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compared to the homologous vaccination groups.

Methods: We enrolled healthcare workers (HCWs) who were either vaccinated with ChAdOx1 followed
by BNT162b2 (heterologous group) or 2 doses of ChAdOx1 (ChAdOx1 group) or BNT162b2 (BNT162b2
group). Immunogenicity was assessed by measuring antibody titers against receptor-binding domain
(RBD) of SARS-CoV-2 spike protein in all participants and neutralizing antibody titer in 100 participants
per group. Reactogenicity was evaluated by a questionnaire-based survey.

Results: We enrolled 499 HCWs (ChAdOx1, n = 199; BNT162b2, n = 200; heterologous ChAdOx1/
BNT162b2, n = 100). The geometric mean titer of anti—receptor-binding domain antibody at 14 days after
the booster dose was significantly higher in the heterologous group (11 780.55 binding antibody unit
(BAU)/mL [95% CI, 10 891.52—12 742.14]) than in the ChAdOx1 (1561.51 [95% CI, 1415.03—1723.15]) or
BNT162b2 (2895.90 [95% CI, 2664.01—3147.98]) groups (both p < 0.001). The neutralizing antibody titer
of the heterologous group (geometric mean NDsg, 2367.74 [95% CI, 1970.03—2845.74]) was comparable to
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that of the BNT162b2 group (2118.63 [95% CI, 1755.88—2556.32]; p > 0.05) but higher than that of the
ChAdOx1 group (391.77 [95% CI, 326.16—470.59]; p < 0.001). Compared with those against wild-type
SARS-CoV-2, the geometric mean neutralizing antibody titers against the Delta variant at 14 days after
the boosting were reduced by 3.0-fold in the heterologous group (geometric mean NDsg, 872.01 [95% (I,
685.33—1109.54]), 4.0-fold in the BNT162b2 group (337.93 [95% CI, 262.78—434.57]), and 3.2-fold in the
ChAdOx1 group (206.61 [95% CI, 144.05—296.34]). The local or systemic reactogenicity after the booster
dose in the heterologous group was higher than that of the ChAdOx1 group but comparable to that of the
BNT162b2 group.

Discussion: Heterologous ChAdOx1 followed by BNT162b2 vaccination with a 12-week interval induced a
robust humoral immune response against SARS-CoV-2, including the Delta variant, that was comparable
to the homologous BNT162b2 vaccination and stronger than the homologous ChAdOx1 vaccination, with
a tolerable reactogenicity profile. Seongman Bae, Clin Microbiol Infect 2022;28:1390.e1—-1390.e7

© 2022 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.

Introduction

Effective vaccination regimens against COVID-19 are crucial for
controlling the ongoing pandemic. In response to the instability of
vaccine supply and vaccine-related adverse events such as
thrombosis with thrombocytopenia syndrome, new immuniza-
tion programs that combine vaccines from different platforms
have been proposed [1]. Boosting with vaccines from the different
platforms may become more prevalent if standard homologous
vaccination fails to achieve long-lasting immunity or revised
vaccines against SARS-CoV-2 variants are required [2,3]. Particu-
larly, repeated vaccination with the same viral vector vaccines
may be less effective due to the pre-existing vector-specific im-
munity [4,5]. In this regard, it is important to accrue empirical
data on the safety and immunogenicity of heterologous prime-
boost vaccination regimens in various settings. In this study, we
evaluated the reactogenicity and immunogenicity of the heterol-
ogous prime-boost vaccination (ChAdOx1 followed by BNT162b2)
in comparison to homologous 2-dose vaccinations of ChAdOx1 or
BNT162b2.

Methods
Study design and participants

For this prospective observational cohort study, we recruited
healthcare workers (HCWs) from ten domestic hospitals in South
Korea who received either homologous prime-boost vaccination
with the BNT162b2 mRNA vaccine or the ChAdOx1 adenoviral
vector vaccine, or heterologous vaccination with ChAdOx1 fol-
lowed by BNT162b2 booster. We planned to enroll a total of 200,
200, and 100 participants in the ChAdOx1/ChAdOx1, BNT162b2/
BNT162b2, and ChAdOx1/BNT162b2 groups, respectively. HCWs
with a history of SARS-CoV-2 infection were excluded from this
study. Participants were recruited by placing leaflets for the
recruitment at the vaccination sites and posting notice on the
bulletin boards for HCWs at each hospital. Detailed information
on participating hospitals is summarized in the Supplementary
material (Table S1). This study was initiated under the leadership
of the Korea Disease Control and Prevention Agency, and the study
protocol was approved by the institutional review committee of
each participating institution. All participants provided written
informed consent before enrollment. Baseline data on de-
mographics were collected by questionnaire (electronic case
report form) at enrollment. Detailed schedule for vaccinations and
blood sampling is described in the Appendix of the Supplemen-
tary material.

