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The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the
pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence
systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and
prevent viral propagation* Phages use several strategies to defeat host CRISPR and
restriction-modification systems>°, but no mechanisms are known to evade CBASS
and Pycsarimmunity. Here we show that phages encode anti-CBASS (Acb) and
anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic

nucleotide signals that activate hostimmunity. Using a biochemical screen of 57
phagesin Escherichia coli and Bacillus subtilis, we discover Acbl from phage T4 and
Apycl from phage SBSphiJ as founding members of distinct families ofimmune
evasion proteins. Crystal structures of Acblin complex with 3’3’-cyclic GMP-AMP
define amechanism of metal-independent hydrolysis 3’ of adenosine bases, enabling
broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS
signals. Structures of Apycl reveal a metal-dependent cyclic NMP phosphodiesterase
that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide
signals. We show that Acbland Apycl block downstream effector activation and
protect from CBASS and Pycsar defence in vivo. Active Acbl and Apycl enzymes are
conserved in phylogenetically diverse phages, demonstrating that cleavage of host
cyclicnucleotide signals is a key strategy of immune evasion in phage biology.

To determine how phages evade cyclic nucleotide-based bacterial
immune systems, we developed a biochemical screen to analyse the
stability of 11 distinct cyclic nucleotide signals during infection with 57
diverse phages (Fig. 1a and Supplementary Table 1). CBASS and Pycsar
systems are widely distributed throughout the bacterial kingdom and
arepresentinboth Gram-negative and Gram-positive bacteriaincluding
E.coliand B. subtilis**". Lysates from uninfected laboratory strains of £. coli
or B.subtilisreadily hydrolyse common cyclic nucleotide signalsinclud-
ing cyclic-di-GMP (cGG) and cyclic-di-AMP (cAA; Fig. 1b, cand Extended
DataFigs.1and 2), consistent withknownbacterial enzymes that regulate
these signals during basal cellular function'*, By contrast, CBASS and
Pycsarantiphage signalsincluding 3’3’-cyclic GMP-AMP (3'3’-cGAMP) and
3’,5’-cyclic CMP (cCMP) are exceptionally stable and remainintact follow-
ing20-hincubationinuninfected lysates. Strikingly, infection with diverse
phages causes rapid hydrolysis of cyclic nucleotide signals specifically
involved inimmune defence (Fig. 1b, c). Lysates from cells infected with
phage T4 and other closely related T-even coliphages degrade distinct
classes of CBASS signals including cyclic dinucleotides 3’3’-cGAMP and
3’3’-cyclicUMP-AMP (cUA), and cyclic trinucleotides 3’3'3’-cyclic AMP-
AMP-AMP (cAAA) and 3’3’3’-cyclic AMP-AMP-GMP (cAAG). Likewise,
lysates from cells infected with the SBSphi) family of B. subtilis phages
rapidly degrade the Pycsar signals cCMP and cUMP (Fig.1b, ¢). Except for
the rare CBASS dinucleotides 3’3’-c-di-UMP and 3"2’-cGAMP, all known

cyclicnucleotide signals used in CBASS or Pycsarimmune defence were
susceptible to degradation by at least one phage (Fig. 1c).

Phages encode immune evasion nucleases

Rapid degradation of cyclic nucleotide signals used in host immu-
nity suggests that phages encode proteins dedicated to CBASS and
Pycsar evasion. To define anti-CBASS (Acb) and anti-Pycsar (Apyc)
proteins, we first focused on phage T4 and used an activity-guided
fractionation and mass spectrometry approach to identify candidate
Acb proteins responsible for 3’3’-cGAMP cleavage (Fig.2a and Extended
Data Fig. 3a). In vitro screening of each candidate demonstrated that
theuncharacterized T4 gene 57Bencodes a protein that degrades the
CBASS signal 3'3’-cGAMP (Extended DataFig. 3b, c), and we named this
anti-CBASS protein Acbl (GenBank accession number NP_049750.1).
Recombinant T4 Acblrapidly degrades the CBASS signals 3'3’-cGAMP,
cUA and cAAA, but does not cleave cGG, demonstrating that Acblis
responsible for the broad cyclic nucleotide hydrolysis activity observed
in T4-infected cell lysate (Fig. 2b, cand Extended Data Fig. 4). We next
identified candidate Apyc proteins within SBSphiJ-family phages that
cleaved cCMPinour biochemical screen. Genome sequencing and com-
parative bioinformatic analysis of eight closely related SBSphiJ-family
phages revealed two genomic regions present exclusively in phages
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Fig.1|Phagesselectively degrade cyclicnucleotidesignalsusedinhost
defence. a, Schematic depictingascreenofcyclicnucleotide degradation
activity inphage-infected lysates using thin-layer chromatography (TLC).

b, Representative TLC assays depicting cleavage of 3’3-cGAMP following
infectionby T2, T4 and T6 phages, or cleavage of cCMP following infection with
SBSphi) phage. Dataarerepresentative of atleast twoindependentreplicates. P;,
inorganic phosphate; —, buffer only control. ¢, Summary of the complete results
ofthescreeninb, with four phages closely related to T5 omitted for clarity (see
Supplementary Table 1for completelist of phages). The greenshading represents
theincubationtimesindicatedin the key. T4-related phages degrade diverse
CBASSssignals and SBSphi-related phages degrade diverse Pycsar signals.

capable of degrading cCMP (Fig. 2d and Extended Data Fig. 5a). We used
structure predictionto analyse each protein encoded in these regions
and identified that the uncharacterized SBSphi) gene 147 encodes a
protein with predicted homology to known metallo 3-lactamase (MBL)
fold RNase and phosphodiesterase enzymes (Fig. 2d and Extended
DataFig.5a, b). Recombinant protein produced from gene 147 rapidly
degrades the Pycsar signals cCMP and cUMP (Fig. 2e, f and Extended
DataFig.5c-f), and we named this anti-Pycsar protein Apycl (European
Nucleotide Archive genome accession number ERS1981056). SBSphi)
Apycl efficiently hydrolyses a wide range of cyclic mononucleotides
(Fig. 2f), exhibiting an atypically relaxed nucleobase specificity that
enablestargeting of cyclic pyrimidine signals used in Pycsarimmunity.

