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Abstract

Ultrasound localization microscopy (ULM) is an emerging vascular imaging technique that 

overcomes the resolution-penetration compromise of ultrasound imaging. Accurate and robust 

microbubble (MB) localization is essential for successful ULM. In this study, we present a 

deep learning (DL)-based localization technique that uses both Field-II simulation and in vivo 
chickenembryo chorioallantoic membrane (CAM) data for training. Both radio frequency (RF) and 

in-phase and quadrature (IQ) data were tested in this study. The simulation experiment shows that 

the proposed DL-based localization was able to reduce both missing MB localization rate and 

MB localization error. In general, RF data showed better performance than IQ. For the in vivo 
CAM study with high MB concentration, DL-based localization was able to reduce the vessel MB 

saturation time by more than 50% compared to conventional localization. In addition, we propose 

a DL-based framework for real-time visualization of the high-resolution microvasculature. The 

findings of this article support the use of DL for more robust and faster MB localization, especially 

under high MB concentrations. The results indicate that further improvement could be achieved by 

incorporating temporal information of the MB data.

Index Terms—

Deep learning (DL); microbubble (MB); super-resolution; ultrasound imaging; ultrasound 
localization microscopy (ULM)

I. INTRODUCTION

As a diffraction-limited imaging modality, the performance of ultrasound imaging has long 

been limited by the classical tradeoff between imaging resolution and penetration depth. 

For decades, there has been a long quest to break the diffraction limit of ultrasound [1]. 

For example, various attempts had been made to super-focus the acoustic beams through 

negative refraction generated by acoustic metamaterials [2]–[4]. In a medium with random 
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and inhomogeneous echogenicity, the diffraction limit may be overcome by retransmission 

and refocusing of received signal through a time-reversal mirror [5]. As an acoustic analogy 

to structured illumination microscopy (SIM), acoustical structured illumination was recently 

proposed to surpass the resolution limit by generating a series of known patterns with 

the transducer, which enables encoding of high-resolution information of the observed 

image [6]. The lateral resolution of ultrasound can also be improved by null subtraction 

imaging (NSI), a technique that applies multiple receive apodizations to reduce sidelobes 

and enhance the mainlobe [7]. Super-resolution of these techniques is achieved contrast-free 

and based on manipulation of the transmit and/or received point spread function (PSF) of the 

ultrasound imaging system.

Recently, a contrast microbubble (MB)-based technique named ultrasound localization 

microscopy (ULM) [8], [9] was proposed to overcome the diffraction limit of ultrasound 

based on the principle of localization microscopy (e.g., PALM [10], [11] and STORM [12]). 

MBs have a similar size to red blood cells, and they travel within the vasculature for several 

minutes’ post-intravenous injection [13]. A super-resolved blood vessel density map can be 

constructed by localizing and accumulating the MB locations in a consecutive sequence of 

diffraction-limited image frames. Moreover, a high-fidelity blood flow speed map can be 

recovered from measuring the frame-to-frame displacement of MBs. Various studies have 

demonstrated multiple applications of ULM under clinical and preclinical settings, including 

tumor characterization [14]–[16], brain imaging [17], and abdominal organs such as liver, 

kidney, and pancreas [18].

At present, the clinical potential and utility of ULM are challenged by various limitations 

of ULM, including the time-consuming imaging acquisition, the high computational cost of 

postprocessing steps, the lack of ground truth to validate ULM in vivo, and other practical 

challenges such as tissue motion caused by breathing and scanning. These limitations and 

challenges remain active topics of research. In this study, we focus on addressing the 

issues of MB localization that contribute to the time-consuming data acquisition and high 

computational cost associated with postprocessing. The current standard practice for MB 

localization is based on using an estimated template of the ultrasound system impulse 

response (i.e., the PSF) to identify individual MB signals and measure the physical location 

of the MB (e.g., by estimating the centroid of the MB signal). However, an ultrasound 

imaging system has a spatially variant PSF that is subject to many confounding factors, such 

as noise, phase aberration, multipath reverberation, and attenuation. Estimation of PSF is a 

challenging task, which leads to unreliable MB localization. In addition, as shown in [19] 

and [20], MB localization based on the centroid of the MB signal is subject to errors induced 

by the nonlinear MB response and the spatial sampling of the MB signal. Meanwhile, even 

with an ideal localization algorithm and MB data, the accuracy of MB localization is still 

subject to the Cramer–Rao lower bound, which is approximately one-tenth of the ultrasound 

wavelength [21]. Since MB localization occurs early in the ULM processing workflow, 

errors introduced in the localization step propagate downstream to affect the performance 

of subsequent operations, resulting in suboptimal ULM image quality. Therefore, improving 

the performance of MB localization is an essential task for improving the overall robustness 

of ULM.
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Another challenge associated with MB localization in practice is the tradeoff among MB 

concentration, data acquisition time, and localization accuracy. A diluted concentration 

of MB creates more MB signal separation in space, which makes the MB locations 

less ambiguous and easier to estimate. However, dilution of MB also slows down MB 

perfusion, resulting in longer acquisition times for full vascular reconstruction [22]. On 

the other hand, although high MB concentration leads to faster vessel MB saturation, the 

amount of spatially overlapping MB signals also substantially increases. This leads to a 

significant amount of wasted MB signals because overlapping MB signals are difficult to 

localize with conventional localization techniques and subsequently discarded. Although 

MB signals with partial overlaps can be potentially separated and localized, the overlap may 

distort the individual MB signal and challenge the predefined PSF. In reality, especially 

in clinical settings for human imaging, it is difficult to modulate the MB concentration 

in the bloodstream, which is largely dictated by physiology. In addition, the clinical dose 

of MB administration and MB concentration is typically regulated, which is difficult to 

change. Therefore, developing a robust MB localization method that works for various MB 

concentrations with various amounts of MB overlaps (especially for high MB overlap) is 

critical for the successful preclinical and clinical translations of ULM.

