advanced solid tumors, and

hematologic malignancies
I, NCT01353625 13 May 2011

AZD4573 CDK9 Relapsed/refractory hematological
malignancies

I, NCT03263637 28 August 2017

TP-1287 Advanced solid tumors Sarcoma I, NCT03604783 27 July 2018
P276-00 Stage III (unresectable) or stage IV

metastatic melanoma
II, NCT00835419 3 February 2009

screening, CRISPR screening, computational prediction
and drug screening.

In addition, we list 12 commonly used feature
databases to be fed into computational models in
Table 3. These databases comprise genes’ or proteins’
sequence property (GenBank, Unitprot), functional prop-
erty [gene ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), molecular signatures database
(MSigDB), Comparative Toxicogenomics Database (CTD),

LINCS, PhyloGene and comprehensive resource of mam-
malian protein complexes (CORUM)] and topological
property in PPI (Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING), Human Protein Reference
Database (HPRD) and Human Integrated Protein-Protein
Interaction Reference (HIPPIE)).

Other databases provide data of large-scale single-
gene knockout, cancer genomics and mutations and
orthology analysis. SL interactions can be identified from

https://clinicaltrials.gov/ct2/home
http://ClinicalTrials.gov
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Table 2. Statistics of label databases reviewed in this paper

Database Methods Description Species and No. of SL pairs Website Latest update

SynLethDB V2
[34]

DAISY, text mining,
large-scale screening
techniques

Comprehensive database for
SL

H. sapiens: 35943 S. cerevisiae:
14000 D. melanogaster: 439 M.
musculus: 381 C. elegans: 105

http://synlethdb.sist.
shanghaitech.edu.cn/v2/#/

2020

BioGRID V
4.4.201 [35–37]

Experiments and
literature mining

Genetic interactions from all
major model organisms and
humans

Major model organisms and
humans

http://www.thebiogrid.org 1 September
2021

Syn-lethality
[38]

Manually curated SL
pairs for human
cancer from the
literatures (113) SL
pairs for human
cancer inferred from
yeast (1114)

Integrates experimentally
discovered and verified
human SL gene pairs into a
network

H. sapiens: 1227 http://www.ntu.edu.sg/
home/zhengjie/software/Syn-
Lethality/ (NTU staff’s
personal web pages)

GenomeRNAi
[39]

RNAi Genetic interactions detected
by GenomeRNAi

H. sapiens Drosophila http://www.genomernai.org/ 27 November
2017

DAISY [13] Computational
prediction

Statistically inferring SL pairs H. sapiens: 2816 http://www.cs.tau.ac.il/~
livnatje/SL_network.zip

The Cellmap [40] Yeast screening Database of genetic
interaction for S. cerevisiae

S. cerevisiae: ∼10 000 (GI
score < −0.35)

http://thecellmap.org May 2016

Laufer et al.
study [42]

RNAi Combinatorial RNAi and
high-throughput imaging

Human cell lines: HCT116
HeLa

http://www.bioconductor.org/
packages/2.12/data/
experiment/html/HD2013SGI.
html

Vizeacoumar
et al. study [43]

A negative genetic interaction
map in isogenic cancer cell
lines

6 isogenic cancer cell lines
(KRAS, PTTG1, PTEN, MUS81,
BLM)

Support Information http://
kimLab1.ccbr.utoronto.ca/
projects/cancer_essential/ or
http://moffatlab.ccbr.
utoronto.ca/resources.php

Shen et al. study
[44]

CRISPR screening Combinatorial CRISPR
screening

Human cell lines HeLa: 52
A549: 57293 T: 59

293 T - http://www.ndexbio.
org/#/newNetwork/199f9bb1-
c3eb-11e6-8e29-06603eb7f303
A549 - http://www.ndexbio.
org/#/newNetwork/ec8bdae3-
c3c9-11e6-8e29-06603eb7
f303; HeLa - http://www.
ndexbio.org/#/newNetwork/
e50ee3c2-c3d4-11e6-8
e29-06603eb7f303.

GImap [12] Combinatorial CRISPR
screening

Human cell lines Jurkat:
454 K562:1678

https://data.mendeley.com/
datasets/rdzk59n6j4/1

22 July 2018

Najm et al. study
[45]

Combinatorial CRISPR
screening

Human cell lines A375, HT29,
OVCAR8, 786O, A549, Meljuso

Zhao et al. study
[46]

Metabolic gene networks
through combinatorial
CRISPR screening

Human cell lines A549 HeLa Support information

GEMINI [47] Computational
prediction

A variational Bayesian
approach to identify genetic
interactions from
combinatorial CRISPR
screening

Sensitive lethal interactions
and sensitive recovery
interactions for four
combinatorial CRISPR studies

Support information

Wan et al. study
[41]

Application of GEMINI to
identify genetic interactions

Human cell lines A549: 126
A375: 18 HT29: 18

https://github.com/
FangpingWan/EXP2SL/tree/
master/GEMINI

Slorth [25] Predict SL pairs in a RF
classifier

H. sapiens: 518636 S. cerevisiae:
372560 D. melanogaster:
93002 S. pombe: 52594 C.
elegans: 56908

http://slorth.biochem.sussex.
ac.uk

Jun, 2019

CGIdb [48] Identify potential SL pairs for
specific cancer types from
TCGA and functional screen
data

H. sapiens: 10 637 http://www.medsysbio.org/
CGIdb

2019

Srivas et al.
study [49]

Drug screening Evaluate thousands of
TSG-drug combinations

Yeast: 1420 HeLa: 127 Support information 2016

Note: BioGRID, Biological General Repository for Interaction Datasets; DAISY, Data mining SL identification pipeline; TCGA, The Cancer Genome Atlas; TSG,
tumor suppressor genes; H. sapiens, Homo sapiens; S. cerevisiae, Saccharomyces cerevisiae; D. melanogaster, Drosophila melanogaster; M. musculus, Mus musculus; C.
elegans, Caenorhabditis elegans; S. pombe, Schizosaccharomyces pombe.

http://synlethdb.sist.shanghaitech.edu.cn/v2/
http://synlethdb.sist.shanghaitech.edu.cn/v2/
http://www.thebiogrid.org
http://www.ntu.edu.sg/home/zhengjie/software/Syn-Lethality/
http://www.ntu.edu.sg/home/zhengjie/software/Syn-Lethality/
http://www.ntu.edu.sg/home/zhengjie/software/Syn-Lethality/
http://www.genomernai.org/
http://www.cs.tau.ac.il/~livnatje/SL_network.zip
http://www.cs.tau.ac.il/~livnatje/SL_network.zip
http://thecellmap.org
http://www.bioconductor.org/packages/2.12/data/experiment/html/HD2013SGI.html
http://www.bioconductor.org/packages/2.12/data/experiment/html/HD2013SGI.html
http://www.bioconductor.org/packages/2.12/data/experiment/html/HD2013SGI.html
http://www.bioconductor.org/packages/2.12/data/experiment/html/HD2013SGI.html
http://kimLab1.ccbr.utoronto.ca/projects/cancer_essential/
http://kimLab1.ccbr.utoronto.ca/projects/cancer_essential/
http://kimLab1.ccbr.utoronto.ca/projects/cancer_essential/
http://moffatlab.ccbr.utoronto.ca/resources.php
http://moffatlab.ccbr.utoronto.ca/resources.php
http://www.ndexbio.org/#/newNetwork/199f9bb1-c3eb-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/199f9bb1-c3eb-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/199f9bb1-c3eb-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/ec8bdae3-c3c9-11e6-8e29-06603eb7f303;
http://www.ndexbio.org/#/newNetwork/ec8bdae3-c3c9-11e6-8e29-06603eb7f303;
http://www.ndexbio.org/#/newNetwork/ec8bdae3-c3c9-11e6-8e29-06603eb7f303;
http://www.ndexbio.org/#/newNetwork/ec8bdae3-c3c9-11e6-8e29-06603eb7f303;
http://www.ndexbio.org/#/newNetwork/e50ee3c2-c3d4-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/e50ee3c2-c3d4-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/e50ee3c2-c3d4-11e6-8e29-06603eb7f303
http://www.ndexbio.org/#/newNetwork/e50ee3c2-c3d4-11e6-8e29-06603eb7f303
https://data.mendeley.com/datasets/rdzk59n6j4/1
https://data.mendeley.com/datasets/rdzk59n6j4/1
https://github.com/FangpingWan/EXP2SL/tree/master/GEMINI
https://github.com/FangpingWan/EXP2SL/tree/master/GEMINI
https://github.com/FangpingWan/EXP2SL/tree/master/GEMINI
http://slorth.biochem.sussex.ac.uk
http://slorth.biochem.sussex.ac.uk
http://www.medsysbio.org/CGIdb
http://www.medsysbio.org/CGIdb
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Table 3. Statistics of feature databases reviewed in this paper