Immune evasiongenes frequently cluster together in the genomes of
phages to formanti-defenceislands™*. Consistent with arolein CBASS
evasion, T4 Acblis encoded adjacent tointernal protein (ipl), a phage
inhibitor required to evade the E. coli restriction enzyme gmrS/gmrD

thatrecognizes glucosylated cytosine bases presentin T4 genomic DNA
(ref. ®; Fig. 2g). Apyclis thefirstidentified anti-defence gene in SBSphij,
limiting comparative analysis with other genesin this phage. However,
Apyclisencodedadjacentto aseries of small proteins of unknown func-
tion, suggesting that this variable locus in SBSphiJ-family phages may
contribute to evasion of other antiphage defence systems (Fig.2h). To
discover further Acb and Apyc proteins, we searched for proteins related
to Acbland Apycl within phage genomes and prophage sequences
(Fig. 2i,j). Analysis of T4 Acblidentified 281 related protein sequences
with about 97% predicted to be of phage origin. We cloned and tested
afurther 9 achl genes and observed that each recombinant Acbl pro-
tein efficiently cleaved the CBASS signals 3’3’-cGAMP and cAAA (Fig. 2i
and Extended DataFig. 6a). We identified 107 proteins related to Apycl
presentin phage genomes (Fig. 2j) and also found many closely related
bacterial proteins encoded in diverse bacterial orders (Extended Data
Fig. 6b). Similar to SBSphi] Apycl, closely related phage and bacterial
Apycl-like proteins cleaved cyclic mononucleotides with broad specific-
ity (Fig. 2j and Extended Data Fig. 6c). By contrast, the closely related
B.subtilisenzymes Yhfl (GenBank accession number NP_388905.1) and
MBL phosphodiesterase (GenBank accession number WP_013351727.1)
exhibited astrong preference for cAMP/cGMP over cCMP/cUMP cleav-
age, confirming that relaxed nucleotide specificity and Pycsar signal
degradationare unique to Apycl and not general features of MBL phos-
phodiesterase enzymes (Extended Data Fig. 6d). The observation of
Apycl homologues encoded in bacteria may be explained by the pres-
ence of cryptic prophages presentinbacterialgenomes, but also raises
the intriguing possibility that host Apycl enzymes may play arole in
regulating Pycsar defence or other cNMP-based signalling systems. In
total, our analysis identified 273 Acbl and 107 Apycl phage proteins,
demonstrating that cyclic nucleotide-degrading enzymes constitute
awidespread form of anti-CBASS and anti-Pycsar evasion.

Mechanisms of cyclic nucleotide cleavage

We next determined crystal structures of Acbl to define the mechanism
of anti-CBASS evasion. Structures of Acbl from the Erwinia phage FBB1
inthe apo state (1.1 A) and in complex with 3’3’-cGAMP (1.2 A) reveal that
Acbladoptsacompact2H phosphoesterase fold with six central -strands
that form a U-shaped ligand-binding pocket (Fig. 3a, Extended Data
Fig. 7a and Supplementary Table 2). On substrate recognition, the flex-
ible carboxy-terminal residues 145-152 form an ordered lid that closes
over the top of the captured 3’3’-cGAMP ligand (Fig. 3a and Extended
DataFig. 7b). Acbl ligand recognition is primarily independent of base
identity, with the conserved aromatic residues Y12, W74, F107 and W147
forming stacking interactions with the face of each nucleobase (Fig. 3b).
However, base-specific contact occurs between E141 and the 3’3’-cGAMP
adenosine N6 position, explaining why at least one adenosine is required
for cleavage (Fig. 2c and Extended Data Fig. 7c). Although overall lack of
sequence-specific contacts allows Acbl to target a broad range of CBASS
cyclicnucleotidesignals, the Acb1binding pocket canaccommodate only
cyclicdinucleotide or trinucleotide species. Structural clashes prevent
recognition of larger cyclic oligonucleotides with >3 bases, and we con-
firmed that Acblis unable to degrade cyclic tetra-adenylate (cA,) rings
common in type lll clustered regularly interspaced short palindromic
repeats (CRISPR) immunity'®" (Extended Data Fig. 7d). Acbl-nucleotide
interactions contort 3’3’-cGAMP into a highly strained conformationin
which the adenosine base is rotated about 65° relative to the in-solution
or receptor-bound conformation, repositioning the 2’ OH for attack on
the 3'-5' bond™®* (Fig. 3¢). In the Acb1-3'3’-cGAMP structure, the scissile
phosphateis positioned over anactive-site HXT/HxT tetrad (H44, T46,H113,
T115) foracid-base catalysis and theligandis fully hydrolysedinto the linear
product G[3'-51pAp[3] (GpAp) (Fig. 3d and Extended Data Fig. 7e). We
tracked cleavage reactionsinvitro using high-performanceliquid chroma-
tography (HPLC) and confirmed that Acblcleaves 3’ of adenosineresidues
inatwo-step, metal-independent reaction that proceeds throughacyclic
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Fig.2|Distinctviral nucleases target CBASS and Pycsarimmunesignals.
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phosphateintermediate (Extended DataFig. 7f). Substitutions of conserved
active-siteand nucleotide-coordinating residues disrupt enzyme function
and highlight the critical role for contacts stabilizing the rotated adenine
base in Acbl cyclic nucleotide cleavage (Fig. 3e).