Several methods have been proposed to address the issue of high MB overlap at high MB 

concentrations. Zhang et al. [23], [24] proposed the use of phase change nanodroplets for 

flow and concentration-independent localization microscopy with reduced acquisition time. 

Recently, we proposed an MB separation technique based on Fourier-based filtering to 

address the issue of MB overlap by decomposing high MB-count data into subsets of low 

MB-count data [25]. The MB separation was achieved by leveraging the different movement 

speeds and directions of MBs, which manifests as different slow-time frequency components 

in the Fourier space. The method greatly improved the amount of MB signals that can be 

localized and subsequently the overall quality of ULM imaging. However, the assumption 

of utilizing temporal frequency difference to separate MB signals may break down when 

MB concentration is high and/or flow hemodynamics are complex. Also, by separating 

the data into subsets with identical dimensions as the original data, the MB separation 

technique exacerbates the issue of the high computational cost of ULM. Therefore, it may 

be challenging in practice to implement the MB separation technique, and a faster and better 

MB localization method remains to be developed.

Considering ongoing breakthroughs in deep learning (DL) and computer vision, DL-based 

techniques have gained popularity in medical image processing, especially for tasks 

requiring a high level of abstraction [26]. In ultrasound imaging, DL implementation has 

mostly been focused on improving beamforming [27]–[31]. For DL-based ULM, van Sloun 

et al. [32] and Liu et al. [33] validated the feasibility of DL-based MB localization using 

different classes of neural network (NN) architectures. Both studies have shown promising 

potential for applying DL for accelerated and robust MB localization. Liu et al. [33] 

also used in vivo vessel networks to generate more realistic training data. Youn et al. 
[34] performed convolutional neural network (CNN)-based localization on radio frequency 

(RF) channel data generated by the Field-II simulation, which showed improvement over 

local peak detection using envelope-detected signals on both simulation and phantom data. 

Lok et al. [35] used data from chicken embryo chorioallantoic membrane (CAM) for in 
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vivo validation with optical images as the reference. They showed that DL-based MB 

localization outperformed conventional localization techniques under low-to-moderate MB 

concentrations. As an alternative to the common localize-and-track workflow for ULM, 

Milecki et al. [36] proposed a DL-based framework that recovers tracks directly from the 

MB signal without explicitly localizing individual MBs. Since velocity information is not 

retained in the recovered tracks, this alternative framework is suited for applications where 

blood flow dynamics information is not required. In our study, we will focus on the typical 

ULM framework with explicit localization of MBs.

Different from existing studies where low-to-moderate MB concentrations were typically 

used to develop DL-based MB localization, our objective in this study was to develop 

and test the performance of DL-based MB localization under high-to-very-high MB 

concentrations. Using high MB concentration increases the probability of detecting MBs 

in the bloodstream, especially for small vessels. The time it takes to detect a certain amount 

of MBs for reconstruction can be reduced, which shortens ULM data acquisition time that is 

significant for clinical implementations of ULM. To the best of our knowledge, whether DL-

based localization can withstand the high MB concentration scenario is yet to be explored. 

In this study, we characterized the performance of various MB localization techniques under 

a wide range of MB concentrations by using Field-II ultrasound simulations as well as 

vascular graph models extracted from in vivo data for training the NN. Our training data 

consist of realistic vascular structures extracted from optical images of chicken embryo 

CAM surface vessels. We also explored the use of RF data to investigate localization 

with both amplitude and phase information. Our method was applied to several different 

scenarios: simulated test data ranging from very sparse to very dense MB distributions, 

for the characterization of how the performance gain of DL-based MB localization scales 

with increasing MB concentration; simulated test data of high concentration MB within 

the vascular structure, for the study of the potential reduction in acquisition time using 

DL-based localization; and on in vivo CAM data with high concentration MB injection 

and high-resolution optical images as the ground truth. In addition to using DL-based MB 

localization for conventional ULM processing, we also proposed a high-resolution blood 

flow visualization method using DL-processed B-mode ultrasound MB data to demonstrate 

the feasibility of potential real-time ULM imaging.

II. METHODS

A. Field-II Simulation for MB Data Synthetization

To study the effect of MB distribution in the training data, three groups of training datasets 

were generated based on Field-II [37], [38] and used to train the networks: group 1 uses a 

low MB concentration of up to 300 MBs/mm2 (1.8 MBs/λ2), where λ is the wavelength 

of an ultrasound imaging system with 20-MHz center frequency, and group 2 and 3 both 

have higher MB concentration closer to in vivo experiments, where group 2 uses randomly 

distributed MB signal (in space) for training and group 3 uses the CAM vessel model for 

assigning MB positions. The hypothesis was that the added information of microvascular 

structure (e.g., vessel versus nonvessel regions and large versus small vessels) would 

facilitate DL performance in MB localization.
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For each training group, we generated 9000 training images and 1000 validation images of 

MBs within a 1 mm × 1 mm field of view (FOV), which corresponds to 203 × 203 pixel 

images with a 4.9-μm pixel size. This FOV was selected to balance several factors, including 

being able to capture structural features of the vessel network on multiple scales, not exceed 

the computer memory constraints, and maintain the efficiency of training the NN. With 

confocal imaging [39], we were able to observe ~25 MBs in a 200 μm × 200 μm FOV, which 

translates to ~625 MBs/mm2. Therefore, we used a normal distribution with μ = 600 and σ = 

600 MBs/mm2 to regulate MB concentrations in our high concentration simulations (groups 

2 and 3).

For the group 1 and group 2 training set, the axial and lateral coordinates of the MBs 

were drawn from a uniform distribution within the dimension of the imaging FOV. For the 

group 3 training set, optical images (see Section II-D for optical imaging details) of the 

CAM surface vessels were used to place MBs in the vascular architecture (Fig. 1). Binary 

vessel maps were generated from the green channel (which provides the best contrast for 

vessels) of each optical image using MATLAB’s adaptthresh function, which computes 

local threshold based on the Gaussian weighted mean of neighboring pixels [Fig. 1(b)]. A 

subregion (1 mm × 1 mm) within the binary maps was randomly selected for the simulation 

of each training image. Training images with different MB concentrations were generated in 

a similar way as in groups 1 and 2.