Database Statistics Website Latest update

GenBank release 246.0 [112] Gene sequence data: 233 642 893 www.ncbi.nlm.nih.gov/genbank/ 15 October 2021
Unitprot release 2021_03 [113] Protein sequence data: 219 740 215 https://www.uniprot.org/ 2 June 2021
GO release 2021-10-26 [114] 43 832 GO terms 7 827 176 annotations http://geneontology.org/ 26 October 2021
KEGG Release 100.0 [115] Pathway maps: seven categories, 548 maps http://www.kegg.jp/ 1 October 2021
MSigDB V7.4 [116] Pathway comembership http://www.broadinstitute.org/

msigdb
April 2021

CTD [117] Gene-pathway annotations: 135 789 http://ctdbase.org/ 5 October 2021
LINCS Data Portal 3.0 [118] 978 landmark genes under different

perturbations
https://lincsproject.org/LINCS/ June 2021

PhyloGene [119] http://genetics.mgh.harvard.edu/
phylogene/

2015

CORUM 3.0 [120] Mammalian protein complexes: 4274 http://mips.helmholtz-muenchen.
de/corum/

9 March 2018

STRING 11.5 [121] PPIs: more than 20 billion https://string-db.org/ 12 August 2021
HPRD release 9 [122] PPIs: 41 327 http://www.hprd.org/ 13 April 2010
HIPPIE v2.0 [123] Confidence scored and annotated PPIs: over

270 000
http://cbdm.uni-mainz.de/hippie/ 14 February 2019

Note: UniProt, The Universal Protein Resource; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MsigDB, The Molecular Signatures
Database; CTD, The Comparative Toxicogenomics Database; CORUM, The comprehensive resource of mammalian protein complexes; STRING, Search Tool for
the Retrieval of Interacting Genes/Proteins database; HPRD, Human Protein Reference Database; HIPPIE, Human Integrated Protein–Protein Interaction reference;
PPI, Protein–protein interaction.

Table 4. Statistics of other related SL databases reviewed in this paper

Database Description Website Latest update

The cancer dependency map [124] Databases based on large-scale single gene
knockout

https://depmap.org/portal/ 19 August 2021

TCGA Cancer genomics and mutation databases https://www.cancer.gov/tcga 29 October 2021
CCLE [125] https://sites.broadinstitute.org/ccle 2019
COSMIC v95 [126] https://cancer.sanger.ac.uk/cosmic 24 November 2021
InParanoid 8 [127] Orthology analysis https://inparanoid.sbc.su.se/cgi-bin/index.cgi December 2013

OrthoMCL-DB [128, 129] https://orthomcl.org/orthomcl/app/ 8 September 2021

Note: TCGA, The Cancer Genome Atlas; CCLE, Cancer Cell Line Encyclopedia; COSMIC, Catalogue of Somatic Mutations in Cancer.

the first two kinds of databases and can be inferred with
the help of orthology analysis databases. The statistics
of these databases are listed in Table 4.

A brief introduction of each feature database and other
database is shown in the supplementary file.

Comprehensive label databases
SynLethDB

SynLethDB [34] is a comprehensive database for SL
and it has two versions so far. SynLethDB 1.0 was
released in 2015 and SynLethDB 2.0 was updated in
2020. SL pairs are collected from multiple sources,
including manual curations from literatures, three SL-
related databases (BioGRID [35–37], Syn-lethality [38]
and GenomeRNAi [39]), bispecific shRNA screening
(DECIPHER), computational predictions (DAISY [13]) and
text mining data for five species (human, mouse, fruit fly,
worm and yeast). A brief introduction of the integrated
databases is provided in the supplementary file.

SynLethDB provides a webserver to calculate the
confidence score for each SL pair by integrating indi-
vidual scores derived from different evidence sources.
In addition, the latest version adds SynLethKG. It is a
comprehensive knowledge graph (KG) of SL including 11
types of biomedical entities and 27 types of relationships,

representing features and relationships between genes,
cancers and drugs.

Label databases based on yeast screening
The CellMap

The CellMap [40] is a web-based database of genetic
interaction for Saccharomyces cerevisiae released in 2016.
Through constructing over 23 million double mutants,
∼350 000 positive and ∼550 000 negative genetic inter-
actions are identified. Three different interaction maps
are constructed: nonessential × nonessential (N×N),
essential × nonessential (E×N) and essential × essential
(E×E) genetic network. The number of SL pairs between
nonessential genes (∼10 000) is estimated by applying an
extreme negative interaction score threshold (<−0.35) to
the N × N dataset.

Label databases based on RNAi screening
SL gene pairs can be experimentally obtained by the com-
parison of single and dual mutants in the same assay.
Compared to double mutant yeast strains, which can
be developed through high-throughput mating method-
ologies, it is more challenging to develop human cell
lines with double mutations [10, 41]. Early human double

www.ncbi.nlm.nih.gov/genbank/
https://www.uniprot.org/
http://geneontology.org/
http://www.kegg.jp/
http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/msigdb
http://ctdbase.org/
https://lincsproject.org/LINCS/
http://genetics.mgh.harvard.edu/phylogene/
http://genetics.mgh.harvard.edu/phylogene/
http://mips.helmholtz-muenchen.de/corum/
http://mips.helmholtz-muenchen.de/corum/
https://string-db.org/
http://www.hprd.org/
http://cbdm.uni-mainz.de/hippie/
https://depmap.org/portal/
https://www.cancer.gov/tcga
https://sites.broadinstitute.org/ccle
https://cancer.sanger.ac.uk/cosmic
https://inparanoid.sbc.su.se/cgi-bin/index.cgi
https://orthomcl.org/orthomcl/app/
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perturbation screening used combinatorial siRNA knock-
downs or siRNA knockdown under specific mutations to
obtain genetic interaction data. SL pairs can be extracted
from these data based on a specific indicator.

Laufer et al.’s study

Laufer et al. [42] performed 51 680 combinatorial RNAi
experiments and identified genetic interactions for one
or more of 11 phenotypes between 2376 gene pairs in
human colon cancer cells.

Vizeacoumar et al.’s study

Vizeacoumar et al. [43] identified negative genetic
interaction partners of five specific driver-mutated genes
across a set of isogenic cancer cell lines through pooled
shRNA screening. A total of 826 genetic interactions are
tested and 200 negative genetic interactions (24.2%) are
confirmed. They generate a genetic interaction network
consisting of 2014 nodes and 2617 edges.

Label databases based on CRISPR screening
With the advances in CRISPR technology, it is now possi-
ble to systematically map SL networks in human cancer
cells using combinatorial CRISPR screening.

Shen et al.’s study

Shen et al. [44] developed a high-throughput CRISPR
screening approach for targeting single and pairwise
genes. They screened all possible pairs of 73 cancer genes
in three human cell lines, with totally 152 SL gene pairs
were identified.

GI map

Horlbeck et al. [12] systematically screened 222 784 gene
pairs from two human cancer cell lines through the
CRISPR interference method, and constructed a large
genetic interaction (GI) map.

Najm et al.’s study

Najm et al. [45] developed a dual-Cas9 platform to screen
genetic interactions across six human cell lines and
examined SL interactions among them.

Zhao et al.’s study

Zhao et al. [46] probed metabolic gene networks through
combinatorial CRISPR screening developed by Shen et al.
[44]. They interrogated a set of 51 genes in A549 and
HeLa cells, which are involved in glycolysis and pentose
phosphate pathways.

Label databases based on computational
prediction
GEMINI and Wan et al.’s study

Zamanighomi et al. develop GEMINI refer to section Tools
and applications to identify sensitive lethal and sen-
sitive recovery interactions from combinatorial CRISPR
screening. Wan et al. [41] used GEMINI to identify SL
interactions from the combinatorial CRISPR experiments

in three cell lines. They provide SL gene pairs with both
SL relationships and L1000 gene expression profiles.

Slorth

Benstead-Hume et al. [25] extracted various features from
PPI networks for use in a RF classifier to predict SL
and SDL pairs both within and across five species. All
predicted pairs can be obtained in the Slorth database
released in 2019.

Cancer genetic interaction database

Han et al. [48] developed an algorithm to identify poten-
tial SL interactions for specific cancer types from The
Cancer Genome Atlas (TCGA) refer to the Supplementary
data and functional screening data. As a result, 10 637 SL
interactions are detected. They integrate SL interactions
predicted by other studies and construct the Cancer
Genetic Interaction database (CGIdb).

Label databases based on drug screening
Srivas et al.’s study

Srivas et al. [49] exploited ∼169 000 potential interactions
between tumor suppressor genes (TSG) orthologs and
druggable genes in yeast. Under the guidance of the
strongest signal, they screened thousands of TSG–drug
pairs in HeLa cells and construct conserved SL interac-
tion networks.

Computational methods for SL prediction
The increasing volume of biological data and the rapid
development of computer technology have paved the
way to develop computational methods for SL prediction.
The principle behind computational methods is to utilize
biological knowledge that is confirmed to be able to
determine known SL interactions, thus providing valu-
able insights into identifying more SL interactions from
genes of interest [50]. Moreover, they show an impressive
ability in SL prediction. In general, computational meth-
ods can be divided into (i) statistical-based methods, (ii)
network-based methods, (iii) classic machine learning
(ML) methods and (iv) deep learning methods. Due to
the various principles of these methods, they have their
own merits and demerits, which are listed in Table 5.
Summary of studies involved in this review are shown
in Table 6 and their performance scores are summarized
in Table 7.