To compare mechanisms of anti-CBASS and anti-Pycsar evasion,
we determined the crystal structure of Apycl from the phage Bsp38
(2.7 A) as well as structures of Paenibacillus Apycl proteins (1.5 A and
1.8 A). These structures confirm that Apycl is a member of the class
Il phosphodiesterase enzymes, which exhibit an MBL fold and have
no structural or mechanistic homology to Acbl (ref. *°; Extended
Data Fig. 8a, b and Supplementary Table 2). Similar to other structur-
ally characterized class Il phosphodiesterases such as B. subtilis Yhfl,
yeast Saccharomyces cerevisiae PDE1 or widely distributed RNase Z
proteins??, Apycl is a homodimer with a highly conserved HxHxDH
motif that coordinates two Zn?* ions that bind phosphate groups to
position cyclic nucleotides for cleavage (Extended Data Fig. 8a—-c).
Inastructure of Paenibacillus Apycl co-crystallized in the presence of
nonhydrolysable cAMP, we observed strong electron density near the
Zn*"ions and more diffuse density in the nucleobase pocket, consistent
withspecific coordination of the phosphate and ribose backbone of cyclic
mononucleotides and weaker nucleobase specificity withinthe enzyme
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experiments.e, Comparison of cCMP cleavage by SBSphi) lysate and recombinant
Apycl.Dataarerepresentative of threeindependent experiments. f, Summary of
HPLCanalysistesting Apyclsubstrate specificity (20-minincubation). Apyclcleaves
allcNMPsignals withequal efficiency. Dataare presentedasmean +s.d.fromn=3
independentexperiments.g, h, Schematics showing genes neighbouring T4 Acbl
(g) and SBSphiJ Apycl (h); ANMP, deoxyribosenucleoside monophosphate.

i, Phylogenetic tree showing T4 Acbland 271 related protein sequences from phages,
including112sequences derived from prophages. Colour stripsindicate the order of
thebacterialhost.Red circlesindicate proteins tested for cleavage of 3'3-cGAMP
and cAAA.j, Phylogenetic treedisplaying SBSphi) Apycland 106 related protein
sequences from phages. Colour stripsindicate the genus of the bacterial host. Red
circlesindicate proteinstested for cleavage of cAMP and cCMP.

activessite (Extended DataFig. 8d). Structural comparison of Apycland
B.subtilisYhflalso reveals that Apycl enzymes contain an extended loop
that reaches into the nucleotide-binding pocket, potentially enabling
stable binding of smaller cyclic pyrimidine substrates (Extended Data
Fig. 8b). We confirmed the critical role for Apycl metal-coordinating
residues and identified E74 and Y112 from the opposing protomer as
further catalytic residues required for cCMP hydrolysis and release of
thereaction product5’-CMP (Extended Data Fig. 8e, f). Together, these
findings demonstrate that Acbland Apycl constitute separate families of
immune evasion proteins and explain the distinct reaction mechanisms
that degrade CBASS or Pycsar cyclic nucleotide signals (Fig. 3f).

Acbland Apyclsubvert host immunity

CBASS and Pycsar antiphage defence requires cyclic nucleotide-
dependentactivation of downstreameffector proteins thatinduce cell
death'??*2¢ Using a panel of CBASS nuclease and phospholipase effec-
tors from Vibrio cholerae, Enterobacter cloacae and Burkholderia pseu-
domallei, we reconstituted CBASS signalling in vitro and observed that
Acbl potently inhibited activation of both cyclic dinucleotide- and cyclic
trinucleotide-responsive effectors® (Fig.4aand Extended DataFig.9a,b).
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Likewise, Apycl enzymatic activity abolished cUMP-dependent activa-
tion of the Pycsar NADase effector PycTIR (ref. %; Fig. 4b). The activities of
Acbland Apycl are specific to CBASS or Pycsar signalling, demonstrat-
ing thatanti-CBASS and anti-Pycsarimmune evasion proteins are dedi-
cated to eachclass of antiphage defence system (Fig.4a,band Extended
Data Fig. 9a). Tracking Acbl and Apycl activity during infection, we
observed that cyclic nucleotide degradation activity begins about 15 min
into phage T4 infectionand about 30 mininto phage SBSphij infection,
coinciding withthe known late onset of CBASS and Pycsar antiphage cell
death responses’* (Extended Data Fig. 9¢, d). Acbl expression in E. coli
inhibited CBASS-mediated cell death in vivo, suggesting thatimmune
evasion proteins can protect phages from premature abortive infection
responses (Extended DataFig. 9e).

To define theimportance of degradation of cyclic nucleotideimmune
signals during phage infection, we infected E. coli expressing complete
CBASS and Pycsar defence operons and quantified the effect of Acbl
and Apycl expression on phage replication. Inthe presence of anactive
type Il CBASS operon from E. coli KTE188, Acb1 expression signifi-
cantly boosted infectivity of the normally susceptible phage P1by about
1.5log (Fig.4c). Likewise, expression of Apyclin E. coli disrupted Pycsar
defence and completely rescued growth of phage T5, demonstrating
that Acbland Apycl are sufficient to counteract host CBASS and Pycsar
defence (Fig.4d). Todetermine whether cyclic nucleotide degradation
is necessary forimmune evasion, we next focused on engineering a
mutant phage lacking the ability to cleave immune nucleotide signals.
Robust approaches do not yet exist for genetic manipulation of B. sub-
tilis phages, and analysis of apycl-deletion viruses will therefore be a
focus of future research. However, we were able to use recent advances
in coliphage engineering to create a phage T4 mutant virus lacking
functional Acbl (phage T4 AacbI) (Extended DataFig.10a). E. colicells
infected with phage T4 Aacb1 do not hydrolyse 3'3’-cGAMP, confirming
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that Acblis essential for viral degradation of CBASS immune cyclic
nucleotides (Extended Data Fig. 10b). In the absence of functional
CBASS defence, phage T4 and phage T4 Aacbl grow equally well, reveal-
ing that Acblis not required for normal replicationin E. coli (Fig. 4e, f
and Extended Data Fig.10c, d). In contrast, growth of phage T4 Aacbl
is specificallyimpairedin the presence of active CBASS immunity with
the mutant virus exhibiting a >300-fold defectin viral replication com-
pared to wild-type phage T4 (Fig. 4e, fand Extended Data Fig.10c, d).
These results demonstrate that viral nucleases are critical for evasion
of cyclic nucleotide-mediated phage defence.