The simulation sequence was configured according to the CAM ultrasound imaging settings 

described in Section II-D. Details of the simulation specifications are summarized in Table 

I. Simulated ultrasound data were interpolated to the resolution of 4.9 μm. Finally, Gaussian 

white noise with a level of 10% ± 2% of the ultrasound signal peak amplitude was added 

to the ultrasound data. The noise level was selected based on measurements from our 

experimental CAM data.

B. DL Model Design

U-Net is a CNN architecture first proposed in 2015 for biomedical image segmentation [40]. 

The architecture and its variations have since been successfully applied to many different 

tasks in biomedical image processing. Here, we adopt the encoder–decoder structure of the 

U-Net for our CNN model. The model contains a feature extraction path (the encoder) that 

extracts high-dimensional feature maps from the input ultrasound data and a reconstruction 

path (the decoder) that extracts MB locations from the embedded feature map.

Fig. 2 shows a schematic of the network. Each down-sampling block contains two 

convolution-batch normalization-activation units. Each reconstruction block starts with a 2 

× 2-kernel convolution that halves the number of channels. The output of the corresponding 

feature extraction block is upsampled to match the spatial dimension of the output of the 2 × 

2 convolution layer before they are stacked along the channel axis. The stacked data then go 

through convolution-batch normalization-activation units and are upsampled by a factor of 2. 

Dropout is implemented in the bottleneck layer to prevent overfitting [41]. The final output 

block contains two 2-D convolution layers. The network contains a total of eight convolution 

layers in the encoder part and eight convolution layers in the decoder part. We used leaky 

ReLU as the activation function, which is defined as
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LeakyReLU x = x, x > 0
0.01 × x, x ≤ 0 (1)

where x is the output of a convolution layer after batch normalization. The model was 

trained with the Adam optimizer with a learning rate of 0.001 [42]. The loss function was 

defined as

L m, y, y = αMAE G y , y + SSIM G y , y + βFPLoss m, LM y (2)

where y is the ground-truth binary localization map, m is the ground-truth binary vessel 

mask, ŷ is the predicted localization map, G is a Gaussian filter with σ = 2 pixels (the pixel 

size is 4.9 μm), and MAE is the mean absolute error, which is defined as

MAE y, y = 1
n ∑

i = 1

N
yi − yi (3)

where yi and ŷi denote the i th entry in the ground truth and the prediction, respectively. 

SSIM represents the structural similarity [43]

SSIM y, y = 2μyμy + c1 2σyy + c2
μy2 + μy

2 + c2 σy2 + σy
2 + c2

(4)

where μy and σy are the average and the standard deviation of the pixel values in the 

ground-truth image, respectively, μŷ and σŷ are the average and the standard deviation of 

the pixel values in the prediction, respectively, σy,ŷ is the covariance of the ground truth 

and the prediction, and c1 and c2 are the stabilizer terms in case of division by a very small 

denominator, which are defined as

c1 = 0.01L 2, c2 = 0.03L 2 (5)

where L is the dynamic range of the image. FPLoss is a term that penalizes false positive 

predictions (i.e., false MB localizations), defined as the number of MB localizations that are 

outside of vessels, divided by the total number of predicted positives

FPLoss y, y = ∑ 1 − mi yi
∑yi

(6)

where mi is the i th entry in the binary ground-truth vessel map. Since FPLoss is a metric 

for binary prediction and the output of the network is not necessarily binarized, a local 

maximum filter local maximum (LM) was used to convert the output to a binary localization 

map where the pixels of the local peaks were set to 1. α and β are weights for the MAE 

and FPLoss terms, respectively. α was set to 0.001 for all training sets. β was set to 1 for 

training sets that contain vessel structure and 0 for training sets without vessel structure. 

The loss function was designed so that the main objective function to reduce was still the 

SSIM. The addition of the MAE term helps the model to better preserve the intensity of the 

produced output, while FPLoss provides the network with additional information regarding 
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the vascular structure that is not explicitly given by the map of the true MB locations. 

False MB localization within nonvascular regions will be penalized heavier than false MB 

localization within vascular regions.

After each epoch of model update using the 9000 training images, the training performance 

was evaluated on the validation set of 1000 images. Hyperparameter selection relies 

mostly on the validation set performance. Training samples were fed into the network as 

minibatches of 16 images. The final trained model generates “sharpened” MB signals (Fig. 

3), reducing the dimension of the apparent PSF size, where overlapping MBs signals in the 

original input are now separated.

C. ULM Data Processing

For all ULM data except simulation, the tissue signal was first removed by singular value 

decomposition (SVD)-based clutter filtering [44]. For MB localization with conventional, 

non-DL MB images, a cross correlation-based approach as described in [45] was used 

with a synthesized multivariate Gaussian PSF. For the DL-processed MB data, the location 

of each MB was extracted by the blob detection function available in the scikit-image 

Python package using the difference-of-Gaussian method [46]. The extracted locations were 

accumulated across each imaging frame to generate the microvessel density map. To better 

evaluate the performance of MB localization across different methods, no MB pairing or 

tracking (i.e., raw accumulation only) was implemented in our processing.

In addition to conventional ULM processing, the DL-enhanced MB data can also be used 

for real-time, high-resolution blood flow display: a sliding window of size W in temporal 

direction was used to directly accumulate the DL-enhanced MB data to display blood 

vessels with high spatial resolution. A matrix keeps the latest W DL-processed frames of 

MB data. When a new frame is processed by the network, the matrix will be updated by 

removing the oldest frame with the new frame. A new frame of output display was obtained 

by summing all the W frames of the updated matrix in the time direction.