Statistical-based methods
This section focuses on the related works of statisti-
cal methods on the SL prediction task. Based on the
knowledge of systems biology, statistical-based methods
learn to fit existing SL data using particular assumptions.
The assumptions are based on prior biological knowl-
edge, such as the fact that SL genes are frequently co-
expressed, having similar functions, or exhibiting mutual
exclusivity with respect to specific genetic events. Models
based on these assumptions are usually explainable as
they can reveal statistical regularities between gene pairs
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Table 5. Summary of SL prediction methods and representative models

Methods and
representative
models

Description Advantages Disadvantages Application scenarios

Statistical-based
methods

Fit existing data based on
certain hypothesis

From the perspective of systems
biology Do not require known SL
data

The selection of
hypothesis or threshold is
highly subjective and
unstable

There are insufficient known
SL data

DAISY [13] Identifies SL interactions
in cancer through three
statistical procedures in
parallel

Comprehendible to biologists
Mining data from clinical cancer
samples

The biological data are at
times noisy and inaccurate

Identification of
clinical-related SL
interactions in cancer

Network-based
methods

Study SL pairs from the
perspective of biological
network

Add network structure
information to gain a more
comprehensive understanding of
genes globally

Network data are
incomplete and contains a
lot of noises

There are insufficient known
SL data

IDLE [21] Predicts enzymatic SDLs
from a GSMM

The first computational method
that captures enzymatic SDL
effects in metabolic networks
Uncovers the mechanisms
behind SDLs

Does not integrate more
data source such as
patient-specific omics
data

Identifies SDLs that have a
significant impact on tumor
in clinical settings

Fast-SL [22] Rapidly identifies SL pairs
in metabolic networks

Overcomes the issue of
computational complexity

Does not identify human
SL gene pairs

Identifies higher order SL
pairs in metabolic network

Classic ML
methods

Learn general patterns
from a limited set of
known SL data and use
those patterns to make
predictions about
unknown or unobserved
SL gene pairs

Good performance on small data
sets Effectively integrate
multidimensional feature data

Manually generated
features and need to
understand the features
that represent the data
Lacks of negative samples

Require known SL data and
feature data of high quality

De Kegel et al. study
[26]

RF-based model to predict
paralog SL pairs

Makes interpretable predictions
for paralog SL pairs

Restricted in the
identification of paralog SL
pairs

Identifies context-specific
paralog SL pairs

GRSMF [28] A GRSMF model Has the ability of
data-adaptiveness and avoids
determining the dimension of the
latent space

Focuses on mapping genes
to latent representations
and cannot aggregate
information from neighbor
genes

There are not enough
negative samples

Deep learning
methods

Use a multistep feature
transformation to obtain a
feature representation of
the original data, and
further input into the
prediction function to
obtain the final result

Discover deep features for
representation learning and
pattern recognition from large
dataset Does not require manual
feature extraction.

Demand a large amount of
data and computational
resources. Limited by the
quality and quantity of the
data, which contain many
false positives and false
negatives. It is hard to
train the model. Poor
interpretability Lack of
negative samples

Require sufficient known SL
data and feature data of high
quality

EXP2SL [41] A semisupervised neural
network method

Utilizes unlabeled SL data to
predict cell-line-specific SL pairs
Demonstrates that L1000
expression profiles are effective
features data for SL prediction

Limited sample space and
cell lines

Predicts cell-line specific SL
pairs There are insufficient
labeled SL samples

DDGCN [31] A dual-dropout GCN
method

Uses SL dataset with better
quality Aggregates information
from neighbor genes

Focuses solely on known
SL pairs and ignores other
data sources of genes

There are sufficient SL
samples of high quality and
insufficient feature data

at the phylogenetic level to some extent, but the accuracy
of these models greatly depends on the prior statistical
assumptions.

Prediction of SL gene pairs for yeast

Earlier studies mainly focused on identifying SL pairs in
yeast, due to the limited access to human SL pairs. For

instance, yeast SL pairs can be predicted by maximum
likelihood estimation (MLE) method using the domain
genetic interaction probabilities [51] or genetic interac-
tions of significant short polypeptide clusters [52]. Fur-
thermore, SL gene pairs of humans or other species can
be predicted through yeast orthology mapping [16, 53–
55]. However, orthology mapping has two major limi-
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Table 7. Performance scores and validation scheme of the methods involved in this review

Study Algo-
rithms

Validation scheme AUROC AUPRC ACC F1 MCC Preci-
sion

Sensi-
tivity

Specificity

Pratapa et al.
[22]

SVM 10-fold
cross-validation

0.796

Wu et al. [71] k-NN 10-fold
cross-validation

0.848 0.861 0.764 0.739 0.825 0.670

Pandey et al.
[72]

MNMC 10-fold
cross-validation

0.897

Wu et al. [73] Ensemble
learning

5-fold
cross-validation

0.871

Li et al. [24] RF 10-fold
cross-validation

0.532

Benstead-
Hume et al.
[25]

RF 5-fold
cross-validation

0.889

Liu et al. [29] Logistic
matrix
factoriza-
tion

5-fold
cross-validation

0.848 0.239

Huang et al.
[28]

Matrix fac-
torization

5-fold
cross-validation

0.923

Liany et al. [30] CMF 3-fold
cross-validation

0.980 0.980

Wan et al. [41] Neural
network

5-fold
cross-validation

0.969 0.880 0.959 0.866 0.872 0.903 0.968

Cai et al. [31] GCN 5-fold
cross-validation

0.878 0.344 0.552

Long et al. [32] GAT 5-fold
cross-validation

0.937 0.948

Hao et al. [33] GAE 5-fold
cross-validation

0.917 0.942 0.871

Wang et al. [80] KG 5-fold
cross-validation

0.947 0.956 0.887

Notes: AUROC, area under receiver optimizer characteristics curve; AUPRC, area under precision-recall curve; ACC, accuracy; MCC, Matthews correlation
coefficient.

tations. First, only a small portion of yeast genes have
human orthologs as humans are evolutionarily distant
from yeast. Second, SL relationships may develop inde-
pendently across species [14].

Global prediction of SL gene pairs for human

With the rapidly accumulation of human genome data,
global human SL interactions prediction has started to
be investigated.

Among them, DAISY is the most representative
approach. DAISY is a data-driven computational pipeline
based on large amounts of cancer genomic data proposed
by Jerby-Arnon et al. [13] in 2014. They identify SL inter-
actions in cancer through three statistical procedures in
parallel (Figure 3A): (i) Genomic survival of the fittest.
It is based on the observation that the coinactivition
of SL pairs leads to cell death. Therefore, SL pairs can
be selected by identifying gene coinactivation events
that occur substantially less than expected. (ii) shRNA-
based functional examination. It is based on the fact
that knocking out the SL gene is lethal to cells when its
SL partner gene is inactive. This can be implemented by
an integrated analysis of shRNA essentiality screening,
their somatic copy number alterations (SCNA) and
transcriptomic profiles. (iii) Pairwise gene coexpression.

SL pairs are likely to be involved in closely associated
biological processes and hence tend to be co-expressed
[56, 57]. Then a cancer genome-wide SL interactions
network is constructed from SL gene pairs identified by
all the three procedures. DAISY successfully identifies SL
pairs by capturing the results obtained from large-scale
genomic data and shRNA screens, but these data are at
times noisy and inaccurate.

Other researches have also developed some valuable
statistical inferring methods and more assumptions have
been proposed for SL prediction. For example, gene pairs
altered in a mutually exclusive pattern are likely to be SL
pairs [58, 59]; SL pairs upon coinactivation may exhibit
prolonged patients’ survival [60]; SL pairs tend to have
high phylogenetic similarity [60].

SL prediction for specific genes or cancers

Wang et al. [61] identified differentially expressed genes
between tumors with and without functional p53 muta-
tions by univariate F-test or t-test. The genes which
exhibit higher relative expression in p53 mutated tumors
were further selected as the candidate SL partner genes
for p53. Chang et al. [62] selected lung adenocarcinoma-
dependent genes through computing gene expression
of lung adenocarcinoma versus nontumorous tissues,
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and then associated with five clinical factors to obtain
predicted SL pairs. Feng et al. [63] developed an integrated
computational pipeline based on ISLE (identification of
clinically relevant SL) [60], which determine SL partner
genes of GNAQ following four aspects: molecular condi-
tion (differentially overexpressed genes), clinical condi-
tion (genes associated with poor prognosis), phenotypic
condition (more essential genes) and druggable condi-
tion. Recently, Yang et al. [64] inferred SL gene pairs in
liver cancer based on DAISY and ISLE, which contain
five inference analyses (functional similarity, differential
gene expression, pairwise gene coexpression, pairwise
survival and rank aggregation). Sinha et al. [65] proposed
a computational pipeline called Mining Synthetic Lethals
(MiSL) to identify mutation-specific SL pairs for specific
cancers. Their basic assumption is that SL partner genes
of a mutated gene tend to be amplified more frequently
or deleted at a lower frequency in primary tumor samples
containing the mutated gene.