Together, our data define Acbl and Apycl as founding members of
families of anti-CBASS and anti-Pycsar immune evasion proteins that
allow phagestoselectively hydrolyse cyclic nucleotideimmune signals
used for host defence. No single phage could degrade all cyclic nucleo-
tideimmune signals, revealing that diversification of cyclic nucleotide
signals between CBASS and Pycsar systems is a key host adaptation
to maintain successful antiphage defence*". Acbl and Apycl join a
growing collection of viral nuclease enzymes dedicated to immune
evasion, including phage ring nucleases that degrade cA, and cA, signals
used in type Il CRISPR immunity??® and poxin enzymes that degrade
2’3’-cGAMP to inhibit cyclic GMP-AMP synthase (cGAS)-stimulator
of interferon genes (STING) signalling in animals®. Each of these viral
enzymes is structurally distinct, demonstrating at least four separate
instances of prokaryotic and eukaryotic viral evolution to degrade host
cyclicnucleotideimmune signals. The broad specificity of Acblallows
evasion of diverse CBASS operons with a single gene, and the ability of
Acbl to cleave cyclic trinucleotide species suggests that this enzyme
may also enable evasion of type [l CRISPR systems that use cAAA signals.
Notably, Acblis unable to cleave the non-canonical 2’-5’linkage in the
CBASS signalling molecule 3'2’-cGAMP (ref.°), mirroring the recent
demonstrationthat 3'2’-cGAMP signalling in animals enables resistance
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to poxin enzymes>. The large diversity of >180 possible nucleotide
signals proposed to exist in antiphage defence suggests thatinaddition
to signal degradation, phages may encode Acb and Apyc proteins that
target alternative components of CBASS or Pycsar immunity. Overall,
ourresults define viral nucleases as awidespread mechanism of CBASS
and Pycsarimmune evasion and reveal the role of viral proteins in driv-
ing evolution of cyclic nucleotide-based immune defence systems.
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Methods

Bacterial strains and phages

E. coli strain MG1655 (ATCC 47076) and B. subtilis BEST7003 (ref. *?)
were grown in magnesium-manganese broth (MMB; lysogeny broth
supplemented with 0.1 mM MnCl, and 5 mM MgCl,) with or without
0.5% agar at 37 °C or 30 °C, respectively. Whenever applicable, media
were supplemented with ampicillin (100 pg ml™), chloramphenicol
(34 pg mI™) or kanamycin (50 pg ml™) to ensure the maintenance of
plasmids. Phage isolation was performed as previously described®.
In general, phage infections were performed in MMB media at 37 °C
for E. coliMG1655 and at 30 °C for B. subtilis and phages were propa-
gated by picking asingle phage plaqueintoaliquid culture growntoan
optical density at 600 nm (OD,) of 0.3 in MMB medium until culture
collapse. The culture was then centrifuged for 10 min at 3,200g, and
the supernatant was filtered through a 0.2-pum filter. The titre of the
lysate was determined using the small-drop plaque assay method as
described previously**.

