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Abstract

Polygenic risk scores (PRS) have attenuated cross-population predictive performance. As existing 

genome-wide association studies (GWAS) were predominantly conducted in individuals of 

European descent, the limited transferability of PRS reduces their clinical value in non-European 

populations and may exacerbate healthcare disparities. Recent efforts to level ancestry imbalance 

in genomic research have expanded the scale of non-European GWAS, although most of them 

remain underpowered. Here we present a novel PRS construction method, PRS-CSx, which 

improves cross-population polygenic prediction by integrating GWAS summary statistics from 

multiple populations. PRS-CSx couples genetic effects across populations via a shared continuous 

shrinkage prior, enabling more accurate effect size estimation by sharing information between 

summary statistics and leveraging linkage disequilibrium (LD) diversity across discovery samples, 

while inheriting computational efficiency and robustness from PRS-CS. We show that PRS-CSx 

outperforms alternative methods across traits with a wide range of genetic architectures, cross-

population genetic overlaps and discovery GWAS sample sizes in simulations, and improves the 

prediction of quantitative traits and schizophrenia risk in non-European populations.

INTRODUCTION

Human complex traits and diseases are influenced by hundreds or thousands of genetic 

variants, each explaining a small proportion of phenotypic variation. Polygenic risk scores 

(PRS) aggregate genetic effects across the genome to measure the overall genetic liability 

to a trait or disease. PRS are not useful as a stand-alone diagnostic tool; rather, they 

have shown promise in predicting individualized disease risk and trajectories, stratifying 

patient groups, informing preventive, diagnostic and therapeutic strategies, and improving 

biomedical and health outcomes1–6.

Despite the potential for clinical translation, recent theoretical and empirical studies 

showed that PRS have decreased cross-population prediction accuracy, especially when 

the discovery and target samples are genetically distant7–10. As existing genome-wide 

association studies (GWAS) were predominantly conducted in individuals of European 
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descent11–14, the poor transferability of PRS across populations has impeded its clinical 

implementation and raised health disparity concerns7. Therefore, there is an urgent need 

to improve the accuracy of cross-population polygenic prediction in order to maximize 

the clinical potential of PRS and ensure equitable delivery of precision medicine to global 

populations.

As the efforts to diversify the samples in genomic research start to grow, the scale of 

non-European genomic resources has been expanded in recent years. Although the sample 

sizes of most non-European GWAS remain considerably smaller than European studies, 

they provide critical information on the variation of genetic effects across populations. 

Initial studies have indicated that the genetic architectures of many complex traits and 

diseases are largely concordant between populations – both at the single-variant level 

and at the genome-wide level15–18, suggesting that the transferability of PRS may be 

improved by integrating GWAS summary statistics from diverse populations. However, 

current PRS construction methods have been designed primarily for applications within one 

homogeneous population19–23. Existing methods that can take GWAS summary statistics 

from multiple populations use meta-analysis to summarize genetic effects across training 

datasets24,25, but this approach does not model population-specific allele frequencies and 

linkage disequilibrium (LD) patterns. Alternatively, independent analysis can be performed 

on each discovery GWAS and the resulting PRS can be linearly combined26,27, but this 

approach does not make full use of the genetic overlap between populations to inform PRS 

construction.

Here we present PRS-CSx, an extension of PRS-CS19, that improves cross-population 

polygenic prediction by jointly modeling GWAS summary statistics from multiple 

populations. We compare the predictive performance of PRS-CSx with existing PRS 

construction methods across traits with a wide range of genetic architectures, cross-

population genetic overlaps, and discovery GWAS sample sizes via simulations. We further 

apply PRS-CSx to predict quantitative traits using data from the UK Biobank (UKBB)28, 

Biobank Japan (BBJ)29,30, the Population Architecture using Genomics and Epidemiology 

Consortium (PAGE) study31 and the Taiwan Biobank (TWB)32,33, and predict schizophrenia 

risk using cohorts of European and East Asian ancestries15,34.

RESULTS

Overview of PRS-CSx

PRS-CSx extends PRS-CS19, a recently developed Bayesian polygenic modeling and 

prediction framework, to improve cross-population polygenic prediction by integrating 

GWAS summary statistics from multiple ancestry groups (Methods). PRS-CSx uses a 

shared continuous shrinkage prior to couple SNP effects across populations, which enables 

more accurate effect size estimation by sharing information between summary statistics 

and leveraging LD diversity across discovery samples. The shared prior allows for 

correlated but varying effect size estimates across populations, retaining the flexibility of 

the modeling framework. In addition, PRS-CSx explicitly models population-specific allele 

frequencies and LD patterns, and inherits from PRS-CS the computational advantages of 

continuous shrinkage priors, and the efficient and robust posterior inference algorithm 
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(Gibbs sampling). Given GWAS summary statistics and ancestry-matched LD reference 

panels, PRS-CSx calculates one polygenic score for each discovery sample, and integrates 

them by learning an optimal linear combination to produce the final PRS (Fig. 1).

