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Obesity and accelerated epigenetic 
aging in a high‑risk cohort 
of children
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New insights into mechanisms linking obesity to poor health outcomes suggest a role for cellular aging 
pathways, casting obesity as a disease of accelerated biological aging. Although obesity has been 
linked to accelerated epigenetic aging in middle-aged adults, the impact during childhood remains 
unclear. We tested the association between body mass index (BMI) and accelerated epigenetic aging in 
a cohort of high-risk children. Participants were children (N = 273, aged 8 to 14 years, 82% investigated 
for maltreatment) recruited to the Child Health Study, an ongoing prospective study of youth 
investigated for maltreatment and a comparison youth. BMI was measured as a continuous variable. 
Accelerated epigenetic aging of blood leukocytes was defined as the age-adjusted residuals of several 
established epigenetic aging clocks (Horvath, Hannum, GrimAge, PhenoAge) along with a newer 
algorithm, the DunedinPoAm, developed to quantify the pace-of-aging. Hypotheses were tested with 
generalized linear models. Higher age-and sex- adjusted z-scored BMI was significantly correlated 
with household income, blood cell counts, and three of the accelerated epigenetic aging measures: 
GrimAge (r = 0.31, P < .0001), PhenoAge (r = 0.24, P < .0001), and DunedinPoAm (r = 0.38, P < .0001). In 
fully adjusted models, GrimAge (β = 0.07; P = .0009) and DunedinPoAm (β = 0.0017; P < .0001) remained 
significantly associated with higher age- and sex-adjusted z-scored BMI. Maltreatment-status was not 
associated with accelerated epigenetic aging. In a high-risk cohort of children, higher BMI predicted 
epigenetic aging as assessed by two epigenetic aging clocks. These results suggest the association 
between obesity and accelerated epigenetic aging begins in early life, with implications for future 
morbidity and mortality risk.

Abbreviations
CM	� Child maltreatment
CWIS	� Child welfare information system
CHS	� Child health study
BMI	� Body mass index
AA	� Accelerated aging
DunedinPoAm	� Dunedin pace of aging methylation
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Obesity remains a pressing global health issue, despite decades of attention and research. Comorbidities associ-
ated with obesity overlap with aging and age-related phenotypes, and it is hypothesized that obesity may acceler-
ate aging across a range of cellular and bodily systems, leading to increased risk of age-related diseases1–3. The 
health impacts of obesity begin in childhood, as children with obesity face increased risk of childhood onset 
psychological and physical morbidities (e.g., depression, systemic inflammation, type II diabetes, cardiovascular 
abnormalities)4. Understanding the early-life etiology of the association between obesity and accelerated biologi-
cal aging is thus critical for the mitigation of future disease risk.

Several approaches for quantifying biological aging have been used to assess links with obesity, including 
telomere length and epigenetic aging clocks5–8. Regulation of methylation at many cytosine-phosphate-guanine 
dinucleotides (CpGs) is positively correlated with chronological age, a finding that led to the creation of first-
generation epigenetic algorithms (i.e., the Horvath and Hannum clocks), which use methylation levels to predict 
chronological age9,10. A second generation of epigenetic clocks, built on physiological measures of health and 
disease risk, aimed to predict lifespan and healthspan (i.e., GrimAge and PhenoAge clocks)11,12. Most recently, 
a new generation epigenetic clock predicting the rate of biological aging, the Dunedin Pace of Aging methyla-
tion clock (DunedinPoAm) was introduced using longitudinal data on organ-system integrity across 12 years13. 
The DunedinPoAm aims to quantify the pace of an individual’s biological aging through a single-time-point 
measure of DNA methylation.

While some evidence exists linking accelerated epigenetic aging and obesity in adults7,8, prior work in chil-
dren is scarce. We are aware of only one recent study looking at socioeconomic disadvantage in children which 
reported a correlation between higher BMI and faster salivary DunedinPoAm-measured pace of biological 
aging14.