Recombinant protein expression and purification
Acbl, Apycl, cGAS/DncV-like nucleotidyltransferases (CD-NTase),
cGAS-like receptors and effector proteins were purified from E. coli
as previously described™***, Briefly, genes were cloned from syn-
thetic DNA fragments (Integrated DNA Technologies) into custom
pET expression vectors containing amino-terminal 6xHis-SUMO2 or
6xHis-MBP-SUMO2 tags by Gibson assembly using HiFi DNA Assem-
bly Master Mix (NEB)*. Expression plasmids were transformed into
BL21(DE3) RIL cells (Agilent) and plated onto MDG media (1.5% Bacto
agar, 0.5% glucose, 25 mM Na,HPO,, 25 mM KH,PO,, 50 mM NH,CI,
5mM Na,SO,, 0.25% aspartic acid, 2-50 pM trace metals, 100 pg ml™*
ampicillin, 34 pg ml™ chloramphenicol). After overnight incubation
at37°C, three colonies were used to inoculate a 30-ml MDG starter
culture for16 h (37 °C, 230 r.p.m.). M9ZB expression cultures of 11in
volume (47.8 mM Na,HPO,, 22 mM KH,PO,, 18.7 mM NH,CI, 85.6 mM
NacCl, 1% casamino acids, 0.5% glycerol, 2 mM MgSO,, 2-50 pM
trace metals, 100 pg ml™ ampicillin, 34 pg ml™ chloramphenicol)
were then inoculated with 15 ml MDG starter culture and grown
(37°C, 230 r.p.m.) to an OD¢,, of 2.5 before induction with 0.5 mM
isopropyl--D-thiogalactoside (IPTG) for 16 h (16 °C, 230 r.p.m.). For
WT Apycl protein, bacteria were grown in 2YT media (16 g I Bacto
tryptone, 10 g I yeast extract, 5 g I""NaCl, pH 7.0) for both starter and
expression cultures and grownto an OD,,, of 1.5 beforeinduction with
0.5 mMIPTG for 16 h (16 °C, 230 r.p.m.). Selenomethionine-labelled
proteinwas prepared as previously described® by expressing 11 cultures
in modified M9ZB media (47.8 mM Na,HPO,, 22 mM KH,PO,,18.7 mM
NH,CI, 85.6 mMNaCl, 0.4%glucose,2 mMMgS0,,2-50 pM trace metals,
1pg ml™ thiamine, 100 pg ml™ ampicillin, 34 pug ml™ chloramphenicol)
and allowing the cultures to grow to an OD, of 0.8 before supple-
mentation with L-amino acids (50 mg ml™ leucine, isoleucine, valine;
100 mg ml™ of phenylalanine, lysine, threonine; 75 mg ml™ selenom-
ethionine) and induction with 0.5 mMIPTGfor16 h (16 °C,230 r.p.m.).
After overnight expression, cell pellets were collected by centrifuga-
tionand thenresuspended and lysed by sonicationin 50 mllysis buffer
(20 MM HEPES-KOH pH 7.5,400 mM NaCl, 10% glycerol, 30 mMimida-
zole,1 mM TCEP). Lysate was clarified by centrifugationat 50,000g for
30 min, supernatant was poured over 8 mINi-NTA resin (Qiagen), resin
was washed with 35 ml lysis buffer supplemented with 1M NaCl, and
proteinwas eluted with10 mllysis buffer supplemented with 300 mM
imidazole. Samples were then dialysed overnight in dialysis tubing
with a 14 kDa molecular weight cutoff (Ward’s Science), and SUMO2
tag cleavage was carried out with recombinant human SENP2 protease
as previously described®. Proteins used for crystallography were dia-
lysed overnight at 4 °C in dialysis buffer (20 mM HEPES-KOH pH 7.5,
250 mMKCI, 1 mM TCEP), and then purified further by size-exclusion
chromatography using a16/600 Superdex 75 column (Cytiva), whereas

proteins used for biochemical assays were dialysed in dialysis buffer
supplemented with10% glycerol. Purified proteins were concentrated
to >15 mg ml™ using 10-kDa MWCO centrifugal filter units (Millipore
Sigma), aliquoted, flash frozenin liquid nitrogen and stored at =80 °C.

Thin-layer chromatography

Thin-layer chromatography was used to analyse cyclic nucleotide deg-
radation as previously described®. Cyclic nucleotides were synthesized
using the following purified recombinant enzymes: V. cholerae DncV
(ref.™): cAA, 3'3’-cGAMP, ¢GG; E. cloacae CdnD (ref. 2): CAAA, cAAG;
Rhodothermus marinus CdnE (ref."): cUA; Y. aleksiciae CdnE (ref.>®):
3/3’-cUU; Drosophila eugracilis cGLR1 (ref. *"): 3'2’-cGAMP; Mus muscu-
lus cGAS (ref. >): 2"3’-cGAMP; E. coli PycC (ref.?): cCMP; Burkholderia
cepaciaPycC (ref.?): cUMP. Synthesis reactions were performed at 37 °C
for20 h, and consisted of 2.5 uM appropriate enzyme, 25 puM appropri-
ate nucleoside triphosphates (NTPs), trace amounts of «->’P-labelled
NTP,100 mMKCI, 1 mMdithiothreitol (DTT), 5 mM MgCl,,1 mMMnCl,
and 50 mM Tris-HCI pH 7.5 (DncV, cGLR1, cGAS) or pH 9.0 (all other
enzymes)inafinal volume of 40 pl. Unincorporated NTPs were digested
by addition of 1 pl Quick CIP (NEB) followed by incubation at 37 °C for
30 minand heatinactivation at 95 °C for 2 min. Synthesis reactions were
thenused asinputs for downstream degradationreactions, which were
carried outat 37 °Cin 10-pl mixtures composed of 1 pl of a10x recom-
binant enzyme stock or cellular lysate, 0.25-0.5 pl of the appropriate
synthesis reaction (about 1-2 pM a-*?P-labelled cyclic nucleotide),
50 mM Tris-HCIpH 7.5,10 mM KCland 1 mM TCEP. After 5-20-minincu-
bation (unless indicated otherwise), 0.5 pl volumes of reactions were
spotted ona 20 cm x 20 cm PEI cellulose thin-layer chromatography
plate (Sigma Aldrich) and developedin1.5 MKH,PO, (pH 3.8) buffer for
45 min. Plates were dried at room temperature, exposed to a storage
phosphor screen, and detected with a Typhoon Trio Variable Mode
Imager System (GE Healthcare).

Cell lysate preparation

Overnight cultures of E. coli or B. subtilis were diluted 1:100 in 250 ml
MMB medium and grown at 37 °C for E. coli and 30 °C for B. subtilis
(250 r.p.m.) until reaching an OD,, of 0.3. The cultures were infected
with phages (Supplementary Table1) at a final multiplicity of infection
of 2. Samples of infected cells were taken before culture collapse (for
time points, see Supplementary Table1). Samples of 5 mlin volume were
taken and centrifuged for 5 minat3,200g and 4 °C. The culture pellets
were flash frozen using dry ice and ethanol. E. coli pellets were resus-
pendedin 250 pl of alysis buffer containing20 mM HEPES-KOHpH 7.5,
150 mM NaCl, 5 mMMgCl,, 1 mMMnCl,,1 mMDTT, 10% glycerol and 1%
NP-40, and incubated at room temperature for 30 min with occasional
vortexing. Bacillus pellets were first treated with T4 lysozyme (Ther-
moFisher) at1mg ml™in PBS at 37 °C for 10 min, followed by addition of
400 plof E. colilysis buffer and 30-minincubation at room temperature.
Samples were clarified by centrifugation for 5 min at17,000g at 4 °C,
andthe supernatant was aliquoted and flash frozenin liquid nitrogen,
and stored at —80 °C.

