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The mechanical excision of tumors by oncological surgery, as 
well as the effractions imposed on vascular and lymphatic 
vessels, can promote the dissemination of residual tumor cells 
to distant organs with the consequent formation of secondary 
metastatic lesions.1 Moreover, pain and inflammation, which 
are often elicited by surgical procedures, cause systemic adap
tations such as the production of immunosuppressive gluco
corticoids and vascular endothelial growth factor, thus 
affecting leukocyte chemotaxis and favoring neoangiogenesis, 
respectively. Local anesthetics that are currently used in clinical 
routine for their analgesic and anti-inflammatory properties 
can minimize the release of corticoids and catecholamines 
during surgical procedures. Moreover, several retrospective 
clinical trials recently suggested that the use of local anesthetics 
associated with general anesthesia during oncological surgery 
improves disease outcome and overall survival.2 Intrigued by 
these premises, we addressed the question if local anesthetics 
directly affect neoplastic cells and whether they promote an 
anti-tumor immune response that might explain their positive 
impact on cancer prognosis.

Accumulating preclinical evidence suggests that local anes
thetics provoke direct cytotoxic effects, leading to the inhibi
tion of proliferation, survival and migration of various 
malignant cell types. Several mechanisms have been implicated 
in this process such as the impairment of cyclin-dependent 
kinase activity, the suppression of DNA methylation, the 
induction of mitochondrial damage and dysfunctional ion 
transport.3 Driven by these findings, we studied the mode of 
cell death that is induced by local anesthetics, finding that 
apoptotic as well as necrotic signaling pathways are ignited in 
a dose- and time-dependent manner. Moreover, treatment 
with clinically relevant concentrations of the most frequently 
employed local anesthetics induced traits of immunogenic cell 
death (ICD) such as the release of ATP and the exodus of high- 
mobility group box 1 protein (HMGB1) into the extracellular 
space.4,5 This phenomenon was preceded by premortem cellu
lar stress routines such as the induction of autophagy and the 
phosphorylation of eIF2alpha, which is known to be involved 
in immunogenic death as well as in the release of pro- 
inflammatory cytokines.6,7 In contrast to bona fide ICD- 

inducing chemotherapeutics such as mitoxantrone, oxaliplatin 
or microtubule-targeted poisons, local anesthetics were unable 
to induce the exposure of calreticulin at the plasma membrane, 
where it commonly acts as an “eat-me” signal for dendritic 
cells. Local anesthetics also failed to inhibit DNA-to-RNA 
transcription, which has recently be described as a prominent 
upstream signal causing ICD.8,9 Nevertheless, local anesthetics 
regulate adaptive immune response by promoting the phago
cytosis of dying tumors by bone marrow-derived dendritic cells 
(BM-DCs) in vitro and by decreasing the growth of palpable 
tumors established in immunocompetent mice, if injected 
intratumorally.10 Interestingly, local anesthetics failed to pro
mote anti-tumor effects in immunodeficient mice, as well as 
against tumors that were rendered unable to mount autophagic 
or ER stress responses due to the inactivation of ATG5 and 
EIF2AK3, respectively. Moreover, local treatment with local 
anesthetics induced the infiltration of tumors by CD4+ and 
CD8+ T cell effectors, but diminished the local recruitment of 
immunosuppressive T regulatory cells.4

As described previously, the efficacy of conventional anti
neoplastic treatments may be potentiated by immunostimula
tory agents.11,12 Thus, we further investigated if the 
combination of local anesthetics with adjuvant stimulation 
may restore a full-blown ICD response and may potentiate 
antitumor immunity.13,14 Indeed, the local co-injection of 
recombinant calreticulin together with local anesthetics further 
improved the anticancer effect. The use of local anesthetics 
combined with sequential systemic immune checkpoint block
ade even allowed to completely and durably eliminate some 
established cancers,4 in which case mice were protected from 
rechallenge with the same cancer, indicating that they had 
developed immunological memory.

Altogether, our preclinical findings highlight that the use of 
local anesthetics causes “immunogenic stress” rather than full- 
blown ICD. Thus, local anesthetics may be classified among the 
non-viral oncolytic therapies, which upon intra-tumoral injec
tion elicit immunogenic physical and chemical damage.15–17 

Irrespective of their classification, local anesthetics trigger the 
phagocytosis of cancer cells and the engulfment of tumor 
antigens by DC, followed by the recruitment of immune 
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effectors into the tumor bed (Figure 1). Several strategies asso
ciating local anesthetics with immunostimulatory agents may 
be envisaged to further boost the cancer-immunity cycle.

In sum, beyond their role in pain control, local anesthetics 
may be repurposed as antineoplastic co-treatments to avoid 
disease recurrence and improve overall survival because of 
their capacity to induce immunogenic stress. There is an 
urgent need to design randomized controlled trials that sup
port this exciting hypothesis that ultimately would change 
clinical practice in onco-anesthesia.
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Figure 1. Oncolytic effects of local anesthetics. Local anesthetics employed at clinically relevant concentrations induce cell death. This effect is preceded by premortem 
autophagy and endoplasmic reticulum stress and accompanied by the release of danger-associated molecular patterns (DAMPs) such as ATP and high-mobility group 
box 1 protein (HMGB1), facilitating the recruitment of dendritic cells (DCs) for antigen presentation and T lymphocyte priming, altogether eliciting adaptive anticancer 
immune responses, tumor lysis by cytotoxic T lymphocytes and the generation of durable immune memory.
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