Overview of PRS analysis

We have broadly classified polygenic prediction methods into two categories: single-
discovery methods, which train PRS using GWAS summary statistics from a single 

discovery sample; and multi-discovery methods, which combine GWAS summary statistics 

from multiple discovery samples for PRS construction. In this work, we assess and compare 

within- and cross-population predictive performance of three representative single-discovery 

methods: (i) LD-informed pruning and p-value thresholding (PT)35; (ii) LDpred220; (iii) 

PRS-CS19; and four multi-discovery methods in addition to PRS-CSx: (i) PT-meta; (ii) 

PT-mult26; (iii) LDpred2-mult; and (iv) PRS-CS-mult. PT-meta applies PT to the meta-

analyzed discovery GWAS summary statistics. The three “mult” methods respectively apply 

PT, LDpred2 and PRS-CS to each discovery GWAS separately, and linearly combine the 

resulting PRS. PT-mult has been demonstrated to improve the prediction in recently admixed 

populations26. Here we have extended the idea of PT-mult to LDpred2-mult and PRS-CS-

mult, creating two new methods to quantify the benefits of jointly modeling multiple GWAS 

summary statistics via the coupled shrinkage prior. The workflow for each PRS construction 

method is shown in Fig. 1. In all the PRS analyses, we use the discovery dataset to estimate 

the marginal effect sizes of genetic variants and generate GWAS summary statistics for each 

population; we use the validation dataset, with individual-level genotypes and phenotypes, 

to tune hyper-parameters for different polygenic prediction methods; and we use the testing 
dataset, with individual-level genotypes and phenotypes, to evaluate the prediction accuracy 

of PRS and compute performance metrics using hyper-parameters learnt in the validation 

dataset. The three datasets comprise non-overlapping individuals. For convenience, we use 

the target dataset to refer to the combination of validation and testing datasets, which have 

matched ancestry. For fair comparison, we use 1000 Genomes Project (1KG) Phase 336 

super-population samples (European N=503; East Asian N=504; African N=661; Admixed 

American N=347) as the LD reference panels across different PRS construction methods 

throughout the paper.

Simulations

We first evaluated the predictive performance of different polygenic prediction methods via 

simulations. We simulated individual-level genotypes of European (EUR), East Asian (EAS) 

and African (AFR) populations for HapMap3 variants with minor allele frequency (MAF) 

>1% in at least one of the three populations using HAPGEN237, with the 1KG Phase 3 

samples as the reference panel. In our primary simulation setting, we randomly sampled 1% 

HapMap3 variants as causal variants, which in aggregation explained 50% of phenotypic 

variation in each population. We assumed that causal variants are shared across populations 

but allowed for varying effect sizes, which were sampled from a multivariate normal 

distribution with the cross-population genetic correlation (rg) set to 0.7. The simulation 

was repeated 20 times.
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We first applied single-discovery methods to GWAS summary statistics generated by 100K 

simulated EUR samples and 20K non-EUR (EAS or AFR) samples, and evaluated their 

predictive performance, measured by the squared correlation (R2) between the simulated 

and predicted phenotypes, in 20K target samples, which were evenly split into a validation 

dataset and a testing dataset (Fig. 2; Supplementary Table 1). As expected, when the target 

population was EUR, PRS trained on the larger EUR GWAS were substantially more 

accurate than PRS trained on non-EUR GWAS (Fig. 2; left panels). However, when the 

target population was EAS or AFR, PRS trained on ancestry-matched non-EUR GWAS 

were more predictive than EUR PRS (Fig. 2; right panels), even though the sample sizes of 

the non-EUR GWAS were much smaller (20K vs. 100K). Among the three single-discovery 

methods examined, Bayesian methods (LDpred2 and PRS-CS) consistently outperformed 

PT. PRS-CS appeared to be more accurate than LDpred2 in both within- and cross-

population prediction when the discovery GWAS was well-powered, while LDpred2 was 

more accurate when the discovery sample size was limited, likely reflecting the strengths 

and limitations of the different priors used in PRS-CS and LDpred2 (Supplementary Note).