T4 Acblactivity-guided fractionation, mass spectrometry
analysis and candidate screen

Overnight E. coliMG1655 cultures were diluted 1:100 into a volume of
21 MMB and grown for about 1 h to an 0D, of 0.3-0.5. Phage T4 was
added atamultiplicity ofinfection of 2, and cells were collected 25 min
post infection by centrifugation for 20 min at 3,200g. Infected cell
pellets were resuspended in 40 ml of lysis buffer consisting of 20 mM
HEPES-KOH pH 7.5,150 mM KCI,1 mM DTT, 5 mM MgCl,, 1 mM MnCl,,
10% glycerol and 1% NP-40 and incubated at room temperature for
30 min with occasional vortexing. Lysates were clarified by centrifu-
gationat20,000gfor 15 minat4 °Cand fractionated by ion-exchange
chromatography using a5-mlHiTrap SP columnand agradient of 0.05-
1.0 MNaCl. Active ion-exchange fractions were pooled, concentrated,
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and further separated witha10/300 Superdex 75 column (Cytiva).Ina
separate approach, (NH,),SO, was added to clarified lysates to a final
concentration of 30%, and precipitated proteins were removed by
centrifugation at 20,000g for 15 min. The soluble fraction was then
separated using hydrophobicinteraction chromatography usinga5-ml
phenyl column (Cytiva) and a gradient of 1-0.0 M (NH,),SO,. Active
fractions were pooled, concentrated, and further separated with a
10/300 Superdex 200 column (Cytiva). For each enrichment scheme,
phage T4 proteins enriched in fractions with the highest activity rela-
tive to neighbouring inactive fractions were quantified by label-free
mass spectrometry as previously described?®.

Phage T4 genes identified by biochemical fractionation and mass
spectrometry were amplified from genomic T4 DNA isolated from
infected E. coli using a Qiagen DNeasy Blood and Tissue kit as described
previously”. Candidate genes were PCR amplified using Q5 DNA pol-
ymerase (NEB) and primers designed to incorporate a 49-base-pair
sequence containing a T7 promoter and a ribosome-binding site
upstream of the amplified candidate gene according tothe NEB cell-free
E. coliprotein synthesis systeminstructions (NEB). PCR products were
purified using a PCR clean-up kit (Qiagen) and translated using the
E. coli protein synthesis system kit (NEB). A1 pl volume of each trans-
lation reaction was used to test for 3’3’-cGAMP cleavage activity by
thin-layer chromatography. Acbl was identified as the product of the
phage T4 gene 57B.

Phage genome sequencing, assembly and annotation of
SBSphiJ1-7

SBSphiJ1-7 phages were isolated from soil samples on B. subtilis
BEST7003 culture as described previously®. High-titre phage lysates
(>10” PFUs ml™) were used for DNA extraction. A 500 pl volume of
the phage lysate was treated with DNase-I (Merck catalogue number
11284932001) added to a final concentration of 20 mg ml™ and incu-
bated at 37 °Cfor1htoremovebacterial DNA. DNA was extracted using
the QIAGEN DNeasy blood and tissue kit (catalogue number 69504)
starting from the Proteinase-K treatment step to lyse the phages. Librar-
ies were prepared for Illumina sequencing using a modified Nextera
protocol as previously described*®. Following lllumina sequencing,
adapter sequences were removed from the reads using Cutadapt ver-
sion 2.8 (ref. *) with the option-q 5. The trimmed reads from each phage
genome were assembled into scaffolds using SPAdes genome assembler
version 3.14.0 (ref. *°), using the --careful flag. Each assembled genome
was analysed with Prodigal version 2.6.3 (ref. *'; default parameters) to
predict openreading frames.

SBSphi) Apycl bioinformatic identification

The genomic sequences of SBSphij and the closely related family mem-
bers SBSphiJ1-7 were aligned using progressive Mauve (ref. *?). Regions
that were exclusive to cCMP-cleaving phages revealed eight candidate
genes. The corresponding SBSphi] protein sequences were analysed
using HHpred (ref. ®®) for predicted structural homologues. Protein
classes with >75% probability are listed in Extended Data Fig. 5b and
Apycl was identified as the product of the phage SBSphi) gene 147.

Identification of Acbland Apycl homologues and generation of

phylogenetic trees

Homologues of Acbland Apycl were identified using NCBI BLASTp
with default parameters. Acblsequences were classified as belong-
ing to a prophage if they were within three genes of a phage struc-
tural or packaging protein. Apycl phage sequences were identified
by restricting the search to only viral sequences (NCBI taxid:
10293; https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.
cgi?id=10239). Maximume-likelihood trees were generated using
the IQ-TREE web server with ultrafast bootstrapping and 1,000
iterations*. Consensus trees were then edited visually using the
Interactive Tree Of Life*.