Network-based methods
This section focuses on the network-based methods
for SL prediction. Compared with statistical methods,
network-based methods provide a more comprehensive
understanding of genes in the entire biological network
and improve our understanding of the mechanisms
of SL. Currently, network-based methods predict SL
pairs through constructing biological networks (PPI
networks, signaling networks or metabolic networks),
then analyzing the topological characteristics of genes in
biological networks and assessing the network changes
in response to knocking out gene pairs.

PPI network-based methods

Kranthi et al. [15] pointed out that the connectivity of
the protein in the PPI network and the structure of the
network are related to its functional characteristics. In
general, the protein nodes with high degrees are usually
functionally basic, and a lack of them would lead to
lethality. Based on this, they developed graph informa-
tion centrality measures in biological systems to identify
SL gene pairs. They modified the information central-
ity method by knocking out two nodes. However, this
method does not take the efficiency changes of knocking
out a single node in the network into account, as the net-
work changes may be caused by knocking out one gene at
times [18]. Jacunski et al. [14] evaluated the connectivity
homology by calculating the network parameters in the
PPI network and designing an SL prediction model based
on connectivity homology. Ku et al. [17] identified func-
tionally distinct KRAS SL subnetworks or modules based
on the MCODE clustering algorithm in the PPI network,
all of which can be traced back to a specific pathway or
protein complex.

Signaling network-based methods

Zhang et al. [19] predicted SL gene pairs by combining
a data-driven method with the knowledge of pathway

information from signaling networks to mimic the
influence of single gene knockdown and double genes
knockdown to cell viability. Gene pairs are considered
as potential SL pairs when double genes knockdown
significantly increase the likelihood of cell death,
whereas single gene knockdown does not. Liu et al. [18]
constructed human cancer signaling network (HCSN)
by calculating the shortest path between no cancer
gene and cancer gene pairs. Then they screened SL
pairs from HCSN by three procedures: network-based
method (according to the distance between cancer genes
and noncancer genes), frequency-based method and
function-based method. This method screens SL pairs
by a multistep strategy, thus it might get better results.

Metabolic network-based methods

Apaolaza et al. [20] developed a genetic minimal cut
set (gMCS)-based method to predict SL interactions and
revealed a potential mechanism explaining the effect
of specific gene knockout to disrupt cell growth. gMCS
refers to minimal sets of reactions, the removal of which
will invalidate the function of specific metabolic tasks.
Megchelenbrink et al. [21] presented a network model-
ing method called identifying dosage lethality effects
(IDLE). IDLE predicts enzymatic SDLs from a genome-
scale model of metabolism (GSMM). For each pair of
enzymes (A, B) in the human GSMM, they predicted
SDL by measuring the growth reduction level caused by
changing the enzyme flux of A and B. IDLE identifies SDLs
in clinical settings, but it does not integrate more data
sources such as patient-specific omics data. In addition,
Pratapa et al. [22] developed Fast-SL, an algorithm to
rapidly identify SL gene sets in metabolic networks. The
algorithm overcomes the issue of computational com-
plexity encountered in previous methods by iteratively
narrowing the searching space for SLs, thus substantially
reducing the computational time.

Indeed, network-based methods can only integrate
one or more interaction networks among genes. Rela-
tionships between genes and other entities like patients
cannot be directly modeled [30]. In addition, they cannot
utilize other data that contain related information about
SL, such as sequence and function properties of genes.
What is more, they do not use the existing SL samples so
the underlying patterns of known SL pairs are not being
exploited.

Classic ML methods
This section mainly introduces some classic ML methods
for SL prediction tasks. Compared with the network-
based methods, ML methods can effectively integrate
multidimensional data and achieve feature learning
through parameter fitting, providing more comprehen-
sive information for SL prediction. Classical ML methods
attempt to reveal the patterns of observed samples that
cannot be acquired through principle analysis, in order
to achieve reliable prediction of unknown data (Figure 2).
There are two main types of classical ML methods:
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Figure 2. Workflow of ML methods used in SL prediction. SVM refers to support vector machine. DT refers to Decision Tree. RF refers to random forest.

supervised learning and unsupervised learning. Most SL
prediction tasks adopt supervised ML models. Support
vector machine (SVM), Decision Tree (DT), k-nearest
neighbors (k-NN), RF, ensemble classifier and matrix
factorization are applied for SL prediction.

Support vector machine

The principle of SVM is to create an optimal decision
boundary that maximizes the distance between two
classes [66]. Paladugu et al. [67] proposed an SVM model
that uses topological properties of two genes in a PPI
network as features for SL prediction in yeast.

Decision Tree

DT model creates tree-like structure for classification
purpose, where each internal node corresponds to a test
of a feature and each leaf node refers to a classification
result [68]. Yin et al. [69] predicted SL interactions in

breast cancer based on DT. Two features [mutation cover-
age and copy number variations (CNV)] are classified and
optimized by experimentally validated SL pairs, which
are used to predict SL interactions based on DT.

K- nearest neighbors

K-NN algorithm is a nonparametric method [70] that
classifies unknown samples by a plurality voting of
its neighbors. Wu et al. [71] proposed a k-NN model to
achieve the similarity-based classification of gene pairs.
The basic hypothesis of this model is that unknown gene
pairs which exhibit high levels of similarity to the known
SL pairs are more likely to be potential SL pairs.

Ensemble classifiers

Ensemble classifiers achieve predictions by integrating
the results of several independently trained weak mod-
els on the same samples. The integrated models out-
perform those of separate models. How to choose the



Computational methods for SL prediction | 13

independent weaker models and how to integrate their
learning results are the main challenges of this algo-
rithm. Pandey et al. [72] defined a large number of fea-
tures for characterizing SL interactions from diverse data
sources. Then, they design an integrated multi-network
and multi-classifier (MNMC) framework composed of six
different classifiers to predict yeast SL gene pairs. Wu
et al. [73] also developed an ensemble algorithm (MetaSL)
that integrates RF, DT, SVM and other ML classifiers
based on a variety of biological features. Compared with
MNMC [72], MetaSL assigns different weights to differ-
ent classifiers according to their performances in the
training process. Thus the prediction results are based
on a weighted consensus from the participating classi-
fiers. However, the limitation of this study is that inter-
dependence exists among the input features.

Random forest

RF [74] actually belongs to ensemble classifiers, but all
of the integrated classifiers are DTs. RF achieves strong
predictive power by combining the simplicity of DTs
with the flexibility and powerful functions of ensemble
classifiers. Besides, it can cope with high dimensional
(containing many features) data without feature selec-
tion as it is able to randomly select a subset of features.

Das et al. [23] developed an RF-based R package Dis-
coverSL to predict SL interactions in cancers using multi-
omics cancer data. Li et al. [24] encoded genes as enrich-
ment scores based on GO terms and KEGG annotation
and a gene pair is represented by numerous features
derived from their enrichment scores. Following this,
they utilized SL label data to build an RF-based predic-
tion model with optimized functional features. In par-
ticular, the maximum relevance and minimum redun-
dancy method [75] is used to generate a ranked fea-
ture list and incremental feature selection method is
applied to select the most appropriate number of fea-
tures. Benstead-Hume et al. [25] also extracted features
from the graph in the PPI network and use the RF model
to predict SL gene pairs. Considering paralog pairs share
functionality similarities and are more likely to be SL
pairs, De Kegel et al. [26] developed an RF classifier to
predict paralog SL pairs. Specifically, they applied Tree-
Explainer [76] to compute the influence of each feature
on a specific prediction, so the classifier is able to make
interpretable predictions. Benfatto et al. [27] developed an
algorithm called PAn-canceR Inferred Synthetic lethali-
ties (PARIS) that can address the importance of individual
gene deficiency in explaining their dependencies in mul-
tiple cancer cells. The core of the PARIS algorithm lies in
the feature selection step, achieved by RF through assign-
ing importance scores to each mutation and expression
feature based on CRISPR screening data across multiple
cancer cell lines.

Matrix factorization

The classic ML methods described above are based on
a supervised learning frame that requires both posi-

tive and negative training samples. However, SL predic-
tion tasks lack real negative samples, as the majority
of them are randomly selected from unknown samples,
which may pick up false negative data. Matrix factoriza-
tion methods effectively avoid this defect by capturing
the underlying mechanisms of SL samples and integrat-
ing relevant information. Matrix factorization aims to
decompose an input matrix into the product of two low-
rank matrices, and then the data-missing matrix is filled
with data obtained through model training.