D. In Vivo ULM Data Acquisition

Fresh fertilized chicken eggs were provided by the University of Illinois Poultry Research 

Farm and housed in a tilting incubator (Digital Sportsman Cabinet Incubator 1502, GQF 

Manufacturing Inc., Savannah, Georgia). After four days, the eggshells were removed and 

embryos were transferred into plastic weigh boats. The ex ovo CAMs were then placed into 

a humidified incubator (Darwin Chambers HH09-DA) until the day of imaging, 13 days 

after eggshell removal.

In preparation for contrast MB injection, a glass capillary needle was produced by pulling a 

borosilicate glass tube (B120–69-10, Sutter Instruments, Novato, CA, USA) with a PC-100 

glass puller (Narishige, Setagaya, Japan). The glass needle was attached to a 1-mL syringe 

using Tygon R-3603 laboratory tubing. The surface vasculature of the CAM was punctured 

with the glass capillary needle and 50 μL of the Definity solution (Lantheus Medical 

Imaging Inc., Billerica, MA, USA) was injected into the embryo immediately prior to 

imaging.
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Optical images were acquired using a Nikon SMZ800 stereomicroscope (Nikon, Tokyo, 

Japan) with a mounted DS-Fi3 digital microscope camera (5.9-Mpixel CMOS image sensor, 

Nikon). Optical data were recorded using the Nikon NIS-Elements software platform and 

exported for offline analysis.

Ultrasound data were acquired using a Vantage 256 system with an L35–16vX high-

frequency linear array transducer (Verasonics Inc., Kirkland, WA, USA). The transducer was 

placed on the side of the plastic weigh boat to image the surface vasculature of the CAM. 

Imaging was performed with a center frequency of 20 MHz using nine-angle plane-wave 

compounding (1° increment) with a post-compounding frame rate of 1000 Hz. Ultrasound 

data were saved as in-phase and quadrature (IQ) datasets of 1600 frames each for a total 

acquisition length of 32 s (32 000 frames). RF data were obtained from the IQ data based on 

IQ demodulation [47].

III. RESULTS

A. Individual MB Localization Performance for Low-to-Moderate MB Concentration

The performance of the DL-based localization was quantified on a set of Field-II simulation 

data with low-to-moderate MB concentration using models trained with group 1 low 

concentration data. The evaluation focuses on the ability to correctly identify individual MB 

signal. The testing set consists of 1 mm × 1 mm samples with MB concentration ranging 

from 1 to 100 MBs/mm2 (0.0059–0.59 MBs/λ2), and 50 samples were generated for each 

concentration. DL-based localization was performed on each of the simulated data. The DL 

localized MB locations and true MB locations were paired by using the algorithm proposed 

in [45]. True MB locations that were not paired, as well as paired true MB locations where 

the pairwise distance was greater than a threshold tol, were considered false negatives 

(FNMB). Similarly, predicted MB locations that were not paired, as well as paired predicted 

MB locations where the pairwise distance is greater than tol, were considered false positives 

(FPMB). The remaining paired MB locations were considered true positives (TPMB) and 

subject to localization error measurement.

An evaluation metric that includes three criteria was developed to quantitatively measure 

MB localization performance: MB false discovery rate (FDR), MB miss rate, and mean 

localization error that are defined as

FDR = FPMB
FPMB + TPMB

(7)

MissRate = FNMB
FNMB + TPMB

(8)

Mean Localization Error =
∑i = 1

N yi − yi 2
N

(9)

Chen et al. Page 8

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ŷi is the measured true positive MB locations and yi is the corresponding ground 

truth. The performances of ENV-trained network (DL-ENV), RF-trained network (DL-RF), 

and conventional localization were averaged across all the 50 testing images for each 

MB concentration. Fig. 4 plots the average performance of DL-based localization and 

conventional localization against increasing MB concentration using the three metrics 

described above with tol set to 5 pixels (0.32λ). The shaded regions represent the standard 

deviation of the performance within each concentration. Both DL-based localization 

methods outperformed conventional localization under this setting. DL-RF outperforms 

DL-ENV in all criteria except for the low concentration FDR, which can be a result of 

DL-RF having the overall tendency of localizing more MBs than DL-ENV. Conventional 

localization has particularly poor performance compared to DL-ENV and DL-RF for low 

concentration in FDR because it lacks the ability to distinguish noise and artifact from the 

actual MB signal. The gap between DL-ENV and DL-RF increases in the mean localization 

error and the FDR as concentration increases, which indicates that the addition of phase 

information in the RF data helps to better maintain the robustness of localization as the 

amount of overlapping MB signal increases.

We are specifically interested in the case of missing localizations, as it is closely related to 

whether increasing MB concentration is still profitable in terms of reducing the acquisition 

time required for full reconstruction of the vascular structure. We identify the point where 

a localization method hits above 50% miss rate as the indicator that it stops effectively 

localizing individual MBs. The 50% miss rate was marked on the performance graph as 

horizontal dashed lines. Fig. 5 plots the concentrations at which each localization method 

hits above 50% miss rate against different tol values chosen to define a missed localization 

(FNMB). Both figures showed that DL-based localization can withstand higher concentration 

before accurate localization of individual MB becomes a task too challenging, which 

can be useful for data acquired with high MB concentration as well as for complex or 

hierarchical vasculature, where large vessels are present in the imaging plane. Specifically, 

DL-RF localization is able to maintain less than 50% miss rate using four times higher MB 

concentration compared to conventional localization.

However, reaching the “breakpoint” for individual MB localization does not necessarily 

mean the complete breakdown of ULM algorithm. Localization of the centroids of “blobs” 

of MBs can still provide useful information for reconstruction of the vascular structure. 

Moreover, as the blobs often tend to stay clustered for several consecutive frames, motion 

tracking on the entire blobs can still be used for estimation of flow speed. Therefore, we will 

further extend the concentration range to study the performance of each localization method 

under more extreme scenarios that are likely to be closer to real experimental environment.