Early-life adversity is a potent risk factor for childhood obesity. Longitudinal and cross-sectional studies 
demonstrate exposure to childhood maltreatment (CM; e.g., physical/sexual abuse and neglect) is associated 
with accelerated increases in BMI through adolescence and early adulthood, thereby elevating risk of obesity in 
adulthood15–17. Differences in epigenetic programming offer an intriguing possibility to further account for this 
association. Developing an understanding of the association between obesity and accelerated aging in early life, 
both in the moderating context of CM and more broadly in all children, is critical to prevention efforts of many 
obesity-related negative health outcomes. Our study is the first to comprehensively examine the association 
between accelerated epigenetic aging and BMI in children using multiple epigenetic clocks. Using data from 
the Child Health Study (CHS), a cohort study of children with a high prevalence of Child Protective Services 
investigations due to suspected CM exposure, we tested the association between age- and sex-adjusted z-scored 
BMI and accelerated aging in childhood using a diverse panel of first-, second-, and new-generation epigenetic 
clocks. We hypothesized that BMI z-scores would be associated with accelerated epigenetic aging. Given the high 
prevalence of reported maltreatment in our cohort, we additionally explored the role of CM in this association.

Results
Sample descriptives.  No significant differences were detected in mean age, distribution of biological sex, 
or ethnicity between the maltreatment and comparison groups. For both the full cohort (N = 439) and our ana-
lytic sample (N = 273), the maltreatment group was lower income (maltreatment mean = $33,000 [SD $32,000], 
comparison mean = $54,000 [SD $39,000]; P = 0.009) and had a higher raw BMI (maltreatment mean = 22.1 [SD 
6.1], comparison mean = 20.3 [SD 5.3]; P = 0.04) (see Additional File Table S1 for full cohort sample demograph-
ics). There were additional group differences in ‘Other’ racial identification (Table 1). Family income was the 
only demographic factor to remain significant after correction for multiple comparisons at α =

.05

6
= .0083 . 

Correlations among study outcomes and covariates are depicted in Table 2. 

BMI and epigenetic aging clocks.  BMI z-score was moderately correlated with household income 
(r = −0.19, P = 0.004), proportion lymphocytes (r = −0.26, P < 0.0001), proportion granulocytes (r = 0.26, 
P < 0.0001), and three epigenetic age acceleration clocks: GrimAge (r = 0.31, P < 0.0001), PhenoAge (r = 0.24, 
P < 0.0001), and DunedinPoAm (r = 0.38, P < 0.0001). Excepting the correlation between BMI and income, these 
remained significant after correction for multiple comparisons at α =

.05

13
= .0004 . The correlation between BMI 

z-scores and HannumAA did not reach statistical significance (r = 0.11, P = 0.051) and BMI was not correlated 
with HorvathAA (r = 0.05, P = 0.46).

In models adjusting for sex, race, ethnicity, and family income, higher BMI z-score was consistently associ-
ated with GrimAgeAA and PhenoAgeAA (see Additional File Tables S2-S6 for full model specifications). After 
accounting for blood cell proportions, BMI z-score remained significantly associated with accelerated aging 
measured by GrimAgeAA (β = 0.07; CI 0.02, 0.10; P = 0.0009) but was attenuated below α = 0.05 for PhenoAgeAA 
(β = 0.06; CI −0.02, 0.15; P = 0.13). An age- and sex-adjusted BMI increase of one standard deviation above the 
cohort mean was associated with an additional 0.07 years of accelerated aging as measured by GrimAge (Fig. 1). 
BMI z-score was not associated with epigenetic age acceleration derived from HorvathAA or HannumAA in 
any model tested (all P > 0.05).

Higher BMI z-score was significantly associated with a faster pace-of-aging as measured by DunedinPoAm 
(b = 0.0017; CI 0.001, 0.002; P < 0.0001) adjusting for all covariates. A BMI increase of one standard deviation 
above the cohort mean was associated with an increase of 0.002 years in the pace of epigenetic aging. Asso-
ciations between BMI and GrimAgeAA and DunedinPoAm remained significant after correcting for multiple 
comparisons at α =

.05

5
= .01.