Crystallization and structure determination

Crystals were grownin hanging-drop format using EasyXtal15-well trays
(NeXtal). Crystals of native and selenomethionine-labelled phage FBB1
Acb1G8-D152weregrown at18 °Cin2-pl drops mixed 1:1 with purified
protein (4 mg ml™, 20 mMHEPES-KOH pH 7.5,80 mMKCl,1 mM TCEP)
and reservoir solution (2 M ammonium sulfate, 0.1 M sodium citrate
pH 4.6). Crystals were grown for 1-7 days before being cryo-protected
with reservoir solution supplemented with 45% sucrose and collected
by freezing in liquid nitrogen. Crystals of the FBB1 Acb1-3’3’-cGAMP
complex were grown using the same reservoir conditions, except
drops and cryo-protectant solution were supplemented with 100 pM
of a hydrolysis-resistant phosphorothioate-modified analogue of
3’3’-cGAMP (Biolog Life Science Institute, C 216). Crystals of Bsp38
Apyclweregrownat18 °Cin2-pl drops mixed 1:1with purified protein
(10 mg mI™, 20 mM HEPES-KOH pH 7.5, 80 mM KCI, 1 mM TCEP) and
reservoir solution (0.2 Mlithium sulfate, 0.1 M Tris-HCI pH 7.5,30% PEG-
4000). Crystals were grown for 1-7 days before being cryo-protected
withreservoir solution supplemented with15% glycerol and collected by
freezinginliquid nitrogen. Crystals of selenomethionine-labelled Pae-
nibacillus/14 (GenBank accession number WP_028539944.1) Apycl were
grownat 18 °C in 2-pl drops mixed 1:1with purified protein (10 mg ml™,
20 mMHEPES-KOH pH 7.5,80 mMKCI,1 mM TCEP) and reservoir solu-
tion (0.1 M Tris-HCIpH 8.5,0.2 MMgCl,, 16% PEG-4000) supplemented
with 100 pM of a hydrolysis-resistant phosphorothioate-modified
analogue of cAMP (Biolog Life Science Institute, A 003). Crystals were
grownfor1-7 days before being cryo-protected with reservoir solution
supplemented with 25% ethylene glycol and collected by freezing in
liquid nitrogen. Crystals of Paenibacillus xerothermodurans Apycl were
grown at 18 °Cin2-pldrops mixed 1:1 with purified protein (10 mgml™,
20 mM HEPES-KOH pH7.5,80 mMKCI,1 mM TCEP) and reservoir (0.1 M
HEPES-KOH pH 7.5, 0.2 M calcium acetate, 10% PEG-8000). Crystals
were grown for 1-7 days before being cryo-protected with reservoir
solution supplemented with 25% ethylene glycol and collected by
freezing in liquid nitrogen. X-ray diffraction data were collected at
the Advanced Photon Source (beamlines 24-ID-C and 24-1D-E), and data
were processed using the SSRL autoxds script (A. Gonzalez, Stanford
SSRL). For Acbland Apycl phase determination, anomalous data were
collected using selenomethionine-labelled Acbl crystals, heavy sites
were identified with HySS in Phenix (ref. *¢), and an initial map was
produced using SOLVE/RESOLVE in Phenix (ref. *6). Model building was
performed using Coot (ref. *), and then refined in Phenix. Statistics
were analysed as described in Supplementary Table 2 (refs. *¥-°°), Final
structures were refined to stereochemistry statistics for Ramachandran
plot (favoured/allowed), rotamer outliers and MolProbity score as fol-
lows: FBB1 Acbl, 98.52%/1.48%, 0.8% and 1.11; FBB1 Acb1-3’3’-cGAMP,
99.26%/0.74%,1.56% and 1.39; Bsp38 Apycl, 90.79%/7.46%, 4.85% and
2.64; P.J14 Apycl, 95.04%/4.96%, 2.38% and 1.78; P. xerothermodurans
Apycl, 96.12%/3.88%,1.93% and 1.60. See Supplementary Table 2and the
Dataavailability statement for the deposited PDB codes. All structure
figures were generated with PyMOL 2.3.0.

HPLC

Acbl and Apycl reactions for HPLC analysis were performed in a
100 plvolume and consisted of 50 mM Tris-HCI pH 7.5,100 mM KClI,
1mM DTT, 100 uM chemically synthesized nucleotide standards
(Biolog Life Science Institute) and 1 uM recombinant protein unless
otherwiseindicated. Apyclreactions were further supplemented with
5 mM MgCl, and 1 mM MnCl,. Reactions were incubated at 37 °C for
20 min (unless otherwise indicated in the figure legend) and filtered
using a 10-kDa cutoff filter (Millipore). Filtered nucleotide prod-
ucts were analysed using a C18 column (Agilent Zorbax Bonus-RP
4.6 x150 mm, 3.5 pm) heated to 40 °Cand runat1 ml mininabuffer
of 50 mM NaH,PO, adjusted to pH 6.8 with NaOH, supplemented
with 3% acetonitrile.
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Invitro reconstitution of CBASS and Pycsar effector function
and inhibition

Synthetic cyclic nucleotides (Biolog Life Science Institute) were
pre-incubated with purified T4 Acbl and SBSphi] Apyclin reactions
containing 1 pM cyclic nucleotide, 1 pM recombinant Acbl or Apycl
protein, 50 mM Tris-HCI pH 7.5,100 mM KCland 1 mM DTT for1h at
37 °C. Apyclreactions were further supplemented with 5 mM MgCl,
and 1 mM MnCl,. Cyclic nucleotide reactions were then used as 10x
inputs for effector activationreactions using the following recombinant
CBASS and Pycsar effector proteins: V. cholerae CapV (ref. ™), E. cloacae
Cap4 (ref. ), B. pseudomallei Cap5 (ref. ?®) and B. cepacia PycTIR (ref. ?).
Nuclease effectors were incubated in 25-pl reactions containing 1 pM
effector protein, and buffer consisting of 50 mM Tris-HCIpH 7.5,25 mM
NaCl, 5 mMMgCl,,1 mMDTT and 10 ng pul ™ pGEM9z plasmid DNA. Fol-
lowing 20-minincubation at 37 °C, 5 pl of DNA loading dye was added
and 15 pl was analysed on a 1% agarose gel as previously described®.
CapV phospholipase activity was analysed in 25-pl reactions consisting
of 1 uM purified effector, 50 mM Tris-HCl pH 7.5, 25 mM NacCl, 5 mM
MgCl,,1mMDTT and aBODIPY-labelled EnzChek phospholipase sub-
strate (ThermoFisher) as previously described". Phospholipase activity
was measured using a Synergy H1 plate reader (BioTek) according to
the manufacturer’s instructions. PycTIR was used at 40 pM in 25-pl
reactions consisting of 20 mM HEPES-KOH pH 7.5,100 mM KCl and
500 pM of the fluorescent NAD" analogue e-NAD (Sigma). Fluorescent
measurements (300 nm excitation, 410 nm emission) were takenin a
Synergy Hl plate reader (BioTek) following 2-min incubation at room
temperature.