We then assessed whether multi-discovery methods can improve cross-population polygenic 

prediction. Specifically, we used different multi-discovery methods to combine GWAS 

summary statistics from 100K EUR samples and 20K non-EUR (EAS or AFR) samples 

as the discovery dataset, and evaluated their predictive performance in independent 

target samples (Fig. 2; Supplementary Table 1). Figure 2 shows that, in general, multi-

discovery methods improved prediction accuracy over their single-discovery counterparts 

(i.e., PT-meta or PT-mult vs. PT; LDpred2-mult vs. LDpred2; PRS-CS-mult vs. PRS-CS), 

reflecting the increase in discovery sample size. When the target population was EUR, the 

improvement of PRS-CSx and PRS-CS-mult over PRS-CS was marginal, suggesting that the 

benefits of adding a small non-EUR GWAS to the discovery dataset can be limited in this 

case. However, when predicting into non-EUR populations, multi-discovery methods clearly 

outperformed single-discovery methods, with Bayesian methods (LDpred2-mult, PRS-CS-

mult and PRS-CSx) demonstrating a larger advantage over PT-based methods. PRS-CSx 

provided an additional increase of 10.6% and 16.4% in R2 over PRS-CS-mult when the 

target population was EAS and AFR, respectively, demonstrating that joint modeling of 

the genetic architecture across populations using the coupled continuous shrinkage prior 

improves polygenic prediction in non-EUR populations.

We conducted a series of secondary simulations, by varying one parameter in the primary 

simulation at a time, to assess the generalizability of the above observations and the 

robustness of PRS-CSx across a wide range of genetic architectures, cross-population 

genetic overlaps and discovery GWAS sample sizes (Supplementary Note; Extended Data 

Figs. 1–7; Supplementary Tables 2–9). We concluded that, while the benefits of using a 

coupled prior varied with simulation designs and may be small in certain scenarios, PRS-

CSx improved cross-population prediction accuracy relative to alternative methods across a 

vast majority of the simulation settings and was robust to model misspecification.
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Prediction of quantitative traits in Biobanks

Next, we evaluated the predictive performance of different polygenic prediction methods 

using 33 anthropometric or blood panel traits from UKBB28 (N=314,916–360,388) and 

BBJ30 (N=71,221–165,419; Supplementary Table 10). All the 33 traits, with two exceptions 

(Basophil and Eosinophil), had moderate to high cross-population genetic-effect correlations 

estimated by POPCORN16 (range 0.37–0.85; Supplementary Table 10). We applied single-

discovery methods to UKBB or BBJ summary statistics, and used multi-discovery methods 

to combine UKBB and BBJ GWAS. All target samples are unrelated UKBB individuals that 

are also unrelated with the UKBB discovery samples. We assigned each target sample to 

one of the five 1KG super-populations [AFR, AMR (Admixed American), EAS, EUR, SAS 

(South Asian)] (Methods), and assessed the prediction accuracy in each target population 

separately, adjusting for age, sex and top 20 principal components (PCs) of the genotypes. 

For each population, the target dataset was randomly and evenly split into a validation 

dataset and a testing dataset. The prediction accuracy, measured by variance explained (R2) 

in linear regression after adjusting for covariates, was averaged across 100 random splits.

Consistent with simulation results, Bayesian multi-discovery methods examined here 

(LDpred2-mult, PRS-CS-mult and PRS-CSx) often outperformed published single-discovery 

methods and PT-based multi-discovery methods, suggesting the importance of integrating 

available GWAS summary statistics and appropriately accounting for population-specific LD 

patterns in cross-population prediction (Fig. 3; Supplementary Table 11). The improvement 

of PRS-CSx in prediction accuracy relative to LDpred2 and PRS-CS trained on UKBB 

summary statistics (which on average were more accurate than PRS trained on BBJ GWAS), 

and LDpred2-mult and PRS-CS-mult (which were often the second and third best multi-

discovery method) depended on the target population.

When predicting into the EUR population, PRS-CSx provided a consistent but marginal 

improvement over LDpred2 (median relative increase in R2: 4.7%) and PRS-CS (median 

relative increase in R2: 5.2%), likely due to the limited power of the BBJ GWAS relative 

to the UKBB GWAS in EUR prediction. The benefit of the coupled prior in this case 

was also limited, as reflected by a small improvement of PRS-CSx relative to PRS-CS-

mult (median relative increase in R2: 2.2%; Fig. 3a, left panel; Supplementary Table 11), 

which was consistent with the observations in simulations. When the target population 

was EAS, however, PRS-CSx substantially increased the prediction accuracy relative to 

single-discovery methods: the median relative improvements in R2 were 52.3% and 32.9% 

when compared with LDpred2 and PRS-CS trained on UKBB GWAS, and 69.8% and 

74.4% when compared with LDpred2 and PRS-CS trained on BBJ GWAS, suggesting 

that PRS-CSx can leverage large-scale EUR GWAS to improve the prediction in non-EUR 

populations. PRS-CSx also had a median improvement of 10.5% (two-sided Wilcoxon 

signed-rank test Pwilcoxon=3.90E-4) and 8.3% (Pwilcoxon=2.84E-6) relative to LDpred2-mult 

and PRS-CS-mult, respectively, demonstrating the benefits of jointly modeling summary 

statistics from multiple populations in trans-ancestry prediction (Fig. 3a, middle panel; 