Maltreatment exposure, BMI, and epigenetic aging clocks.  Given the opportunity to explore accel-
erated epigenetic aging in this cohort of children with a high prevalence of maltreatment exposure, we tested 
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whether maltreatment was associated with accelerated epigenetic aging or moderated the association between 
BMI z-scores and accelerated epigenetic aging. Though raw BMI was significantly different between the mal-
treatment and comparison groups in initial demographic comparisons (maltreatment BMI mean = 22.1 (SD 
6.1), comparison BMI mean = 20.3 (SD 5.3); P = 0.04), this difference was attenuated to non-significance with 
the inclusion of covariates (see Additional File Table S7 for full model specifications). Maltreatment was not 
independently associated with epigenetic age acceleration in our analytic sample and did not moderate the asso-
ciation between BMI z-scores and accelerated epigenetic aging measures after Bonferroni correction for multiple 
testing.

Discussion
In a cohort of high-risk children, we tested the association between age- and sex-adjusted z-scored BMI and 
accelerated aging using three generations of epigenetic aging measures. We further explored whether maltreat-
ment status moderated this association. Higher BMI in childhood was associated with accelerated epigenetic 
aging and accelerated pace of epigenetic aging after accounting for covariates. Specifically, children with one 
standard deviation higher age- and sex-adjusted BMI had 0.07 years (approximately 25 days) age acceleration 
measured by GrimAge, an epigenetic aging measure designed to predict time to death that also associates with 
cardiovascular disease risk in adults12. Findings of accelerated GrimAge in children may or may not be clinically 
meaningful as childhood is a period of marked biological growth and development. Children with higher BMI 
also demonstrated an accelerated DunedinPoAm-measured pace of epigenetic aging by approximately 0.002 years 
per one standard deviation increase in age- and sex-adjusted BMI. DunedinPoAm is a DNA methylation clock 
built by measuring organ-system decline from young adulthood to midlife13. Recent work in a cohort of socio-
economically disadvantaged children observed a correlation between BMI and DunedinPoAm-measured pace 
of aging in saliva DNA14, a finding that is supported and extended here in leukocyte DNA though these findings 
are not surprising given the use of anthropometric traits in the construction of the DunedinPoAm13. Previous 

Table 1.   Summary demographics for analytic sample. † P < .10, *P < .05, **P < .01, ***P < .0001.

Variable, mean (SD) Total (N = 273) Maltreatment (N = 225) Comparison (N = 48) P-value

Body mass index (BMI) 21.8 (6.0) 22.1 (6.1) 20.3 (5.3) .04*

Age (at collection) 11.4 (1.5) 11.4 (1.5) 11.1 (1.5) .15

Biological sex M(F)% 49.5% (50.5) 49.3% (50.7) 50.0% (50.0) .93

Income $10,000/year 3.7 (3.5) 3.3 (3.2) 5.7 (4.0) .0003**

Race

Black 16.5% 16.9% 14.6% .70

White 67.8% 65.3% 79.2% .06

Other 15.8% 17.8% 6.3% .04*

Ethnicity

Hispanic 11.4% 12.9% 4.2% .08

Table 2.   Correlations among outcomes and covariates. † P < .10, *P < .05, **P < .01, ***P < .0001.

BMI 
z-score Age

Sex 
(Male) Maltreatment

Household 
income

Proportion 
lymphocytes

Proportion 
monocytes

Proportion 
granulocytes HorvathAA HannumAA GrimAgeAA PhenoAgeAA

Age 0.00 – – – – – – – – – –

Sex (Male) 0.00 −0.07 – – – – – – – – – –

Maltreatment 0.09 0.09 −0.010 – – – – – – – – –

Household 
income −0.19** −0.005 0.04 −0.26*** – – – – – – – –

Proportion 
lymphocytes −0.26*** −0.06 0.14* −0.01 0.10 – – – – – – –

Proportion 
monocytes 0.12* 0.07 0.04 −0.06 −0.03 −0.48*** – – – – – –

Proportion 
granulocytes 0.26*** 0.05 −0.17** −0.03 −0.11† −0.97*** 0.27*** – – – – –

HorvathAA 0.05 0.01 0.06 0.02 −0.04 −0.01 −0.07 0.02 – – – –

HannumAA 0.11† 0.01 −0.08 −0.03 −0.05 −0.58*** 0.35*** 0.53*** 0.30*** – – –

GrimAgeAA 0.31*** 0.002 0.12† 0.14* −0.32*** −0.48*** 0.28*** 0.45*** 0.08 0.40*** – –

PhenoAgeAA 0.24*** 0.01 −0.22** 0.03 −0.09 −0.71*** 0.33*** 0.69*** 0.27*** 0.71*** 0.48*** –

Dunedin 
PoAm 0.38*** −0.02 −0.15* 0.08 −0.13* −0.68*** 0.31*** 0.67*** 0.09 0.54*** 0.54*** 0.67***
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work has found an association between obesity and accelerated epigenetic aging using the Horvath clock in 
adult liver tissue7 and in whole blood of middle-aged adults8. Our results lend support for the development of 
this association in childhood, though we are unable to determine to what extent these relationships reflect the 
construct of “biological aging” typically associated with adverse outcomes in adulthood rather than elements of 
typical growth and development associated with childhood.