Reactogenicity

Data on the baseline demographic information and the local and
systemic reactions during the 7 days post vaccination were ob-
tained through a questionnaire-based survey. We assessed local
and systemic reactions using a modified version of the Food and
Drug Administration toxicity scale [6]. The reactogenicity is pre-
sented as a total symptom score, which was calculated as the sum
of each symptom during the 7 days after vaccination by assigning a
score according to the severity as follows: mild as 1 point, moderate
as 2 points, severe as 3 points, and life-threatening as 4 points.
Prophylactic use of antipyretics was not recommended but allowed
depending on the health conditions. The English version of the
questionnaire is provided in the Appendix in the Supplementary
material.

Antibody response

Antigen-specific humoral immune response was analysed using
the Elecsys Anti—SARS-CoV-2 S assay (Roche Diagnostics, Man-
nheim, Germany), a commercial electrochemiluminescence
immunoassay that detects antibodies (including IgG) to the
receptor-binding domain (RBD) of the SARS-CoV-2 spike protein on
the Cobas e module (Roche Diagnostics), with a measuring range
from 0.4 U/mL to 250 U/mL (up to 2500 U/mL with onboard 1:10
dilution and up to 12 500 U/mL with onboard 1:50 dilution). Values
higher than 0.8 U/mL were considered positive. We calibrated the
Elecsys antibody test with serially diluted WHO International
Standard (NIBSC Code 20/136) sera for anti—SARS-CoV-2 immu-
noglobulin. Then the results of Elecsys antibody test (U/mL) were
converted to the WHO international unit, defined as binding anti-
body units per milliliter (BAU/mL) according to the correlation
curve (see Supplementary material, Fig. S1).

Plaque-reduction neutralization assay

To evaluate the functionality of vaccine-induced antibody
response, we performed the plaque-reduction neutralization (PRNT)
assay by using sera from all 100 participants in the heterologous group
and 100 randomly selected participants from each of the homologous
groups. In addition, plasmas from ten participants of each vaccination
group were randomly selected and neutralizing antibody titers were
determined by PRNT against four SARS-CoV-2 variants of concern.
Heat inactivated (56°C for 30 min) individual sera were serially two-
fold diluted in culture medium with a starting dilution of 1/20. A
diluted sera were incubated with the 50 plaque forming units (PFU) of
wild-type SARS-CoV-2 virus (BetaCoV/Korea/KCDC03/2020) or SARS-
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CoV-2 variants (Alpha; B.1.1.7, Beta; B.1.351, Gamma; P.1, and Delta;
B.1.617.2) for 1 hour at 37°C. Detailed procedures are described in the
Appendix in the Supplementary materials.

Statistical analysis

SPSS Statistics for Windows v24.0 (IBM Corp, Armonk, NY, USA)
was used for statistical analysis and GraphPad Prism v8.0 (GraphPad
Software, San Diego, CA, USA) was used for graph plotting of the
results. Humoral responses are presented by vaccination groups in
geometric means with 95% CI. For comparisons between groups,
independent Student's t-test or one-way analysis of variance was
applied to log-transformed antibody data. Pearson's correlation was
used for the analysis of the correlation. All tests of significance were
two-tailed, and p < 0.05 were considered statistically significant.

Results
Characteristics of the study population

A total of 500 HCWs were enrolled in this study, including 200 in
the ChAdOx1 homologous group, 200 in the BNT162b2 homolo-
gous group, and 100 in the ChAdOx1/BNT162b2 heterologous
group (Fig. 1). After one participant in the ChAdOx1/ChAdOx1
group withdrew consent, a total of 499 people completed the
prime-boost vaccination and blood collection schedule. The base-
line characteristics of the study population are summarized in
Table 1. The mean age of the participants was 37.1 years, and there
was no significant difference among the three groups (p > 0.99).
The proportion of females was 80.4% in the total participants and
did not show significant differences among the three groups
(p = 0.90). The median interval between the prime and boost doses
in the heterologous group was 12 weeks.