B. Individual MB Localization Performance for High Concentration MB Data

The concentration of simulation data was extended to 1000 MBs/mm2 (5.9 MBs/λ2) with 

a 10-MBs/mm2 step size, with 50 samples generated for each concentration. The DL 

model was retrained using groups 2 and 3 high concentration training data. Evaluation 

of each method was carried out using the same method described in Section III-A. The 

behavior of the trained model changes with significantly increased MB concentration. Fig. 
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6 compares the performance of models trained with simulation with and without the CAM 

vessel structure against conventional localization. Fig. 7 compares the MB localization 

performance between conventional and DL-based methods based on CAM vessel training 

data only. A similar performance as the low-to-moderate concentration was observed for 

the extended concentration ranges. DL-based localization methods, in general, showed better 

performance than conventional localization across the board, with DL-RF showing the 

best localization performance overall. DL-based localization with the CAM vessel structure 

incorporated in simulation had better MB localization performance than without. FDR was 

significantly reduced, while minor improvements were observed for mean localization error 

and miss rate. The significantly lower false positives for both ENV and RF trained networks 

indicate that the spatial information associated with vessels was indeed helpful for the 

network to differentiate vessel versus nonvessel regions to facilitate better MB localization. 

DL-RF localization was able to reduce the MB miss rate while keeping the FDR at a similar 

level with conventional localization. This is not surprising because, as hypothesized, RF data 

have both the amplitude and the phase information of MBs, which facilitates MB separation 

and localization. The performance gain of DL-ENV localization was worsened compared to 

the low concentration case, which indicates that without phase information, the localization 

method is more sensitive to increased overlapping MB signal.

Of note, beyond the concentration of 3 MBs/λ2 or 500 MBs/mm2 (example shown in Fig. 

8), the localization performance of all methods plateaued. The gain in MB localization 

performance using DL becomes very small compared to conventional localization. This is 

not surprising because, at such high concentration, the task of recovering MB locations from 

ultrasound signal turned into an ill-posed problem. As it is not feasible to correctly localize 

individual MBs using a single frame of MB data with spatial information alone, regardless 

of the localization techniques being used, the previously introduced performance metric 

becomes less meaningful.

C. Resolving Synthetic Simple Vascular Structure

When evaluated as a part of the ULM processing chain, the individual MB localization 

quality translates to the ability to reconstruct vessel structures with high fidelity. Therefore, 

we continued to investigate the quality of vessel maps reconstructed using each localization 

method. The evaluation was first performed on a set of synthetic data consisting of two 

vertical or horizontal pairs of vessels with a diameter of 5 pixels. Each pixel is 4.9 

μm (approximately 0.064λ). The separation between vessels was 2 pixels (0.13λ) in the 

horizontal case and 6 pixels (0.38λ) in the vertical case. MBs were randomly placed 

within vessels to generate 200 frames of ultrasound data. ENV-trained network (DL-ENV), 

RF-trained network (DL-RF), and conventional localization were applied to each frame. 

Accumulating location of localized MBs over 200 frames results in the vessel maps shown 

in Fig. 9 (the horizontal case) and Fig. 10 (the vertical case). The profile of the reconstructed 

vessels averaged along the direction of the vessels was also shown in Figs. 9 and 10. For 

the horizontal vessels with a separation of 2 pixels (0.13λ), DL-RF was able to produce 

a clean separation of the vessels. DL-ENV was also able to separate the vessels, but the 

separation was not as clear and only observed from the profile. In the vessel map generated 

using conventional localization, the two vessels were merged, shown by the absence of two 
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separate peaks in Fig. 9(c). When the separation was increased to 10 pixels (0.64λ), all 

three methods were able to resolve the two vessels. However, DL-RF was able to produce 

the clearest boundary and cleanest nonvascular space in between vessels [Fig. 9(b) and (d)]. 

Both DL-based localization methods were able to separate the two horizontal vessels with 

separation of 6 pixels (0.38λ), where conventional localization failed to resolve two vessels. 

When the separation was increased to 10 pixels, all methods were able to resolve the vessels, 

with both DL-based methods producing cleaner boundaries than the conventional method 

and DL-RF slightly outperforming DL-ENV, which is consistent with the horizontal case. 

To summarize, both DL-based localization improved the ability to resolve closely positioned 

structures of ULM. Moreover, DL-RF was able to further improve the axial resolution due to 

its access to the information contained in the axial oscillation of the MB signal.

D. MB Localization Performance Using CAM Vessel Structures as Testing Data

In this section, we tested the MB localization performance on simulation based on realistic 

CAM vessel structures. Only DL networks trained with group 3 high concentration data 

(with CAM vessel structures) were used in this section. For test data generation, four 

1.5 mm × 1.5 mm regions of interest (ROIs) were sampled from the CAM optical 

images and converted to binary vessel maps using adaptive thresholding. For each vessel, 

frames of ultrasound MB images were simulated using the same method described in 

Section II-A. The average MB concentration of the testing data was around 400 MB/mm2. 

Conventional and DL-based localizations were performed for each frame and accumulated 

across 1600 frames. Again, no MB tracking was conducted to better evaluate the localization 

performance for each method. Furthermore, the performance of localization methods was 

no longer evaluated based on the ability to precisely localize individual MBs. Two vessel-

specific metrics were used: 1) the vessel FDR and 2) the vessel miss rate. Definitions for 

the vessel FDR and miss rate follow (7) and (8), where false negatives (FNvessel) were 

defined as locations within vessels that were not covered by localization, false positives 

(FPvessel) were defined as locations outside vessels that were detected as localization, true 

positives (TPvessel) were defined as locations within vessels and covered by localization, 

and true negative (TNvessel) were defined as locations outside the vessels that do not have 

localizations.

Table II summarizes the localization results using 1600 frames of MB data. As shown in 

Table II, DL-RF localization was able to achieve both the lowest vessel miss rate and the 

lowest vessel FDR for all ROIs except for ROI 1 (although only 0.02% higher than the 

lowest FDR). DL-ENV had better miss rate performance than conventional localization (i.e., 

localize more MBs) but at the cost of elevated FDR.