Exploration of the relation between maltreatment and accelerated epigenetic aging failed to replicate previous 
work in this domain, though important differences exist between study designs. For example, recent studies in 
children using salivary DNA to calculate HorvathAA found that threat-based, but not deprivation-based, mal-
treatment was related to accelerated epigenetic aging18, and that direct exposure to violence accelerated epigenetic 

Figure 1.   Estimates for BMI z-scores across all accelerated epigenetic aging and DunedinPoAm outcomes. 
Each row specifies the stepwise addition of a covariate to the base model of accelerated epigenetic aging outcome 
regressed onto age- and sex-adjusted BMI z-scores. Zoomed-in view of estimates for models for DunedinPoAm. 
†P < .10, *P < .05, **P < .01, ***P < .0001.
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aging19. Data collection for the CHS is ongoing, thus we are exploring maltreatment association in a subset of 
the final cohort using a dichotomous maltreatment-status variable (‘yes’, ‘no’). The currently restricted sample 
limits our power to detect differences between maltreatment and control groups, and the binary categorization 
of maltreatment limits our ability to dissect associations between specific types of maltreatment and accelerated 
epigenetic aging that may exist in this high-risk sample. It is plausible that experiences of violence and threat 
within the CHS cohort may have unique effects on epigenetic aging that may be revealed with future collection 
of detailed knowledge around the types of maltreatment exposure for participants.

Higher BMI across the lifespan has been associated with early onset of age-related diseases and mortality, 
generating interest in the link between obesity and aging20. Although we observed an association between obesity 
and accelerated epigenetic aging that is already present in childhood, the cross-sectional nature of our data pre-
vents us from addressing mechanism and causality. Longitudinal work in the Avon Longitudinal Study of Parents 
and Children provides early support for obesity as a driver of variation in DNA methylation21. Mechanistic links 
connecting obesity and accelerated aging have yet to be fully elucidated. Research suggests, however, that cellular 
processes of fat storage, inflammation, oxidative stress, and energy homeostasis may be involved2,22,23. Dysregu-
lation in these processes may drive epigenetic alterations resulting in an accelerated epigenetic aging profile. 
Methylation of CpG sites is a plastic process moderated by multifactorial intrinsic and extrinsic processes. Obesity 
has been linked to both hyper- and hypo-methylation of CpG sites across the genome, which in turn associate 
with the regulation of leptin, adiponectin, and other features of cellular energy balance21,24,25. Direct evidence of 
obesogenic factors altering methylation patterns related to aging is lacking and support for this framework derives 
mainly from evidence of the impact nutrition and caloric restriction may have in altering epigenetic aging26–28.

The prevalence of childhood obesity has increased dramatically over the past four decades29. Our findings 
of accelerated epigenetic aging and an accelerated pace of epigenetic aging in children with higher BMI have 
important implications for health and the mitigation of future disease risk. Children with obesity are at increased 
risk for childhood and early-onset adult diseases. Chronic conditions, such as type 2 diabetes, hypertension, ath-
erosclerosis, and a range of other negative mental and physical health outcomes are more prevalent in individuals 
with childhood obesity30–33. Further, these diseases often co-occur, raising the cost of medical care and increasing 
the likelihood of early-onset disability and a reduced lifespan. Many of the diseases associated with childhood 
obesity are also diseases of aging. Our findings point to the possible role of accelerated aging at the cellular level 
in driving the early-onset disease phenotypes seen in children with obesity as they become adolescents and adults.