Reactogenicity

The data on reactogenicity were collected up to 7 days after the
priming dose and the booster dose in each group, except for those

following the priming dose in the heterologous group (see
Supplementary material, Fig. S2). The most common reactions in
the heterologous group were local pain (95%), fatigue (81%),
headache (65%), and myalgia (64%). The frequencies and degrees of
local and systemic reactions after the BNT162b2 booster dose in the
heterologous group were largely comparable to those of the second
dose in the BNT162b2 homologous group (see Supplementary
material, Fig. S2). The reactivity of the BNT162b2 booster dose in
the heterologous group was comparable to that of the first dose in
the ChAdOx1 homologous group or the second dose in the
BNT162b2 homologous group, and more frequent than that of the
second dose in the ChAdOx1 homologous group or the first dose in
BNT162b2 homologous group (Fig. 2A). The reactivity was signifi-
cantly higher in the female group after booster dose of heterolo-
gous vaccination in a stratified analysis according to sex group
(Fig. 2B). Unsolicited adverse events after booster dose in each
group are summarized in the Supplementary material (Table S2).

Immunogenicity

The humoral responses in the three groups were evaluated by
measuring the RBD-binding antibody and 50% neutralizing dose by
PRNT assay. The antibody titers for SARS-CoV-2 RBD were
measured in the serial blood samples from all participants
(n = 499). As shown in Fig. 3A, the geometric mean titers of RBD
antibodies at or within 1 week prior to the booster dose in the
ChAdOx1 homologous group, BNT162b2 homologous group, and
the heterologous group were 94.80 BAU/mL (95% CI, 83.61—107.48),
85.23 (95% (I, 72.70—99.92), and 127.27 (95% CI, 112.42—144.07),
respectively (p = 0.14 by ANOVA). The geometric mean antibody
titers at 14 days after the booster dose in the ChAdOx1 homologous
group, BNT162b2 homologous group, and the heterologous group
were 1561.51 BAU/mL (95% CI, 1415.03—1723.15), 2895.90 (95% (I,
2664.01-3147.98), and 11 780.55 (95% CI, 10 891.52—12 742.14),
respectively, which were 16.5, 34.0, and 92.6-fold increases
compared with those prior to boosting (all p < 0.001). The antibody
titer at day 14 after the booster dose was significantly higher in the
heterologous group than those in the ChAdOx1 homologous group

500 healthcare workers who volunteered to participate in the study

A A

|

100 assigned to ChAd/BNT

200 assigned to BNT/BNT

200 received ChAd/ChAd

v A4

—>| 1 withdrew consent

A4

199 received ChAd/ChAd

100 received ChAd/BNT

200 received BNT/BNT

A4

A 4

100 reactogenicity analysis
100 immunogenicity analysis
100 anti-RBD Ab
100 PRNT
10 PRNT for variants

200 reactogenicity analysis
200 immunogenicty analysis
200 anti-RBD Ab
100 PRNT
10 PRNT for variants

199 reactogenicity analysis
199 immunogenicity analysis
199 anti-RBD Ab
100 PRNT
10 PRNT for variants

Fig. 1. Study flowchart.
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Table 1
Baseline characteristics of the study population
Total (n = 499) Homologous Homologous Heterologous p
ChAd/ChAd (n = 199) BNT/BNT (n = 200) ChAd/BNT (n = 100)
Sex, n (%) 0.90
Female 401 (80.4) 159 (79.9) 160 (80.0) 82 (82.0)
Male 98 (19.6) 40 (20.1) 40 (20.0) 18 (18.0)
Age (y), mean + SD 37.1+£92 37.1 +9.0 37.0+93 37.1+9.1 >0.99
BMI (kg/m?), mean + SD 222 +29 222 +28 222 +29 22.0 + 3.1 0.73
Underlying disease, n (%)
Hypertension 12 (2.4) 7 (3.5) 3(1.5) 2(2.0) 0.40
Diabetes 6(1.2) 2(1.0) 1(0.5) 3(3.0) 0.16
Solid tumor 10(2.0) 4(2.0) 2(1.0) 4 (4.0) 0.22
Allergic disease® 9(1.8) 4(2.0) 1(0.5) 4 (4.0) 0.10
Asthma 5(1.0) 3 (1.5) 1(0.5) 1(1.0) 0.60
Rheumatic disorder 3(0.6) 2(1.0) 0(0.0) 1(1.0) 0.36
Interval between the prime 77 (21-84) 80 (78—84) 21 (21-21) 84 (79.5—87) <.001

dose and the boost dose,
days, median (IQR)

Abbreviations: BMI, body mass index; IQR, interquartile range; SD, standard deviation.