Huang et al. [28] designed a graph regularized self-
representative matrix factorization (GRSMF) model
which uses the linear representation of matrix X’s
rows and columns to decompose itself. What is more,
authors integrate GO similarity matrix data as a graph
regularization term to address the sparse input data
and improve the prediction accuracy. Compared with
the conventional matrix factorization, GRSMF has the
ability of data-adaptiveness and avoids determining the
dimension of the latent space. To further differentiate
the importance weights between SL pairs and unknown
pairs, Liu et al. [29] proposed a logistic matrix factor-
ization model, called SL2MF (Figure 3C), to learn latent
representations of SL pairs. The combination of the latent
vectors determines the probability of SL pairs. Moreover,
they apply neighborhood regularization to constrain
the latent vector, based on the hypothesis that genes
with similar GO or PPI properties should be factorized
into similar latent vectors. In addition, conventional
matrix factorization methods have limited capability
on complicated heterogeneous data. To address this
issue, Liany et al. [30] improved the collective matrix
factorization (CMF) method through three measures. The
first two measures rely on a transformation (principal
components analysis and graph features). The third
measure is to extend the model by using matrix-
specific weights. This modified model figures out the
problem that conventional CMF cannot learn the unique
representation of each entity when multiple input
matrices contain the same entity types.

Deep learning methods
This section discusses the application of deep learning in
SL prediction. Deep learning is a subset of ML methods.
Compared to classical ML methods that extract features
manually based on knowledge, deep network structures
can better capture nonlinear and complex relationships
between inputs and outputs, allowing them to iden-
tify complex patterns behind the data. Interdependent
relationships always exist in biological entities and pro-
cesses, which are often inherently noisy and occur at
multiple scales. Therefore, biological data can be well
suited for deep learning.

Neural networks are the most commonly employed
models in deep learning as they show high significant
fit for complex nonlinear problems [111]. Given the fact
that most SL pairs are cell-line specific, Wan et al. [41]
develop a semisupervised neural network method called
EXP2SL to identify SL pairs. For a pair of gene, they use
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Figure 3. The flowcharts of some selected typical methods reviewed in
this manuscript. (A) DAISY [13], a statistical-based method. (B) MNMC
[72], an ensemble classifier. (C) SL2MF [29], a logistic matrix factorization
method. (D) DDGCN [31], a GCN-based method. (E) KG4SL [80], a KG-based
method.

cell line shRNA perturbation (LINCS L1000 project) gene
expression profile to construct 978-dimensional features
as inputs of the encoding layers and predict the potential
SL pairs. EXP2SL is the first model to predict cell-line-
specific SL pairs and it makes full use of unlabeled
SL data.

Currently, there are plenty of deep learning meth-
ods, among which the following two types are the most
frequently and effectively used models in SL prediction:
GNN and KG embedding.

Graph neural network

GNN can efficiently capture the structures of graph and
model complex relations between neighbor nodes in the
graph. Three archetypes of GNN are adopted in SL pre-
diction, including graph convolutional network (GCN),

graph attention network (GAT) and graph auto-encoder
(GAE).

Graph convolutional network

GCN is an extension of convolutional neural network
on graph structure. Compared with matrix factorization
mentioned in the previous section, GCN can capture the
information of neighbor nodes in the graph. Cai et al. [31]
apply GCN to SL prediction and propose a model called
dual-dropout GCN (DDGCN) (Figure 3D). DDGCN can
aggregate information of neighboring genes in a graph by
convolution operators. Furthermore, researchers adopt a
dual dropout regularization technique [77] during the
training process to avoid overfitting due to the sparse
SL data. However, there are two limitations in this study.
First, DDGCN only utilizes the information of the known
SL pairs and lacks information on other features. Second,
DDGCN does not assign different weights to different
neighbors.

Graph attention network

GAT [78], which is able to assign different weights to each
neighbor nodes, adopts attention mechanism to counter
the shortcomings of GCN. Long et al. [32] developed
a Graph Contextual Attention Network model called
GCATSL that effectively integrates multiple biological
data for SL prediction. After constructing multiple
gene feature graphs with different data source as
model’s inputs, a dual attention mechanism (node-
level and feature-level) is designed for each feature
to capture local and global neighbors’ importance to
learn their representations. Multilayer perceptron is
further exploited to aggregate the extracted features with
original features.

Graph auto-encoder

GAE extends the idea of autoencoder to a graph. The
node embeddings in the graph can be obtained through
the encoder–decoder structure. In general, GAE uses GCN
as the encoder. After inputting the topology and node
information of the graph into the encoder, the inner prod-
uct is adopted as the decoder to reconstruct the original
graph. Hao et al. [33] combined GCN with autoencoder
to construct a multiview graph autoencoder (SLMGAE)
with a variety of data for SL prediction. SLMGAE takes
SL graph as main view and graphs of other data (PPI, GO,
etc.) as support views. Multiple GAEs are applied to graph
reconstruction and GCN is used as the encoder. SLMGAE
is able to integrate various data sources of genes in a GNN
based framework and differentiate each data source by
an attention mechanism.

Knowledge graph

The network embedding-based methods mentioned
above integrate the information of multiple or het-
erogeneous biological networks, but in essence, there
is no unified consideration for different relationship
types. KG demonstrates excellent performance to this



Computational methods for SL prediction | 15

problem, which is a kind of knowledge-rich heteroge-
neous network composed of interconnected entities
and relevant properties. It embeds the rich entities
and the relationship information into the continuous
vector space with low dimension [79], so as to facilitate
computation while retaining the structural information.
Due to the complexity and diversity of biological
information, KG performs well in biological tasks such
as SL prediction.

Wang et al. [80] constructed a KG algorithm (KG4SL)
for SL prediction (Figure 3E). The algorithm consists of
three modules. First, a gene-specific weighted subgraph
is generated for each gene. Second, gene representation
is updated by aggregating its neighbors’ representations
in its weighted subgraph. Third, SL score can be
calculated through the inner product of the two genes’
aggregation result. However, this method may not fully
integrate the neighborhood topological structures when
generating a gene-specific weighted subgraph due to
the large degrees of some nodes. In addition, some
neighbors might be uninformative and promiscuous
in the process of message passing. Zhang et al. [2]
developed the Synthetic Lethality Knowledge Graph
(SLKG), which integrates three types of entities (genes,
drugs and diseases) and four types of relationships. Drug
repositioning is achieved by defining three core scoring
functions: SLScore (SDLScore), DrugScore and Cancer-
Score. SLScore is calculated by integrating different SL
evidences.

In general, the above four methods have their own
characteristics. Statistics-based methods and network-
based methods are usually interpretable for novel pre-
dictions and do not require known SL samples. Statistics-
based methods are based on statistical assumptions on
the biological data, thus the accuracy of the assumptions
and the quality of the biological data are needed. For
example, considering SL gene pairs tend to be coex-
pression and seldom coinactiviton, DAISY [13] identifies
SL gene pairs from large-scale genomic data. Network-
based methods are based on a deep knowledge of a single
or heterogeneous biological network, often accompanied
by some creative concepts to identify the potential nodes
that play an important role in the biological network. For
instance, Kranthi et al. [15] developed a graph information
centrality to identify SL gene pairs from human cancer
protein interaction network. ML methods are trained
on known SL samples. Classic ML methods tend to get
better results than deep learning methods in small and
medium-sized data sets (below hundreds or tens of thou-
sands of samples) due to their fewer hyperparameters.
Deep learning can achieve a better prediction under a
big data set and it can extract high-level features from
the data based on its complex network structure and a
large number of parameters. However, due to the end-to-
end learning process, the intermediate process of deep
learning is a black box with good performance but a lack
of interpretability [81]. This will lead to great uncertainty

and unreliability when applied in biological or medical
practice.

Negative sampling methods
SL computational models normally follow a supervised
learning framework. Experimental data are composed of
positive and negative samples. Positive samples can be
extracted from databases in Table 2. How to prepare neg-
ative samples is one of the challenges for SL prediction.

Randomly picking up unknown gene pairs is a com-
monly used method for negative sampling [32, 80]. This
approach is relatively simple and can obtain enough
negative samples. However, as shown in Figure 4, this
method may pick up unidentified positive samples. Mis-
labeled data would lead to the worse performance of the
model.

Another negative sampling method is extracting gene
pairs from GI databases with certain GI scores as negative
samples [33, 41]. For instance, Hao et al. [33] extracted
negative SL samples with GI scores around 0 and posi-
tive SL samples with GI scores below −3. This negative
sampling method avoids introducing potential positive
samples, but the number of negative samples is relatively
small.

Tools and applications
To predict or identify SL interactions based on various
data, number of easy-to-use tools have been developed.
In this section, a brief introduction of these representa-
tive tools is presented. Further details of these tools are
listed in Table 8.

G2G
G2G is a web server for the human SL interactions pre-
diction published by Almozlino et al. [82]. The web server
provides access to predicting phenotypes of paired gene
deletions by an improved algorithm based on RF. Fol-
lowed by submitting a source gene and a target gene,
the phenotype for that gene pair can be computed. Fur-
thermore, users can submit only one gene and then G2G
returns all predicted interacting genes according to their
neighbor relationships in the PPI network.

Synthetic lethality bio discovery portal and
discover SL
Synthetic Lethality Bio Discovery Portal is a compre-
hensive web tool to predict SL [23] interactions from
hallmark cancer pathways through mining genetic and
chemical interactions in cancer. The web tool was devel-
oped by Deng et al. [83] in 2019 based on the previous sta-
tistical approach DiscoverSL (refer to section Statistical-
based methods).