We acknowledge several limitations. Recruitment of participants, in particular demographically matched 
comparison children, is ongoing. Although the findings of accelerated epigenetic aging and accelerated pace 
of epigenetic aging do not hinge on additional recruitment within the CHS cohort, the exploratory analysis of 
maltreatment as a modifier of the obesity-epigenetic aging association should be understood as preliminary and 
used as a direction for future cross-sectional and longitudinal research with the final assembled cohort. Along 
these lines, future analyses of data from this cohort will be able to include more nuanced maltreatment variables 
including duration of abuse, age of abuse onset, type of abuse, and polyvictimization status. The addition of these 
variables will be critical to understanding the associations between both maltreatment and obesity, as well as 
maltreatment and accelerated aging within this cohort. For example, timing of abuse has been shown to be a 
critical factor in the association between CM and epigenetic aging34. Further, additional consideration should 
be given to the generalizability of these findings within low-risk cohorts of children.

The use of BMI as a variable to conceptualize body fat mass, although widely used, is also contended. Evidence 
exists that in both childhood and adulthood, the specific areas of fat mass accumulation (e.g., upper body, lower 
body, subcutaneous, visceral) may be critical to determining future disease risk35,36, an issue that may be relevant 
for the deposition of fat following maltreatment37. Using BMI instead of more nuanced measures of adiposity 
distribution may obscure associations among accelerated epigenetic aging, obesity, and maltreatment within our 
current sample of children. Finally, mechanistic understanding of the association between biological processes 
of aging and the three generations of epigenetic clocks examined here is lacking. These clocks are derived from 
regressing observed features of aging, morbidity, and mortality onto measured epigenetic changes in adulthood. 
These correlations do not necessarily yield direct insights into the processes of biological aging. Investigations 
into CpGs of some epigenetic clocks demonstrate enrichment for genes involved in organismal development 
and cell survival10, and a tendency to colocalize within glucocorticoid response elements38. However, it remains 
uncertain whether this is the case for all epigenetic clocks, which are constructed using a variety of CpGs. The 
relative contribution of individual CpGs is also obscured when tens or hundreds are collapsed into a single 
composite measure. Despite this limitation, these epigenetic aging measures may have important clinical and 
research utility in pediatric populations with obesity.

Conclusions
Our findings point to the possible utility of epigenetic aging measures for future clinical and research work in 
children with obesity. Though we found no evidence for moderation of the relationship between epigenetic aging 
and obesity by maltreatment, this relationship should be explored in more detail with larger, more balanced 
cohorts. Epigenetic aging and pace of epigenetic aging measures may serve as useful proxies when assessing the 
efficacy of obesity interventions for children39,40. The true endpoints for obesity interventions, risk of obesity-
related diseases and reduced lifespan, can take years to decades to manifest. These timescales often preclude 
longitudinal intervention studies from using disease risk and lifespan as outcome measures due to cost and 
complexity of study design. Epigenetic aging and pace of epigenetic aging measures may be appropriate outcomes 
by which interventions can be judged as efficacious in ameliorating childhood obesity-related disease risks.
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Materials and methods
Study design and sample recruitment.  Participants for this study were drawn from the ongoing CHS, 
a large multidisciplinary study designed to provide prospective, longitudinal data on the health and develop-
ment of children with and without a history of maltreatment. The CHS is recruiting a large state-wide cohort 
of children recently investigated for CM and non-maltreated comparison children. The goals of the CHS are to 
elucidate the multiple etiological processes, as well as mediators and moderators, believed to play a role in the 
onset and maintenance of adverse health outcomes among victims, and to better inform intervention opportuni-
ties to reverse the negative consequences of maltreatment.

Children with a recent (< 12 months) report of maltreatment exposure are identified in collaboration with 
Pennsylvania’s Statewide Child Welfare Information System (CWIS). Subjects with recent involvement in the 
CWIS are invited to participate in the study through home mailings and phone contact by study coordinators. 
Eligibility criteria includes: (1) aged 8 to 13 years, (2) subject of a CWIS maltreatment report (i.e., an allegation is 
made and investigated) and agreement for participation within 12 months of CWIS involvement, and (3) agree-
ment of participation by a non-abusing caregiver. Non-maltreated comparison children are recruited via targeted 
advertisements from the same Pennsylvania counties as maltreated children with the goal of demographically 
matching at least one maltreated child based on age, race, ethnicity, sex, income level, and region within the State. 
Eligibility for participation includes: (1) no previous CWIS reports or contact, and (2) demographic match to 
a maltreatment participant. After recruitment, participating families are invited to visit the Center for Healthy 
Children at The Pennsylvania State University. The Center was established to serve as a dedicated on-campus 
facility for the CHS. The physical space houses a research lab with areas dedicated to biospecimen sample col-
lection, measurement of physical health by trained nursing staff, participant and family interview rooms, and 
physical/hard-copy data storage41. The Pennsylvania State University Institutional Review Board approved the 
study, and informed assent (child) and consent (caregiver) was obtained from all participants.