Fig. 11 shows the final localization results against the ground-truth vessel map, where four 

different colors of pixels were used to represent FNvessel (white), FPvessel (blue), TPvessel 

(red) and TNvessel (black). Visually, it is apparent that the DL-RF method fills the vessel 

with the most TPvessel red pixels while retaining a reasonable amount of erroneous blue 

pixels, indicating relatively fewer FPvessel localizations than conventional DL-ENV. It is 

also worth noting that for both DL-based localization methods, FPvessel is most likely to 

occur just outside the edge of a vessel, while in the conventional localization, there are far 
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more FPvessel pixels in nonvessel regions. This result indicates that DL-based localization 

methods are less susceptible to randomly distributed noise commonly mislocalized as MBs 

than conventional localization techniques.

E. In Vivo Study in CAM Surface Vessel

The proposed DL-based methods were then tested in vivo on CAM surface vessel data. 

The generated microvessel density maps were validated against an optical image of the 

same area. Selected ROIs (Fig. 12) that provide the best alignment between ultrasound and 

microscopy imaging were used for the comparison study. For each ROI, ground-truth vessel 

masks were generated based on the optical image. The performance of each localization 

method was evaluated in terms of vessel saturation percentage (i.e., localized vessel pixels 

over total number of vessel pixels). Table III summarizes the 90% vessel saturation time for 

all the localization methods, including the MB separation method proposed in [25]. DL-RF 

localization was over 2× faster than the convention method to reach 90% vessel saturation 

and over 20% faster than MB separation. This result is significant since MB separation is 

much more computationally expensive than the DL-based methods (excluding training).

Fig. 12 compares all localization methods against the optical ground truth. Both DL-based 

localization methods filled the large vessels better (e.g., higher MB count) than conventional 

localization and bubble separation, indicating a better MB isolation and localization 

performance at high MB concentrations. The circles in the figure highlight some thin vessel 

regions according to optical imaging, where DL-based methods had better performance than 

conventional methods. These results are consistent with the simulation results shown in Fig. 

6 and Table II.

F. Real-Time High-Resolution Blood Flow Visualization

Fig. 13 (movie provided in Supplemental Videos 1  and 2 ) shows an example of 

using the proposed DL-based processing method to generate high-resolution, real-time 

visualization of blood flow in vivo. Due to the significantly enhanced spatial resolution 

of MB signal [Fig. 13(b)], one can directly accumulate multiple frames [e.g., 30 frames 

as shown in Fig. 13(b) and (c)] of the enhanced MB signal to produce high-resolution 

blood flow maps at a very fast rate with a very low computational cost (i.e., forward 

processing in the NN). The accumulation alleviates the issue of sparse and weak MB 

signals within a single imaging frame and enhances the visualization of microvasculature. 

Longer accumulation time leads to better vessel delineation, at the cost of reduced temporal 

resolution. Fig. 14 (Supplemental Videos 3  and 4 ) demonstrates two small regions 

in sequential frames of the DL-enhanced display that captured some typical MB activities 

seen in vivo, including clusters of overlapping MB signal splitting and merging, which are 

difficult to visualize with conventional ULM.

G. Computational Cost

1) ULM Processing: Table IV summarizes the computational performance of different 

methods involved in this study, measured by the time consumption of the localization 

processing time on a single frame of CAM acquisition with a size of 280 × 180 pixels 

(6.88 mm × 8.83 mm). All algorithms were GPU-based, except for conventional localization 
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that was implemented in both GPU and CPU for reference. The experiments were executed 

on a workstation running Ubuntu 18.04 operating system, with Intel Core i9–9820X @ 

3.30GHz CPU (ten cores), NVIDIA GeForce RTX 2080 Ti GPU, and 64 GB of RAM. The 

conventional methods were implemented in MATLAB R2019b. The DL-based methods 

were implemented in Python 3.6 using PyTorch. DL-based methods, in general, have 

better computational performance than conventional ones. DL-ENV was the fastest, but 

the MB localization performance associated with DL-ENV was not as good as with DL-

RF. DL-RF was able to achieve around 40% acceleration compared to localization with 

bubble separation while delivering better MB localization performance. The difference 

in computation time between DL-ENV and DL-RF was due to the IQ-to-RF conversion 

process, where the axial dimension was interpolated to four times the pixel size of the 

original IQ data. The input to the DL-ENV has the same spatial dimension as the original IQ 

data, which is four times smaller than the input to the DL-RF method.

2) Real-Time Imaging Feasibility of DL-Enhanced, High-Resolution Blood 
Flow Imaging: The total time consumption for processing one frame of the MB data using 

a trained DL network and generating a new high-resolution vessel image is approximately 

2.38 μs/pixel. The time consumption of Verasonics beamforming is ~40 ns/pixel for each 

compounding angle. Therefore, for a sequence that uses nine compounding angles and 

acquires 100 × 100 pixel ultrasound data per frame, if ignoring the data transfer overhead, 

then the total processing time of each frame is (2.38 μs + 9 40 ns) 10000 pixels = 0.0274 s, 

which corresponds to a display frame rate of ~36 Hz.

For the processing time to satisfy a 10-Hz frame rate for real-time imaging, the processing 

time of each frame cannot exceed 0.1 s. Therefore, the input MB data may have up to 0.1 

s/(2.38 μs + 9 × 40 ns) = 36496 ≈ 191 × 191 pixels. For a center frequency of 5 MHz 

(~0.3-mm pixel size), this image size corresponds to a 58.83 mm × 58.83 mm FOV. For a 

center frequency of 20 MHz (~0.077-mm pixel size), the image size corresponds to a 14.71 

mm × 14.71 mm FOV. Note that these calculations did not factor in costs associated with 

clutter filters (e.g., SVD), although nonlinear imaging (e.g., pulse inversion and amplitude 

modulation) could be used in lieu of clutter filtering to extract MB signals to be fed into the 

NN.

