Table 7.
Study | Algorithms | Validation scheme | AUROC | AUPRC | ACC | F1 | MCC | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|---|---|
Pratapa et al. [22] | SVM | 10-fold cross-validation | 0.796 | |||||||
Wu et al. [71] | k-NN | 10-fold cross-validation | 0.848 | 0.861 | 0.764 | 0.739 | 0.825 | 0.670 | ||
Pandey et al. [72] | MNMC | 10-fold cross-validation | 0.897 | |||||||
Wu et al. [73] | Ensemble learning | 5-fold cross-validation | 0.871 | |||||||
Li et al. [24] | RF | 10-fold cross-validation | 0.532 | |||||||
Benstead-Hume et al. [25] | RF | 5-fold cross-validation | 0.889 | |||||||
Liu et al. [29] | Logistic matrix factorization | 5-fold cross-validation | 0.848 | 0.239 | ||||||
Huang et al. [28] | Matrix factorization | 5-fold cross-validation | 0.923 | |||||||
Liany et al. [30] | CMF | 3-fold cross-validation | 0.980 | 0.980 | ||||||
Wan et al. [41] | Neural network | 5-fold cross-validation | 0.969 | 0.880 | 0.959 | 0.866 | 0.872 | 0.903 | 0.968 | |
Cai et al. [31] | GCN | 5-fold cross-validation | 0.878 | 0.344 | 0.552 | |||||
Long et al. [32] | GAT | 5-fold cross-validation | 0.937 | 0.948 | ||||||
Hao et al. [33] | GAE | 5-fold cross-validation | 0.917 | 0.942 | 0.871 | |||||
Wang et al. [80] | KG | 5-fold cross-validation | 0.947 | 0.956 | 0.887 |
Notes: AUROC, area under receiver optimizer characteristics curve; AUPRC, area under precision-recall curve; ACC, accuracy; MCC, Matthews correlation coefficient.