Cross-sectional data reported here were drawn from the baseline (i.e., Time 1) assessment of currently 
enrolled CHS participants. Although recruitment for this cohort study is ongoing with a target enrollment of 
900 children, an initial subset of 439 was available for the purposes of these analyses. Of the 439 participants who 
have completed Time 1, 435 consented to anthropometric measurements and 401 consented to and successfully 
completed blood draws (1 caregiver refusal, 33 participant refusals, 4 attempted but incomplete blood draws). 
The first 300 participant identification numbers were sent as the first batch for methylation analysis (constitut-
ing 286 total samples sent) and 273 samples survived methylation QC measures. These 273 participants are our 
final analytic sample. Summary statistics for participants included in our analyses are provided in Table 1 (see 
Additional File for comparative summary statistics of the 439 participants available at Time 1).

Body mass index.  Anthropometric surveys, including height and weight, were conducted by trained CHS 
staff during participants’ visit to the research lab. BMI, defined as total body mass in kilograms divided by the 
squared body height, was age- and sex-adjusted to account for confounding effects of age and sex and z-scored 
to aid interpretation of differences in childhood BMI. As a sensitivity analysis, we tested a dichotomous obesity 
variable (children with obesity vs. children without obesity) as determined by age- and sex-specific BMI > 95th 
percentile cutoffs using the Center for Disease Control’s Childhood BMI Calculator42. Results were unchanged 
using a dichotomous obesity variable and we report results below using only the continuous BMI z-score vari-
able.

Assessment of DNA methylation and calculation of accelerated aging variables.  Genomic 
DNA was extracted from whole blood using a semi-automated approach (Qiasymphony, Qiagen). Genomic 
DNA purity and concentration was assessed using a nanophotometer (ImplenP300, Implen). Infinium meth-
ylation EPIC Beadchip (EPIC array, Illumina, San Diego CA, USA) was used to describe variation in DNA 
methylation across the genome. Genomic DNA (1ug) from whole blood was treated with sodium bisulfite using 
the Zymo EZ-96 DNA Methylation Kit™ (Zymo Research, Orange, CA, USA) with 200 ng of bisulfite-treated 
DNA amplified, fragmented, and hybridized on the EPIC array. Samples were randomized across plates to avoid 
potential confounding between sources of technical variation and phenotypes of interest (e.g., maltreatment 
status). The resulting raw intensity values (idat files) are directly loaded into R for quality control and normali-
zation using the Meffil package43. We used normal-exponential out-of-band (noob) for background correction 
and dye-bias adjustment. Samples and probes with low signal intensity were removed. Concordance between 
predicted biological sex based on DNA methylation data and self-reported gender were verified for each sample 
with discordant samples removed. Finally, we used a Bayes method (ComBat) to correct for sources of technical 
variation (i.e., slide)44. Resulting methylation levels were used to calculate five separate measures of epigenetic 
age: the Horvath clock, Hannum clock, GrimAge, PhenoAge, and the DunedinPoAm. Measures of epigenetic 
age acceleration (HorvathAA, HannumAA, GrimAgeAA and PhenogeAA) were derived from beta values using 
a publicly available tool45. Likewise, the Dunedin methylation pace of aging (DunedinPoA) score was derived 
from the DNA methylation of 46 CpGs as described previously13.