Bacterial growth assays

CBASS effector function was measured in £. coli using conditions that
result in autoactivation of V. cholerae DncV 3’3’-cGAMP synthesis as
previously described?. E. coli BL21(DE3) competent cells (NEB) were
transformed with three plasmids encoding V. cholerae CapV (pBAD33),
the CBASS effector B. pseudomallei Cap5 (pET16), and either WT or cata-
lytically inactive (H44A/H113A) T4 Acb1 (pTU175)%. Transformations
were plated onto MDG plates and three colonies were picked and grown
for16 h(37 °C, 230 r.p.m.) in 5-mIMDG starter cultures. A5 ml volume
of M9ZB cultures was inoculated with200 pl MDG starter culture and
grown for 3 h (37 °C, 230 r.p.m.) before being induced by diluting 1:5
in M9ZB media containing 5 pM IPTG and 0.2% L-arabinose. Induced
culture (200 pl) was added to wells of a 96-well plate, and OD,, was
read every 6.82 min for 300 minina Synergy Hl plate reader (BioTek)
whileshakingat230 r.p.m.,37 °C. Wells containing medium alone were
used for OD,, background subtraction.

Phage challenge assays

Phage challenge experiments were performed as previously described"?
by spotting serial dilutions of high-titre phage stocks onto a lawn of
bacteria carrying a complete CBASS or Pycsar defence operon. The
following defence systems were used: E. coli strain KTE188 (IMG gene
accession numbers: 2564596481-2564596485; https://img.jgi.doe.
gov/) cloned under its native promoter into the plasmid pSG1 (ref. 3),
E.coliCdnG cloned under its native promoter into the plasmid pLOCO2
(ref. ), Y. aleksiciae CdnE (ref.>®) cloned into a pBAD vector, and
E. coli PycC (ref.?) cloned under its native promoter into the plasmid
pSGl. For EcCdnG and YaCdnE operons, control plasmids were also
used inwhich the CD-NTase isinactivated (CdnG-D82A/D84A)* or the
transmembrane segment of the receptor is deleted (YaCdnE)*. Phage
replicationinthe context of these defence systems was measured using
aspotplaque assay>®. Briefly, E. coliMG1655 (EcCKTE188, EcPycC) or BL21
cells (EcCdnG and YaCdnE) containing the defence systems were grown
overnightat37 °C.A300 plvolume of the bacterial culture was mixed
with 4 ml melted MMB agar containing appropriate antibiotics and
0.2% arabinose for pBAD plasmids, poured on top of a15-cm plate of

lysogeny broth and left to solidify in a plate for 1 h at room temperature.
High-titre phage stocks were serially diluted tenfold in MMB and 3-5-ul
drops were placed on the bacterial layer and allowed to dry at room
temperature for1h. Plates wereincubated overnightat 37 °C (Acbland
Apyclrescue experiments) or 30 °C (Aacbl T4 phage challenges) and
plaque-forming units (PFUs) were determined by counting the derived
plaques after overnightincubation. Phage infection of cells expressing
active CBASS operons did not generate clear plaques. For these, the
dilution at which there was no detectable defect in bacterial growth
was counted as having asingle plaque. Forin vivo rescue experiments,
acbland apyclwere amplified from the genome of T4 phage or SBSphi)
phage and cloned into the plasmid pBbS8k (Addgene number 35276)
using Gibson assembly (NEB).

Generation of phage T4 AAcb1

Nonsense mutations were introduced into acb using a CRISPR-based
selectionstrategy as described previously’*%, Briefly, agRNA targeting
acbland arepair template with nonsense mutations were cloned into
pCRISPR (Addgene 42875). E. coli Top10 cells were then transformed
with the pCRISPR-gRNA-acbhI repair plasmid and pCas9 (Addgene
42876). A colony was picked, and 2-mllog-scale cultures were infected
with WT phage T4 until culture collapse. The resulting lysate was fil-
tered through a 0.22-uM filter and plated on E. coli Top10 cells with
no plasmid. Single plaques were picked into 200 pl SM buffer (50 mM
Tris-HCI pH 8.5,100 mM NacCl, 8 mM MgSO0,) containing 2 pl chloro-
form. After1-hincubation at room temperature, 4 pl was used asinput
for standard PCR reactions using GoTaqGreen (Promega) according
to the manufacturer’sinstructions. PCR products were purified using
QIAquick gel extraction kit (Qiagen) and sequenced for introduction
of nonsense mutations. Positive phage T4 clones went through three
rounds of plaque purification before generating a high-titre stock used
inall phage challenge experiments.

Statistics and reproducibility

Statistical tests are described in the figure legends and were performed
using GraphPad Prism 9.3.1. Experimental details regarding replicates
andsamplessize are described inthe figure legends. No statistical meth-
ods were used to predetermine sample size and no blinding or rand-
omization was used for this study.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig. 8| Structural analysis of Apycl and mechanism of cNMP
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