Users can search the web tool from three modes:
‘GENES’ (including 623 commonly mutated cancer
genes), ‘CANCER’ (including 18 histology types) and
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Figure 4. Negative sampling methods. (A) Randomly picking up unknown gene pairs as negative samples. (B) Extracting gene pairs from GI databases
with certain GI scores as negative samples.

Table 8. Tools and applications reviewed in this study

Tool Description Availability Website

G2G Predict SL interactions based on mapping genes to GO terms Online http://bnet.cs.tau.ac.il/g2g/
SPAGE-Finder Predict SL interactions from TCGA data Online https://amagen.shinyapps.io/spage/
SynLeGG Predict SL interactions utilizing multiSEp gene expression

clusters to Partition CRISPR essentiality scores and
mutations from whole-exome sequencing

Online www.overton-lab.uk/synlegg

SL-BioDP Predict SL interactions from hallmark cancer pathways by
mining cancer’s genomic and chemical interactions

Online https://sl-biodp.nci.nih.gov/sl_index.php

DiscoverSL R package for multiomic data-driven prediction of SL
interactions in cancer

Standalone https://github.com/shaoli86/DiscoverSL/
releases/tag/V1.0

ISLE Identify the most likely clinically relevant SL interactions by
mining TCGA cohort

Standalone https://github.com/jooslee/ISLE/

GEMINI Identify SL interactions from combinatorial CRISPR
experiments

Standalone https://github.com/sellerslab/gemini

Fast-SL identify synthetic lethal sets in metabolic networks Standalone https://github.com/RamanLab/FastSL

Note: SynLeGG, Synthetic Lethality using Gene expression and Genomics; SL-BioDP, Synthetic Lethality BioDiscovery portal.

‘DRUG’. In addition, the ‘INFERRED DRUG SYNERGY’
provides potential synergistic drug combinations.

SPAGE finder
Magen et al. [84] define ‘survival-associated pairwise
gene expression states’ (SPAGEs) as pairs of genes whose
co-expression levels are related to cell survival. They
present a data-driven pipeline named SPAGE finder that
identifies 71 946 SPAGEs from TCGA data, spanning
12 distinct types and a small portion of which are SL

pairs. They provide a webserver visualizing the SPAGEs
identified by the original manuscript, and allowing input
or upload a gene list file of comma-separated gene
names which will be rendered on the left panel.

Synthetic lethality using gene expression and
genomics
Synthetic Lethality using Gene expression and Genomics
(SynLeGG) is a web server developed by Wappett et al. [85]
in 2021. SynLeGG utilizes MultiSEp algorithm to partition

http://bnet.cs.tau.ac.il/g2g/
https://amagen.shinyapps.io/spage/
www.overton-lab.uk/synlegg
https://sl-biodp.nci.nih.gov/sl_index.php
https://github.com/shaoli86/DiscoverSL/releases/tag/V1.0
https://github.com/shaoli86/DiscoverSL/releases/tag/V1.0
https://github.com/jooslee/ISLE/
https://github.com/sellerslab/gemini
https://github.com/RamanLab/FastSL
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gene expression to discover SL-related characteristics. It
predicts genetic dependency relationships including SL
spanning 30 tissues and 783 cancer cell lines.

GEMINI
GEMINI [47] is an R package based on the variational
Bayesian method to identify genetic interactions from
combinatorial CRISPR perturbation studies. Scoring sys-
tems related to the individual and combined effects are
defined to identify SL interactions.

CHALLENGES AND FUTURE WORK
Traditional genetically targeted cancer therapies nor-
mally focus on targeting gene products that are mutated
or overexpressed in specific cancer types. However, from
a drug discovery perspective, the loss-of-function muta-
tions are much harder to target, and the same is true for
several undruggable overexpressed genes. Fortunately, SL
provides an avenue for the treatments of these targets
as they facilitate the indirect targeting of nondruggable
genes through the identification of a second druggable
target that can interact with the primary genes [10].
Despite a marked increase in the identification of SL gene
pairs, relatively few SL drug candidates have entered
into clinic, and the field remains largely in its infancy
[4]. Computational methods hold great prospects in this
field but still remain some challenges. In this section, we
will discuss these challenges and possible work in the
future, mainly including biological issues and data and
algorithm issues.

Biological issues
Expand the concept of SL

The conventional concept of SL is defined as the interac-
tion between two genes. With a deeper understanding of
SL, some studies expand the concept of it.

SL interactions among multiple genes

Most present studies focus on identifying SL interac-
tions between two genes. However, the biological genetic
interactions are complex and it is imperative to identify
multiple genetic interactions. Kuzmin et al. [86] scored
trigenic interactions in ∼200 000 yeast and identified
3196 trigenic negative interactions. The global trigenic
interaction network is estimated nearly 100-fold larger
than the digenic network. Pratapa et al. [22] develop
Fast-SL to identify high order SL interactions, including
triplets and quadruplets. Prediction of SL interactions
between multiple genes may be one of the challenges in
the future.

Soft SL

Ryan et al. [87] consider that SL can be divided into hard
SL and soft SL. Conventional SL is called hard SL. Soft
SL exists between gene A and gene B but can be rescued
by other genes. These reverse effects are called synthetic

rescue (SR) or synthetic viability (SV). Gu et al. [88] iden-
tified candidate SR (SV) pairs by applying a statistical-
based method and demonstrated that SR (SV) enables
the prediction of drug resistance. The integration of SL
and SR (SV) may result in higher reproducibility of SL
prediction, thus future work for SL prediction should take
SR (SV) into consideration.

Phenotype-centric SL

Conventionally, the mutated genes are utilized to distin-
guish cancer cells from normal cells and pharmacologi-
cal inhibition of their partner genes is commonly adopted
for SL-based cancer therapies. However, this concept can
be extended. Akimov et al. [89] point out that the main
determinant of any SL interaction is the phenotype alter-
ation caused by a specific mutation or molecular per-
turbation. Therefore, considering the polygenic nature of
the phenotype, they propose that phenotype might be a
more robust differentiating context for SL interactions.
SL interaction between WRN gene and microsatellite
instability phenotype is an example phenotype-centric
SL [90, 91]. The identification of more phenotype-centric
SLs is a meaningful work in the future.

SL interactions between two signals

The integrated signaling system is critical for cell sur-
vival. Within it, various pathways interact with each
other for survival and disrupting signals involved in mul-
tiple pathways is a practice of SL [92]. From the per-
spective of signals, we can get a deeper understanding
of the biological mechanism of SL. In this regard, SL
interactions can expand from genes to any signals, such
as epigenetic regulators [93]. Integrating different types
of signals to predict SL interactions would be crucial for
future researches.

Expand the application of SL

At present, the main application of SL is still focused on
the discovery of new anticancer targets. However, some
researches indicate that SL would be applied in a wider
range. These studies are explained in this section, which
may give reference to the researchers in this field.

Nononcological diseases

SL has been successfully applied to identify anti-cancer
targets but has found limited use in other diseases. There
have been some researches probed into nononcological
diseases, such as bacterial infection [94–97], malaria [98]
and virus infection [99]. Computational methods may
assist further application of SL in more nononcological
diseases in the future.

Biological mechanisms revealed by SL

The essence of SL is a kind of genetic interaction and the
analysis of SL can provide mechanistic insight into genes.
Lippert et al. predict gene function from SL networks
[100]. Guell et al. [101] analyze and categorize SL gene
pairs in metabolic networks, and unveil plasticity and
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redundancy are indispensable mechanisms for biological
systems. Cheng et al. analyze the role of SL in cancer
risk and their findings support a possible role for SL in
tumorigenesis [102]. In the future, as more SL pairs would
be discovered, more biological mechanisms about genes
will be revealed.

Drug repositioning researches

In spite of various promising computational methods
that have been developed to identify SL interactions,
drug repositioning researches based on SL have seldom
been explored. After all, the ultimate goal of identifying
novel SL pairs is to develop novel tumor target therapy.
Recently, Zhang et al. [2] develop SLKG, a comprehensive
KG aimed at providing the computational basis to tumor
therapies based on SL. They demonstrate that SLKG is
able to identify the optimal repurposing drugs and drug
combinations. Future efforts are expected for these pio-
neer studies to achieve the clinical translation of SL.

Other application

Some researchers explored wider applications of SL.
It is reported that [103, 104] SL interaction may be a
new approach in chemoprevention of cancer, but this
approach is to a great extent in its infancy. Additionally,
Lee et al. [105] developed a precision oncology framework
to predict patients’ cancer therapy response based on SL
and SR interactions.

Data and algorithm issues
Data quality

The quality of training data is crucial to SL prediction.
However, high false-positive and false-negative ratios
often be observed in SL data generated by high-
throughput screenings. In addition, positive SL samples
could be negative under certain conditions. All of the
abovementioned issues could lead to label inaccuracy
and inconsistency. Besides, the performance of current
models used to predict SL interactions is difficult to
assess due to a lack of a gold standard source of human
SL pairs. Therefore, to preprocess the SL data before
applying it in computational models, establishing a gold
standard source of SL pairs is necessary.

