Skip to main content
. 2022 May 18;13:2737. doi: 10.1038/s41467-022-30278-8

Table 1.

Optimization of reaction conditionsa.

graphic file with name 41467_2022_30278_Taba_HTML.gif
Entry Change in standard reaction conditions Yield (1, %)b
1 NiCl2.glyme (5 mol%), 4,4'-dtbbpy (6 mol%) 36
2 None 54
3 Ni(cod)2 (5 mol%), 4,4'-dOMe-bpy (5.5 mol%) 77
4 Ni(cod)2 (10 mol%), 4,4'-dOMe-bpy (11 mol%) 75
5 H2O (10 equiv.) as additive 73
6 1 mol% Ir[dF(CF3)ppy]2(dtbbpy)PF6, Ni(cod)2 (5 mol%) 74
7 Ir[ppy]2(dtbbpy)PF6 instead of PS1 0
8 Ru(bpz)3·2PF6 instead of PS1 0
9 (9-MesAcr)ClO4 instead of PS1 0
10 4-CzIPN (2 mol%) instead of PS1, Ni(cod)2 (5 mol%) 30
11 without [Ir] photosensitizer 0
12 without [Ni] catalyst 0
13 without Light source 0
14 without base trace
15 without fan cooling (around 50 °C) 51
16 (3-chloropropyl)benzene instead of alkyl bromide 0

aStandard conditions: Alkyl bromide (0.1 mmol), THF (0.05 M, 2 mL), NiCl2.glyme (5 mol%), 4,4'-dOMe-bpy (4,4'-dimethoxy-2,2′-bipyridyl) (5.5 mol%), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2 mol%), K2CO3 (2 equiv.), 34 W blue LEDs, Ar, 48 h, room temperature.

bYield determined by GC. Emission maximum of the light source used is 425 nm.