2 Atopic dermatitis and allergic rhinitis.

and the BNT162b2 homologous group (both p < 0.001). The anti-
body titers by time point for each group are depicted in Fig. 3B.
PRNT was performed on a total of 1000 blood samples obtained
from 100 participants in each group. Baseline characteristics of
participants by group in which PRNT was performed are summa-
rized in the Supplementary material (Table S3). The titers of
neutralizing antibodies against wild-type SARS-CoV-2 were deter-
mined from all sera obtained at 14 days after the booster dose. The
geometric mean neutralizing antibody titer (ND5g) of the heterol-
ogous group (2367.74 [95% CI, 1970.03—2845.74]) was comparable
to that of the BNT162b2 group (2118.63 [95% CI, 1755.88—2556.32];
p > 0.05) but higher than that of the ChAdOx1 group (391.77 [95%
Cl, 326.16—470.59]; p < 0.001, Fig. 3C). The neutralizing antibody
titers related to time after first dose are shown in Fig. 3D. Schematic
showing the dosing strategies and blood sampling time points is
shown in Fig. 3E. The significant correlation was observed between

A

Local reaction
100 ns 100

Systemic reaction

anti-RBD antibody titers and NDsp; a strong positive correlation in
all the tested samples (Pearson's r = 0.89; p < 0.001) and a fair
positive correlation in post-boosting samples (Pearson's r = 0.61;
p < 0.001; see Supplementary material, Fig. S3).

Neutralizing antibody titer against the four variants of concern

We randomly selected ten participants from each group to
determine the serum level of neutralizing antibodies against the
four SARS-CoV-2 variants of concern—B.1.1.7 (Alpha), B.1.351 (Beta),
P1 (Gamma), and B.1.617.2 (Delta). Baseline characteristics of
selected participants are summarised in the Supplementary ma-
terial (Table S4). All 2 doses of three vaccinated groups generated
effectively neutralizing antibody activity against wild-type virus
(KCDCO03) (Fig. 4). At 2 weeks after 2 doses of each vaccination
group, significantly lowered neutralizing antibody activities were
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Reactogenicity according to sex group. Horizontal bars represent mean, and error bars represent 95% CI. °p <0.05, °p < 0.001. Abbreviations: ns, non-significant p value.
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shown against Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2)
variants by comparing with that of wild-type virus. Of note, geo-
metric mean NDsg against the Delta variant at 2 weeks after the
booster dose was higher in the ChAdOx1/BNT162b2 group (872.01
[95% CI, 685.33—1109.54]) than the BNT162b2/BNT162b2 group
(337.93 [95% CI, 262.78—434.57]; p < 0.001) and the ChAdOx1/
ChAdOx1 group (206.61 [95% CI, 144.05—296.34]; p < 0.001).

Discussion

In this prospective observational study including 499 HCWs, we
found that the heterologous vaccination with ChAdOx1 followed by
BNT162b2 at 12-week intervals induced robust humoral responses
against SARS-CoV-2. The humoral response at 2 weeks after booster
dose in the heterologous vaccination was comparable to that of
homologous BNT162b2 vaccination and more potent than homol-
ogous ChAdOx1 vaccination. Several studies have investigated the
effectiveness of heterologous COVID-19 vaccination. The Combi-
VacS study showed that ChAdOx1 followed by BNT162b2 boosting
elicited a strong humoral and cellular immune response compared
with ChAdOx1 priming alone [7]. Likewise, three studies from
Germany reported that the antibody responses after heterologous
ChAdOx1/BNT162b2 vaccination were comparable to that after
homologous BNT162b2 vaccination and superior to that after ho-
mologous ChAdOx1 vaccination [8—10]. Taken together, heterolo-
gous ChAdOx1/BNT162b2 vaccination elicited a stronger immune
response against SARS-CoV-2 compared with the homologous
challenge of ChAdOx1.