Sparse data and imbalanced samples

Due to the limited technology, known SL pairs are less
than 0.1% of all potential pairs [31], which lead to two
issues concerning training data.

The first issue is sparse data. When applying these
sparse data in ML models, overfitting tends to occur. Cai
et al. [31] propose dual forms of dropout in their DDGCN
model to avoid overfitting problems. For future work,
more SL gene pairs would be identified by the coop-
eration of biological and computational researchers to
address the sparse data. Moreover, computational mod-
els fitted better to sparse data should be developed.

The second issue is imbalanced samples. The per-
formance of the model deteriorates as the imbalance

between the two classes increases. To address this prob-
lem, appropriate evaluation metrics should be adopted.
Area under precision-recall curve is a more effective
metric than area under receiver optimizer character-
istics curve when applied on highly skewed tasks [31,
84]. Matthews correlation coefficient [106] has also been
successfully used in SL prediction study [24] of which
the samples are highly imbalanced. Besides, Li et al. [24]
generated pseudopositive SL samples by synthetic minor-
ity oversampling technique method, which is designed
to generate a number of predefined new samples from
samples of minority class [107]. With these studies, we
are one step closer to resolve the issue of imbalanced
samples, and researchers would be inspired to explore
more innovative solutions in the future researches, such
as developing computational models that fit the imbal-
anced SL data better.

Lack of informative features

The mechanism behind SL is complex and cannot be
generalized. Li et al. [9] propose a novel SL classification
based on the specificity of its biological mechanism,
which contains organelle level, pathway level, gene level
and conditional SL. Conducting feature selection accord-
ing to its biological mechanism before training a model
is essential. In this way, informative features could be
selected, which would help to explore more efficient
computational models.

Lack of interpretability

Most ML approaches have not achieved clinical prac-
tice owing to lack of interpretability [108]. These models
are regarded as ‘black boxes’, which optimize prediction
accuracy without understanding the biological mecha-
nisms behind the predicted results [81]. To resolve these
difficulties, model interpretation is now a fast-growing
subfield of ML methods [109]. Several efforts have been
made on this issue for genetic prediction [110, 111]. For
SL prediction, interpretable models have not yet been
reported. More attention should be paid in developing
interpretable models for SL prediction in the future.

Conclusion
Identification of SL gene pairs is imperative as it can
provide novel targets for targeted therapy. However, the
search space of gene combinations is too large to be
investigated experimentally. Computational methods
have been advanced to complement experimental
approaches, which can reduce the search space of
SL gene pairs. This review provides a comprehensive
overview of computational methods, databases and
tools for SL prediction. It introduces six types of label
databases, three types of feature databases, three types
of other related databases and six tools for SL prediction.
Moreover, four types of computational methods with a
detailed description of strengths and weaknesses have
been summarized. In addition, we highlight several
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challenges in this field, some of which may inspire the
future researches.

Key Points

• Computational methods for SL can accelerate the discov-
ery of novel SL-based targeted cancer therapies.

• This study reviews six types of label databases, three
types of feature databases, three types of other related
databases and six tools for SL. The related information
and links of all databases are provided.

• Computational methods including statistical-based
methods, network-based methods, classic machine
learning methods and deep learning methods are
introduced, and their merits and demerits are discussed.

• The challenges include biological issues and data and
algorithm issues. Expanding the concept of SL and
expanding the application of SL are discussed in the
section of biological issues. In addition, data quality,
sparse data and imbalanced samples, lack of informa-
tive features and lack of interpretability require further
exploration in future studies.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.

Funding
This work is supported by the National Natural Sci-
ence Foundation of China (http://www.nsfc.gov.cn; nos.
62103436) to Song He.

References

1. Huang A, Garraway LA, Ashworth A, et al. Synthetic lethality as
an engine for cancer drug target discovery. Nat Rev Drug Discov
2020;19(1):23–38.

2. Zhang B, Tang C, Yao Y, et al. The tumor therapy landscape of
synthetic lethality. Nat Commun 2021;12(1):1275.

3. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer:
what’s next after PARP inhibitors? Nat Rev Clin Oncol 2018;15(9):
564–76.

4. Setton J, Zinda M, Riaz N, et al. Synthetic lethality in cancer
therapeutics: the next generation. Cancer Discov 2021;11(7):
1626–35.

5. Bryant HE, Schultz N, Thomas HD, et al. Specific killing of
BRCA2-deficient tumours with inhibitors of poly(ADP-ribose)
polymerase. Nature 2005;434(7035):913–7.

6. Farmer H, Mccabe N, Lord CJ, et al. Targeting the DNA repair
defect in BRCA mutant cells as a therapeutic strategy. Nature
2005;434(7035):917–21.

7. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the
clinic. Science 2017;355(6330):1152–8.

8. Topatana W, Juengpanich S, Li S, et al. Advances in synthetic
lethality for cancer therapy: cellular mechanism and clinical
translation. J Hematol Oncol 2020;13(1):118.

9. Li S, Topatana W, Juengpanich S, et al. Development of synthetic
lethality in cancer: molecular and cellular classification. Signal
Transduct Target Ther 2020;5(1):241.

10. O’neil N J, Bailey M L, Hieter P. Synthetic lethality and cancer.
Nat Rev Genet 2017;18(10):613–23.

11. Parameswaran S, Kundapur D, Vizeacoumar FS, et al. A road
map to personalizing targeted cancer therapies using synthetic
lethality. Trends Cancer 2019;5(1):11–29.

12. Horlbeck MA, Xu A, Wang M, et al. Mapping the genetic land-
scape of human cells. Cell 2018;174(4):953–67 e22.

13. Jerby-Arnon L, Pfetzer N, Waldman YY, et al. Predicting cancer-
specific vulnerability via data-driven detection of synthetic
lethality. Cell 2014;158(5):1199–209.

14. Jacunski A, Dixon SJ, Tatonetti NP. Connectivity homology
enables inter-species network models of synthetic lethality.
PLoS Comput Biol 2015;11(10):e1004506.

15. Kranthi T, Rao SB, Manimaran P. Identification of synthetic
lethal pairs in biological systems through network information
centrality. Mol Biosyst 2013;9(8):2163–7.

16. Kirzinger MWB, Vizeacoumar FS, Haave B, et al. Humanized
yeast genetic interaction mapping predicts synthetic lethal
interactions of FBXW7 in breast cancer. BMC Med Genom
2019;12(1):112.

17. Ku AA, Hu HM, Zhao X, et al. Integration of multiple biological
contexts reveals principles of synthetic lethality that affect
reproducibility. Nat Commun 2020;11(1):2375.

18. Liu L, Chen X, Hu C, et al. Synthetic lethality-based identifi-
cation of targets for anticancer drugs in the human Signaling
network. Sci Rep 2018;8(1):8440.

19. Zhang F, Wu M, Li XJ, et al. Predicting essential genes
and synthetic lethality via influence propagation in signal-
ing pathways of cancer cell fates. J Bioinform Comput Biol
2015;13(3):1541002.

20. Apaolaza I, San Jose-Eneriz E, Tobalina L, et al. An in-silico
approach to predict and exploit synthetic lethality in cancer
metabolism. Nat Commun 2017;8(1):459.

21. Megchelenbrink W, Katzir R, Lu XW, et al. Synthetic dosage
lethality in the human metabolic network is highly predictive
of tumor growth and cancer patient survival. P Natl Acad Sci
USA 2015;112(39):12217–22.

22. Pratapa A, Balachandran S, Raman K. Fast-SL: an efficient algo-
rithm to identify synthetic lethal sets in metabolic networks.
Bioinformatics 2015;31(20):3299–305.

23. Das S, Deng X, Camphausen K, et al. DiscoverSL: an R package
for multi-omic data driven prediction of synthetic lethality in
cancers. Bioinformatics 2019;35(4):701–2.

24. Li J, Lu L, Zhang YH, et al. Identification of synthetic lethality
based on a functional network by using machine learning
algorithms. J Cell Biochem 2019;120(1):405–16.

25. Benstead-Hume G, Chen X, Hopkins SR, et al. Predicting syn-
thetic lethal interactions using conserved patterns in protein
interaction networks. PLoS Comput Biol 2019;15(4):e1006888.

26. De Kegel B, Quinn N, Thompson NA, et al. Comprehen-
sive prediction of robust synthetic lethality between paralog
pairs in cancer cell lines. Cell Syst 2021;12(12):1144, S2405-
4712(21)00329-X–1159.e6.

27. Benfatto S, Sercin O, Dejure FR, et al. Uncovering cancer vulner-
abilities by machine learning prediction of synthetic lethality.
Mol Cancer 2021;20(1):111.

28. Huang J, Wu M, Lu F, et al. Predicting synthetic lethal
interactions in human cancers using graph regularized
self-representative matrix factorization. BMC Bioinform
2019;20(Suppl 19):657.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac106#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
http://www.nsfc.gov.cn


20 | Wang et al.

29. Liu Y, Wu M, Liu C, et al. SL(2)MF: predicting synthetic lethality
in human cancers via logistic matrix factorization. IEEE/ACM
Trans Comput Biol Bioinform 2020;17(3):748–57.