IV. DISCUSSION

In this study, we studied the performance of DL-based method for MB localization for 

ULM using both envelope-detected (ENV) and RF data under challenging high MB 

concentration scenario. We used Field-II to generate simulated training datasets both with 

random MB distributions and with realistic vascular structures obtained from in vivo CAM 

surface vessels. We found that having the vascular structure in the training data was 

beneficial for reducing the number of false positives of MB localization. Moreover, when 

underlying vascular structure information is available, imposing an additional structural 

constraint to further penalize localization in nonvascular regions can improve the quality 

of DL-based localization by producing cleaner nonvascular regions in the reconstruction. 

However, if the realistic vascular structure is not available to use for simulation, completely 

randomly distribute MB would also provide the serviceable result as the difference in mean 
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localization error and miss rate was both minor. In general, DL-based localization methods 

showed better performance than conventional localization, including MB separation. The 

performance of localization using RF data in both simulation and in vivo showed better 

performance over ENV since RF data contain both amplitude and phase information 

of the MB, consistent with the superior performance of RF than envelope reported 

for DL classification/regression [48]. We also identified three MB concentration ranges 

where the localization methods showed different types of behavior: for low concentration 

(under 0.2 MBs/λ2), more than half of the individual MBs can be localized with high 

confidence. Under moderate concentration (i.e., up to 1 MBs/λ2), localization of individual 

MBs becomes unfeasible as concentration increases, but the detection of the centroids 

of multiple clustered MBs can still be used for ULM reconstruction, and the increased 

concentration provides faster saturation. Finally, the performance of both conventional 

and DL-based localization plateaus as MB concentration reaches extreme highs (e.g., >3 

MB/λ2). Increasing MB concentration is no longer profitable, even with a more robust 

localization mechanism. Under high MB concentrations, it is possible that information 

regarding individual MB locations no longer exists in the RF data due to significant 

MB signal overlap (i.e., ultrasound wave interference cannot be recovered using only 

spatial information). In order to overcome this limitation, modifying the DL model to 

also incorporate temporal information of MBs becomes necessary to further improve the 

DL-based MB localization performance.

For in vivo ULM imaging, adjusting the concentration of contrast agents in the bloodstream 

can be challenging, especially for imaging under clinical settings. Even if a lower MB 

concentration can be used to facilitate more robust MB localization, MB concentration can 

still be very high within large vessels and arteries. Moreover, in vivo animal and human 

imaging are in general more challenging than CAM due to deeper imaging depth, tissue 

motion, and other sources of noise such as multipath reverberation and phase aberration. 

Nevertheless, based on the promising results shown in this study, future studies targeting the 

development of a more robust DL-based MB localization method that can account for these 

challenges are warranted.

There are some limitations in this study. First, although optical images of the CAM surface 

vessel were used as ground truth for evaluating the performance of MB localization in vivo, 

it was difficult to achieve a perfect registration between ultrasound and optical imaging 

FOVs. The quality of the ground truth obtained from optical images was also affected by 

the quality of image segmentation as well as the resolution limit of the optical imaging 

system. As a result, the evaluation metric may not deliver an entirely accurate evaluation 

of the MB localization performance in vivo. Second, simulations such as Field II cannot 

perfectly account for the variability of PSF in the real image system. Also, Field II may not 

appropriately simulate nonlinear MB response subject to ultrasound. Therefore, the training 

of the NNs was not optimal and can be further improved. One solution to this issue is to 

carefully align ultrasound FOV with optical imaging and simultaneously acquire ultrasound 

and optical MB data (with MB fluorescently labeled), which can then be used for training. 

However, the amount of training samples that can be obtained using this method will be 

far less than from using simulation. Therefore, we posit that simulation will still serve an 

Chen et al. Page 14

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



important role to initialize DL training for MB localization, and experimental ground-truth 

data can be used for fine-tuning the network to boost its performance.

ULM is computationally expensive, and therefore, any improvement to any segment of the 

processing chain contributes to the reduction of overall processing time. In this article, we 

demonstrated the computational advantage of DL-based MB localization over conventional 

localization techniques. Our analysis of computational time did not include the clutter 

filtering and motion correction steps because they were performed for both DL-based and 

conventional localization techniques. The computational cost of these additional processing 

steps can significantly affect the real-time capability of the DL-based localization technique. 

The additional processing time can be optimized by utilizing more efficient algorithms, 

such as DL-based clutter suppression [49], [50]. Moreover, we did not conduct further 

downstream processing of the MB locations such as MB tracking in this study, which 

can be more computationally expensive than localization. Nevertheless, DL should also 

be capable of tracking MB locations using recurrent NN architectures such as the long 

short-term memory [51]. Finally, in this article, we proposed a real-time feasible high-

resolution vessel visualization method that directly uses DL-enhanced MB signals to display 

vessels. Although the high-resolution display allows one to visually perceive the blood 

flow dynamics, the image does not contain quantitative flow speed information that can 

be obtained with conventional ULM. However, direct inference of MB velocity may be 

possible by training the DL network with spatial–temporal sequences of MB movement, 

which ultimately allows real-time display of blood flow speed at high spatial resolution.

V. CONCLUSION

In this article, we studied the performance of DL-based MB localization method for ULM 

for increasing MB concentration. A U-Net style CNN was trained with Field-II simulated 

ultrasound data (both envelope detected and RF data) based on in vivo CAM surface 

vessel structure. The NN was able to sharpen the ultrasound MB signal so that overlapping 

and distorted MB signal were able to be better localized. Under low concentration, DL-

based methods were able to more precisely localize individual MBs. As concentration 

increased, the behavior of all localization methods changed to localizing speckles rather than 

individual MB. The DL-based method was still able to improve the localization accuracy 

and reduce saturation time by localizing more MB clusters in each frame of ultrasound 

acquisition. Furthermore, the DL-processed ultrasound data can be utilized to achieve real-

time high-resolution visualization of blood flow dynamics. The proposed method can be 

further improved by developing a training dataset with better ground truth and incorporating 

temporal information of MBs in training.
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Fig. 1. 
Example of group 3 training data generation based on optical imaging of the CAM. (a) 

Green channel image of the CAM surface. (b) Binary vessel map after adaptive thresholding. 