It should be noted that the robust humoral response induced by
heterologous boosting in our study could be attributed to the
extended interval between prime and booster dose. It has recently
been reported that a stronger humoral response is induced at
extended intervals compared to the standard 3—4 week interval in
the homologous BNT162b2 vaccination [11—13]. Extended intervals
of booster dose may result in higher neutralizing activity and wider
breadth of humoral responses through germinal center responses,
including somatic hypermutation and affinity maturation [14].
Comparison of immune responses in the heterologous vaccination
to homologous BNT162b2 vaccination at similarly extended in-
tervals may allow assessment of this issue.

We also found that the heterologous vaccination showed
higher neutralizing activity than the homologous vaccination
against various variants including delta. The neutralizing activity
against the Delta variant decreased by 3- to 4-fold compared with
those against the wild type in all vaccine regimen groups. How-
ever, compared with homologous vaccination of either ChAdOx1
or BNT162b2, heterologous vaccination resulted in a higher
neutralizing activity against the Delta variant. The reason for the
more favorable antibody response against various variants of
concern after the heterologous challenge is not clear but may be
due to the differences in the spike protein conformations between
the priming (no proline mutation in ChAdOx1) and boosting (two
proline mutation in BNT162b2) doses that elicit antibody re-
sponses against various portions of the spike protein, especially
RBD. In addition, the prime-boosting strategy by different plat-
forms might affect the magnitude and breadth of humoral im-
mune responses [15,16].

We found that the degrees of solicited reactions were compa-
rable among the first dose of ChAdOx1, second homologous chal-
lenge of BNT162b2, and heterologous challenge of BNT162b2 after
ChAdOx1, while the second homologous challenge of ChAdOx1 and
the first dose of BNT162b2 had relatively lower reactogenicity than
their comparators. The Com-Cov study reported that both ChAdOx1/
BNT126b2 and BNT126b2/ChAxOx1 heterologous vaccinations
induced greater systemic reactogenicity than their homologous
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counterparts [17]; however, because the participants of the Com-
Cov study had a median age of 57 years, their results could not be
extrapolated to younger age groups. Considering that the reac-
togenicity is higher in the younger age groups after receiving the
ChAdOx1 or BNT126b2 vaccines [18,19], there is still concern about
whether the reactogenicity profile is tolerable in the heterologous
regimen, especially in young individuals. Therefore, our data suggest
that ChAdOx1 followed by BNT162b2 in young individuals may have
some short-term disadvantage in terms of reactogenicity, but the
reactogenicity would be largely tolerable without serious or life-
threatening consequences.

This study has several limitations. First, this observational
study may be subject to selection bias, particularly in that the
heterologous vaccination group was recruited from those who
experienced vaccine-related adverse reactions following the
priming dose of ChAdOx1. However, this particular selection of
participants may allow a different interpretation of our results in
that heterologous vaccination can generate a robust antibody
response without a significant safety concern in vaccine recipients
who experience adverse events following the initial dose. Our
cohort was younger and female predominant, which may affect
vaccine-induced immune response [20]. However, given the
similar age and sex distribution of the three vaccination groups,
these factors are unlikely to introduce a significant bias to the
results. Second, we did not assess the cellular immunity, which is
as important as antibody response for virologic control [21].
Finally, at the time of conducting this study we were in the midst
of the Delta variant era, so our data did not provide any direct
information about the immunity against the Omicron variant. The
recent studies consistently revealed that 2-dose COVID-19 mRNA
vaccines elicited poor neutralization against Omicron, while 3-
dose mRNA vaccines induced potent variant cross-
neutralization, including Omicron [22,23]. However, there are
limited data on whether 2-dose heterologous vaccination with
ChAdOx1/BNT162b2 would induce poor neutralizing antibody
against Omicron variant. One study reported that the 2-dose
heterologous vaccination with ChAdOx1/BNT162b2 showed
slightly higher neutralizing antibody titers than 2-dose homolo-
gous vaccination with BNT162b2, while these neutralizing titers
against Omicron variant were substantially lower than those
against other variants [24]. So, a booster shot should be recom-
mended regardless of homologous or heterologous 2-shot series
until further evidence on this issue is available.

In conclusion, we found that heterologous COVID-19 vaccination
generated an antibody response to SARS-CoV-2 that was compa-
rable to that of homologous BNT162b2 vaccination and more robust
than homologous ChAdOx1 vaccination, while not resulting in
serious adverse events. These findings provide evidence for the
safety and immunogenicity of heterologous prime-boost COVID-19
vaccination using ChAdOx1 and BNT162b2.
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