30. Liany H, Jeyasekharan A, Rajan V. Predicting synthetic lethal
interactions using heterogeneous data sources. Bioinformatics
2020;36(7):2209–16.

31. Cai R, Chen X, Fang Y, et al. Dual-dropout graph convolutional
network for predicting synthetic lethality in human cancers.
Bioinformatics 2020;36(16):4458–65.

32. Long Y, Wu M, Liu Y, et al. Graph contextualized attention
network for predicting synthetic lethality in human cancers.
Bioinformatics 2021;37(16):2432–2440.

33. Hao Z, Wu D, Fang Y, et al. Prediction of synthetic lethal
interactions in human cancers using multi-view graph auto-
encoder. IEEE J Biomed Health Inform 2021;25(10):4041–51.

34. Guo J, Liu H, Zheng J. SynLethDB: synthetic lethality database
toward discovery of selective and sensitive anticancer drug
targets. Nucleic Acid Res 2016;44(D1):D1011–7.

35. Oughtred R, Rust J, Chang C, et al. The BioGRID database: a com-
prehensive biomedical resource of curated protein, genetic,
and chemical interactions. Protein Sci 2021;30(1):187–200.

36. Oughtred R, Stark C, Breitkreutz BJ, et al. The BioGRID interac-
tion database: 2019 update. Nucleic Acid Res 2019;47(D1):D529–
41.

37. Stark C, Breitkreutz BJ, Reguly T, et al. BioGRID: a general reposi-
tory for interaction datasets. Nucleic Acids Res 2006;34(Database
issue):D535–9.

38. Li XJ, Mishra SK, Wu M, et al. Syn-lethality: an integra-
tive knowledge base of synthetic lethality towards discovery
of selective anticancer therapies. Biomed Res Int 2014;2014:
196034.

39. Schmidt EE, Pelz O, Buhlmann S, et al. GenomeRNAi: a database
for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic
Acid Res 2013;41(Database issue):D1021–6.

40. Costanzo M, Vandersluis B, Koch EN, et al. A global genetic inter-
action network maps a wiring diagram of cellular function.
Science 2016;353(6306):aaf1420.

41. Wan F, Li S, Tian T, et al. EXP2SL: a machine learning frame-
work for cell-line-specific synthetic lethality prediction. Front
Pharmacol 2020;11:112.

42. Laufer C, Fischer B, Billmann M, et al. Mapping genetic inter-
actions in human cancer cells with RNAi and multiparametric
phenotyping. Nat Methods 2013;10(5):427–31.

43. Vizeacoumar FJ, Arnold R, Vizeacoumar FS, et al. A negative
genetic interaction map in isogenic cancer cell lines reveals
cancer cell vulnerabilities. Mol Syst Biol 2013;9:696.

44. Shen JP, Zhao D, Sasik R, et al. Combinatorial CRISPR-Cas9
screens for de novo mapping of genetic interactions. Nat Method
2017;14(6):573–6.

45. Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-
Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol
2018;36(2):179–89.

46. Zhao D, Badur MG, Luebeck J, et al. Combinatorial CRISPR-
Cas9 metabolic screens reveal critical redox control points
dependent on the KEAP1-NRF2 regulatory Axis. Mol Cell
2018;69(4):699–708 e7.

47. Zamanighomi M, Jain SS, Ito T, et al. GEMINI: a varia-
tional Bayesian approach to identify genetic interactions
from combinatorial CRISPR screens. Genome Biol 2019;20(1):
137.

48. Han Y, Wang C, Dong Q, et al. Genetic interaction-based
biomarkers identification for drug resistance and sensitivity in
cancer cells. Mol Ther Nucleic Acids 2019;17:688–700.

49. Srivas R, Shen JP, Yang CC, et al. A network of conserved
synthetic lethal interactions for exploration of precision cancer
therapy. Mol Cell 2016;63(3):514–25.

50. Hu L, Wang X, Huang YA, et al. A survey on computational mod-
els for predicting protein-protein interactions. Brief Bioinform
2021;22(5):bbab036.

51. Li B, Cao W, Zhou J, et al. Understanding and predicting syn-
thetic lethal genetic interactions in Saccharomyces cerevisiae
using domain genetic interactions. BMC Syst Biol 2011;5:73.

52. Zhang Y, Li B, Srimani PK, et al. Predicting synthetic lethal
genetic interactions in Saccharomyces cerevisiae using short
polypeptide clusters. Proteome Sci 2012;10(Suppl 1):S4.

53. Conde-Pueyo N, Munteanu A, Sole RV, et al. Human synthetic
lethal inference as potential anti-cancer target gene detection.
BMC Syst Biol 2009;3:116.

54. Lee SJ, Seo E, Cho Y. Proposal for a new therapy for drug-
resistant malaria using plasmodium synthetic lethality infer-
ence. Int J Parasitol Drugs Drug Resist 2013;3:119–28.

55. Deshpande R, Asiedu MK, Klebig M, et al. A comparative
genomic approach for identifying synthetic lethal interactions
in human cancer. Cancer Res 2013;73(20):6128–36.

56. Costanzo M, Baryshnikova A, Bellay J, et al. The genetic land-
scape of a cell. Science 2010;327(5964):425–31.

57. Kelley R, Ideker T. Systematic interpretation of genetic interac-
tions using protein networks. Nat Biotechnol 2005;23(5):561–6.

58. Srihari S, Singla J, Wong L, et al. Inferring synthetic lethal inter-
actions from mutual exclusivity of genetic events in cancer. Biol
Direct 2015;10:57.

59. Wang R, Han Y, Zhao Z, et al. Link synthetic lethality to drug
sensitivity of cancer cells. Brief Bioinform 2019;20(4):1295–307.

60. Lee JS, Das A, Jerby-Arnon L, et al. Harnessing synthetic lethal-
ity to predict the response to cancer treatment. Nat Commun
2018;9(1):2546.

61. Wang X, Simon R. Identification of potential synthetic lethal
genes to p53 using a computational biology approach. BMC Med
Genom 2013;6:30.

62. Chang JG, Chen CC, Wu YY, et al. Uncovering synthetic lethal
interactions for therapeutic targets and predictive markers in
lung adenocarcinoma. Oncotarget 2016;7(45):73664–80.

63. Feng X, Arang N, Rigiracciolo DC, et al. A platform of synthetic
lethal gene interaction Networks reveals that the GNAQ uveal
melanoma oncogene controls the hippo pathway through FAK.
Cancer Cell 2019;35(3):457–72 e5.

64. Yang C, Guo Y, Qian R, et al. Mapping the landscape of synthetic
lethal interactions in liver cancer. Theranostics 2021;11(18):
9038–53.

65. Sinha S, Thomas D, Chan S, et al. Systematic discovery
of mutation-specific synthetic lethals by mining pan-cancer
human primary tumor data. Nat Commun 2017;8:15580.

66. Grigoroiu A, Yoon J, Bohndiek SE. Deep learning applied to
hyperspectral endoscopy for online spectral classification. Sci
Rep 2020;10(1):3947.

67. Paladugu SR, Zhao S, Ray A, et al. Mining protein networks for
synthetic genetic interactions. BMC Bioinform 2008;9:426.

68. Che DS, Liu Q, Rasheed K, et al. Decision tree and ensemble
learning algorithms with their applications in bioinformatics.
Adv Exp Med Biol 2011;696:191–9.

69. Yin Z B, Qian B W, Yang G W, et al. Predicting Synthetic Lethal
Genetic Interactions in Breast Cancer using Decision Tree. In:
Icbbe 2019: 2019 6th International Conference on Biomedical and
Bioinformatics Engineering, Shanghai, China 2019. pp. 1–6.

70. Altman NS. An introduction to kernel and nearest-neighbor
nonparametric regression. Am Stat 1992;46(3):175–85.



Computational methods for SL prediction | 21

71. Wu LL, Wen YQ, Yang XX, et al. Synthetic lethal interactions
prediction based on multiple similarity measures fusion. J
Comput Sci Tech-Ch 2021;36(2):261–75.

72. Pandey G, Zhang B, Chang AN, et al. An integrative multi-
network and multi-classifier approach to predict genetic inter-
actions. PLoS Comput Biol 2010;6(9):e1000928.

73. Wu M, Li X, Zhang F, et al. In silico prediction of synthetic
lethality by meta-analysis of genetic interactions, functions,
and pathways in yeast and human cancer. Cancer Inform
2014;13(Suppl 3):71–80.

74. Ho T K. Random decision forests. In: Proceedings of the Third
International Conference on, Document Analysis and Recognition,
Montreal, QC 1995: 278–282.

75. Peng H, Long F, Ding C. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27(8):
1226–38.

76. Lundberg SM, Erion G, Chen H, et al. From local explanations
to global understanding with explainable AI for trees. Nat Mach
Intell 2020;2(1):56–67.

77. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple
way to prevent neural Networks from overfitting. J Mach Learn
Res 2014;15(1):1929–58.

78. Velikovi P, Cucurull G, Casanova A, et al. Graph attention
networks. In: International Conference on Learning Representations,
Vancouver, BC, Canada. 2018: 1–12.
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