Skip to main content
. 2022 Mar 29;23(3):bbac106. doi: 10.1093/bib/bbac106

Table 6.

Summary of studies involved in this review

Category Study Published year Algorithms SL data Feature data Program code
Statistical-based methods Li et al. [51] 2011 MLE SGD [130] Domain relationships
Zhang et al. [52] 2012 MLE SGD [130] Protein sequences
Conde-Pueyo et al. [53] 2009 Homologous mapping BioGRID [35–37] Somatic mutations, GO annotation, drugs and their gene targets
Lee et al. [54] 2013 Homologous mapping BioGRID [35–37] Homology information, gene expression information
Deshpande et al. [55] 2013 Homologous mapping Literatures [56] Homology information
Kirzinger et al. [16] 2019 Homologous mapping Gene expression data, homology information
Jerby-Arnon et al. [13] 2014 DAISY SCNA and mutation profiles, gene essentiality profiles, gene expression profiles
Srihari et al. [58] 2015 Statistical analysis Genomic copy-number and gene expression
Guo et al. [34] 2016 Statistical analysis BioGRID [35–37], Syn-Lethality [38] GenomeRNAi [39] DAISY [13] The DECIPHER Project, http://histone.sce.ntu.edu.sg/SynLethDB/
Wang et al. [59] 2019 Statistical analysis SynLethDB [34] and Literatures [15, 49, 58, 61, 131] Somatic mutation information, shRNA data, yeast genetic interactions
Lee et al. [60] 2018 ISLE SCNA, gene expression, mutation and survival data https://github.com/jooslee/ISLE/
Wang et al. [61] 2013 The univariate F-test or t-test Gene expression
Chang et al. [62] 2016 Statistical analysis Literatures [5, 6, 132, 133] Gene expression
Feng et al. [63] 2019 Statistical analysis Genomics and patient survival data
Sinha et al. [65] 2017 MiSL Mutation, copy number and gene expression https://purl.stanford.edu/ny450yx7231
Yang et al. [64] 2021 SiLi Large-scale sequencing data
Network-based methods Kranthi et al. [15] 2013 PPI networks PPIs
Jacunski et al. [14] 2015 PPI networks BioGRID [35–37] PPIs, functional annotations
Ku et al. [17] 2020 PPI networks PPIs, pathways
Zhang et al. [19] 2015 Signaling networks Signaling data
Liu et al. [18] 2018 Signaling networks SynLethDB [34] PPIs
Apaolaza et al. [20] 2017 Metabolic networks Gene expression data
Megchelenbrink et al. [21] 2015 IDLE The human metabolic network
Pratapa et al. [22] 2015 Fast-SL Genome-scale metabolic networks https://github.com/RamanLab/FastSL
Classic ML methods Paladugu et al. [67] 2008 SVM Literatures [134] [134–136] PPI network
Wu et al. [71] 2021 k-NN SynLethDB [34] Seven similarities of gene pairs (gene expression, protein sequence, PPI, copathway, GO biological process, GO cellular component and GO molecular function)
Yin et al. [69] 2019 DT SynLethDB [34] Mutation, CNV and clinical data of breast cancer
Pandey et al. [72] 2010 MNMC SGD [130] PPIs, functional annotations, Pathways, mutant phenotype, proteins phylogenetic profiles, sequence similarity of genes and proteins
Wu et al. [73] 2014 Ensemble learning BioGRID [35–37] Semantic similarity, PPIs, sequence orthologs, semantic similarity, co-complex membership, co-pathway membership, gene expression correlation, Common/interacting domains, the number of domains
Das et al. [23] 2019 DiscoverSL (RF) SynLethDB [34] Mutation, gene expression, copy number alteration, gene-pathway information https://github.com/shaoli86/DiscoverSL/releases/tag/V1.0
Li et al. [24] 2019 RF Shen et al. study [44] GO term and KEGG pathway
Benstead-Hume et al. [25] 2019 RF BioGRID [35–37] PPIs
De Kegel et al. [26] 2021 RF Shared PPIs, evolutionary conservation, etc. https://github.com/cancergenetics/paralog_SL_prediction; https://doi.org/10.5281/zenodo.5139973
Benfatto et al. [27] PARIS (RF) CRISPR screens with genomics and transcriptomics data https://github.com/sbenfatto/PARIS
Huang et al. [28] 2019 GRSMF (Matrix factorization) SynLethDB [34] GO similarity matrix https://github.com/Oyl-CityU/GRSMF
Liany et al. [30] 2020 CMF (Matrix factorization) SynLethDB [34] Essentiality Profile, mRNA gene expression, SCNA level, pairwise coexpression https://github.com/lianyh
Liu et al. [29] 2020 SL2MF (Matrix factorization SynLethDB [34] PPI similarity, GO similarity
Deep learning methods Wan et al. [41] 2020 Neural network Shen et al. study [44] GI map [12] Najm et al. study [45] Zhao et al. study [46] L1000 gene expression profiles [118] https://github.com/FangpingWan/EXP2SL
Cai et al. [31] 2020 GCN SynLethDB [34] https://github.com/CXX1113/Dual-DropoutGCN
Long et al. [32] 2021 GAT SynLethDB [34], SynLethDB- v2.0 (http://synlethdb.sist.shanghaitech.edu.cn/v2) GO semantic similarity, PPIs https://github.com/longyahui/GCATSL
Hao et al. [33] 2021 GAE SynLethDB [34] GO similarity matrix, PPIs, coexpression、mutual exclusion score、copathway https://github.com/DiNg1011/SLMGAE
Zhang et al. [2] 2021 KG SynlethDB [34], Jerby-Arnon et al. [13] Three relationships (different cancer types and their mutant genes, drugs and targets, drugs and their indications)
Wang et al. [80] 2021 KG SynLethDB [34], SynLethDB- v2.0 (http://synlethdb.sist.shanghaitech.edu.cn/v2) The relationships of genes, drugs and compounds

Note: SVM, support vector machine; DT, Decision tree; k-NN, k-nearest neighbors; RF, random forest; GCN, graph convolutional network; GAT, graph attention network; GAE, graph autoencoder; KG, knowledge graphs; MLE, maximum likelihood estimation; ISLE, identification of clinically relevant synthetic lethality; MiSL, mining synthetic lethals; SiLi, statistical inference-based synthetic lethality identification; IDLE, identifying dosage lethality effects; MNMC, multi-network and multi-classifier; PARIS, PAn-canceR Inferred Synthetic lethalities; GRSMF, graph regularized self-representative matrix factorization; CMF, collective matrix factorization; SGD, saccharomyces genome database; SCNA, somatic copy number alterations.