(c) and (d) Simulated B-mode (i.e., envelope detected) image and RF data using Field II, 

respectively. Red crosses mark the true MB locations.
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Fig. 2. 
Schematic of the NN. The color-coded blocks represent different types of layers in the 

NN. The NN contains a feature extraction path that extracts feature maps from the input 

ultrasound data and a reconstruction path that recovers a super-resolution localization map 

from the feature maps.
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Fig. 3. 
(a) Simulated B-mode (envelope detected) image of the MBs and the results of conventional 

localization. (b) Output of the model trained with envelope-detected (ENV) data. (c) Output 

of the model trained with RF data. In all subfigures, measured locations are marked by 

yellow × and true MB locations are marked by cyan +. DL enhances the input ultrasound 

data by sharpening the MB signal so that they can be better separated for easier localization.
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Fig. 4. 
Average localization performance on the low concentration simulation test dataset. (a) Mean 

localization error. (b) False discovery rate. (c) Miss rate.
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Fig. 5. 
Point where each localization method hits above 50% miss rate versus different tolerance 

values for localization error for the simulation dataset.
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Fig. 6. 
Localization performance on the simulation testing set, comparison between conventional 

localization, localization using DL-ENV, and localization using DL-RF. (a) Mean 

localization error. (b) False discovery rate. (c) Miss rate.
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Fig. 7. 
Localization performance on the simulation testing set, comparison between simulation 

training set with random MB distribution and MB within vessels. (a)–(c) Compares the 

mean localization error, false discovery rate, and the miss rate between conventional 

localization and DL-ENV methods. (d)–(f) Compares the mean localization error, false 

discovery rate, and the miss rate between conventional localization and DL-RF methods. 

Note that the results presented in Fig. 6 were also included in Fig. 7. The plots in Fig. 

6 were rearranged to show the comparison between conventional localization, localization 

using DL-ENV, and localization using DL-RF.
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Fig. 8. 
Ultrasound MB simulation where 625 MBs were present in the 1 mm × 1 mm FOV. “x” 

marks the true MB locations. (a) ENV data. (b) RF data.
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Fig. 9. 
ULM reconstruction of two closely spaced simulation vessels. (a) Vessels are axially 

separated by 2 pixels (0.98 μm, 0.13λ). (b) Vessels are axially separated by 10 pixels (4.9 

μm, 0.64λ). (c) and (d) Profile of the reconstructed vessels in (a) and (b), respectively.
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Fig. 10. 
ULM reconstruction of two closely spaced simulation vessels. (a) Vessels are laterally 

separated by 6 pixels (3.0 μm, 0.38λ). (b) Vessels are laterally separated by 10 pixels (4.9 

μm, 0.64λ). (c) and (d) Profile of the reconstructed vessels in (a) and (b), respectively.
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Fig. 11. 
Difference maps of accumulated localization and ground-truth vessel map for the simulation 

vessel dataset. Maps of the same ROI were arranged in the same row, whereas maps created 

using the same localization method were arranged in the same column. Red pixels represent 

TPvessel localizations, blue pixels represent FPvessel localizations, white pixels represent 

FNvessel localizations, and black pixels represent TNvessel localizations.
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Fig. 12. 
Comparison of different MB localization methods with optical ground truth for experimental 

CAM data. The circles denote example thin vessel segments where DL-based localization 

was better at localizing MB signals than the conventional techniques. The top row and 

bottom row are of two different ROIs. The first column is the binarized optical ground truth. 

The rest of the columns are the microvessel density map obtained using different localization 

methods.
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Fig. 13. 
Example workflow for real-time high-resolution blood flow visualization using experimental 

CAM data. (a) Original B-mode input image (a single frame) of MBs in the CAM (movie 

provided in Supplemental Video 1 ). (b) DL-processed MB image using (a) as input. (c) 

30-frame accumulation of the DL-processed MB signals that demonstrates high-resolution 

blood flow visualization (movie provided in Supplemental Video 2 ).
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Fig. 14. 
Two cases demonstrating the utility of the real-time high-definition MB imaging by DL 

processing on experimental CAM data. (a) Case 1: in circle 1, an MB travels along the 

direction indicated by the arrow, and in circle 2, an MB splits from a cluster of MBs and 

travels along the direction indicated by the arrow. (b) Case 2: in circle 1: a weaker blob of 

MB merges with a stronger blob and travels along the direction indicated by the arrow, and 

in circle 2, consistent MB flows are observed in a vessel branch along the direction indicated 

by the arrows.
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TABLE I

FIELD-II SIMULATION PARAMETERS

Variable name Value

Transducer type Linear array transducer

Number of transmit elements 128

Number of receive elements 128

Element height 80 µm

Element width 62 µm

Pitch 70 µm

Transmit apodization Kaiser

Receive apodization Rectangle

Center frequency 20 MHz

Sampling frequency 125 MHz

Speed of sound 1540 m/s

Number of compounding angles 9
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TABLE II

MB LOCALIZATION PERFORMANCE BASED ON CAM VESSEL STRUCTURES

Conventional DL-ENV DL-RF

ROI 1 Miss Rate (%) 26.52 22.67 18.11

FDR (%) 36.93 44.42 36.95

ROI 2 Miss Rate (%) 25.83 23.33 18.54

FDR (%) 38.77 44.02 35.61

ROI 3 Miss Rate (%) 26.36 21.05 18.31

FDR (%) 39.90 45.54 39.28

ROI 4 Miss Rate (%) 26.89 22.86 19.65

FDR (%) 37.11 43.81 36.89
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TABLE III

ESTIMATED AVERAGE SATURATION TIME

Conventional Bubble Separation DL-ENV DL-RF

t90% (s) 4.46 2.40 2.53 1.96
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TABLE IV

COMPUTATIONAL COST FOR PROCESSING A SINGLE FRAME OF CAM DATA

Method Conventional (CPU) Conventional (GPU) Bubble Separation DL-ENV DL-RF

Time(ms) 601 130 304 77 168
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