Other measures.  Income, biological sex, race, ethnicity, and predicted blood cell proportions (described 
using DNA methylation data and a reference-based approach)46 were included as covariates due to known 
associations with BMI and epigenetic aging measures. Income was assessed via caregiver self-report as current 
total household family income before taxes in increments of $10,000 (e.g., under $10,000 coded as ‘0’, $10,000-
$19,999 coded as ‘1’, $20,000–$29,999 coded as ‘2’ and an income over $120,000 coded as ‘11’). Biological sex was 
determined via self-report as either ‘male’ or ‘female’ and cross-validated using the DNA methylation predicted 
sex. Two participants self-identified as ‘other/transgender’ but had not undergone any gender-reassignment 
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treatments and were therefore coded as their cross-validated biological sex. Race and ethnicity were reported 
by caregivers for participating youth. Race was coded as ‘White/Caucasian’, ‘Black/African American’, or ‘Other’ 
(American Indian, Alaskan Native, Asian, Pacific Islander, Multiracial, or Other). Ethnicity was reported as 
either ‘Hispanic’ or ‘Non-Hispanic’. Proportions of lymphocytes (summed estimates for CD8, CD4, natural 
killer, and B cells), monocytes, and granulocytes were extracted from epigenetic estimates of blood cell counts 
on the same blood used for methylation measures using an established reference-based approach, and included 
as covariates as needed for certain robustness checks46.

Given the association between BMI and pubertal stage47, we additionally investigated pubertal stage as a 
covariate. Pubertal stage was assessed using Tanner staging, an index of physical ratings from 1 (prepubertal), 
2 (pubertal onset, presence of breast buds and pubic hair) through 5 (fully mature) with each participant giv-
ing two separate ratings (breast/testis development and pubic hair development)48,49. A final pubertal stage was 
conceptualized as the average of these two measures of pubertal development. The correlation between BMI 
and pubertal stage (r = 0.34, P < 0.0001) was similar in size, direction, and strength to that of BMI and age, and 
the correlation between pubertal stage and age was moderate and positive (r = 0.65, P < 0.0001). Correlations 
between pubertal stage and accelerated epigenetic aging variables were non-significant with the exception of 
GrimAgeAA (r = 0.18, P = 0.002). Inclusion of pubertal stage did not modify findings and, given its correlation 
with age, it was not included in our final models.

Statistical analysis.  Statistical analyses were performed with SAS V.9.4. Mean differences in demographic 
variables between maltreatment and comparison groups were assessed via two-tailed t-tests for continuous vari-
ables and two-way Chi-Square tests for dichotomous variables. There were no statistically significant differences 
in demographic measures between the current total Time 1 cohort and the sub-sample included in the current 
analyses. Three individuals were missing covariate data on family income. No significant differences in demo-
graphic characteristics were found for these individuals, thus missing data were addressed simultaneously using 
multiple imputation and complete case analysis. We created 20 imputed datasets using PROC MI and combined 
imputed results with PROC MIANALYZE. Data were analyzed both with and without imputation. Imputed and 
complete-case datasets produced similar results with no changes in direction or size of effects, and we report 
results with the imputed data.

We assessed outcome variables for skewness via Box Cox analyses that indicated the marginal utility of a 
Y-1 transformation to the BMI and accelerated epigenetic aging variables. After running all models using both 
transformed and non-transformed outcome variables, we found no differences in the direction or significance of 
any findings and thus retained the non-transformed outcome models for ease of interpretability. All covariates 
survived assessment for multicollinearity via variance inflation factor analysis in PROC REG (OPTIONS = VIF 
and COLLINOINT) and were thus retained.

Though the majority of children included in our models were from unique families, siblings were included in 
the study and for our analytic sample we included four families with three siblings, 38 families with two siblings, 
and 185 families with individual children. To account for the partial-nesting of children within families (e.g., the 
violation of independence of child-level observations), all models were estimated with family-level cluster-robust 
standard errors in PROC GENMOD, with family ID as the repeated subject. Statistical significance was set at 
two-tailed P < 0.05. Unless specified, all data are presented as estimate (SE) with 95% confidence intervals. Where 
appropriate, models were corrected for multiple comparisons using Bonferroni adjusted p-values.

Ethics approval and consent to participate.  Approval for this study was provided by the institutional 
review board of The Pennsylvania State University (protocol STUDY00006550). Informed assent (child) and 
consent (caregiver) was obtained from all participants in the study. All methods were carried out in accordance 
with relevant guidelines and regulations (Declaration of Helsinki).

Data availability
The dataset analyzed during the current study is available through agreement with the Study investigators.
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