Supplementary Table 11). When the target population did not match any of the discovery 

samples, PRS-CSx was still able to increase the prediction accuracy. For example, when 

predicting into the AFR population, the median improvements of PRS-CSx relative to 
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LDpred2 and PRS-CS trained on UKBB GWAS were 45.1% and 16.9%, respectively, 

and the median improvements relative to LDpred2-mult and PRS-CS-mult were 22.2% 

(Pwilcoxon=2.38E-5) and 7.1% (Pwilcoxon=2.99E-5), respectively (Fig. 3a, right panel; 

Supplementary Table 11).

We next sought to replicate the relative performance of different PRS construction methods 

in the Taiwan Biobank (TWB)32, which is a community-based prospective cohort study 

of the Taiwanese population. Among the 33 quantitative traits we examined in UKBB 

and BBJ, 21 traits were also available in TWB. All PRS were trained on the UKBB 

and/or BBJ GWAS, validated in the UKBB EAS samples (where hyper-parameters 

were learnt; Supplementary Table 12), and evaluated in the TWB sample comprising 

10,149 unrelated individuals, adjusting for age, sex and top 20 PCs of the genotypes. 

Figure 3b shows that single-discovery methods trained on UKBB and BBJ GWAS had 

similar performance in the TWB sample, even though UKBB GWAS were much larger 

(Fig. 3b; Supplementary Table 13). Bayesian multi-discovery methods showed substantial 

improvement in prediction accuracy compared with single-discovery methods. PRS-CSx 

provided a median improvement of 39.5% relative to PRS-CS (the best single-discovery 

method) and 8.2% relative to PRS-CS-mult (the second best multi-discovery method), 

suggesting the robustness of PRS-CSx when model parameters learnt in validation datasets 

were applied to external independent testing datasets. Overall, results in the TWB closely 

reproduced the patterns observed in the UKBB EAS samples (Fig. 3a, middle panel).

We further investigated whether adding African American samples to the discovery dataset 

can improve the prediction in the AFR population. Among the 33 traits we examined, 14 

traits were also available in PAGE31 (N=11,178–49,796), a genetic epidemiology study 

comprising largely African American and Hispanic/Latino samples (Supplementary Table 

10). All UKBB-PAGE and BBJ-PAGE genetic-effect correlations were moderate to high 

(range 0.44–1.00; Supplementary Table 10). Although the discovery and target samples had 

largely matched ancestry, applying PRS-CS (or other single-discovery methods) to PAGE 

summary statistics alone produced low prediction accuracy in the AFR population with only 

a few exceptions, due to the small sample size of the PAGE study (Fig. 3c; Supplementary 

Table 14). However, integrating UKBB, BBJ and PAGE summary statistics using PRS-CSx 

(Supplementary Table 15) dramatically outperformed single-discovery methods, and the 

median relative improvement in R2 was 28.1% when compared with PRS-CSx trained on 

UKBB and BBJ GWAS only, suggesting that PRS-CSx benefits from including samples 

that have matched ancestry with the target population in the discovery dataset, even if the 

non-European GWAS included are considerably smaller than European studies (Fig. 3c; 

Supplementary Tables 14). We note, however, that the overall prediction accuracy in the 

AFR population remained low relative to the predictions in EUR and EAS individuals, 

reflecting highly imbalanced sample sizes in the training GWAS across populations 

(Extended Data Fig. 8). We additionally assessed the convergence of the model fitting 

algorithm used in PRS-CSx, and confirmed that the Gibbs sampler achieved reasonable 

convergence and mixing38 (Supplementary Note; Extended Data Fig. 9).
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Schizophrenia risk prediction

Lastly, we evaluated the predictive performance of different polygenic prediction methods 

for dichotomous traits. We used schizophrenia as an example, for which large-scale EUR 

and EAS GWAS along with multiple individual-level cohorts are available (Supplementary 

Table 16). Specifically, we used GWAS summary statistics derived from the Psychiatric 

Genomics Consortium (PGC) wave 2 EUR samples (33,640 cases and 43,456 controls)34 

and 10 PGC EAS cohorts15 (7,856 cases and 11,562 controls) as the discovery dataset. For 

the additional 7 EAS cohorts which we had access to individual-level data, we set aside one 

cohort (KOR1; 687 cases and 492 controls) as the validation dataset (for hyper-parameter 

tuning), and applied a leave-one-out approach to the remaining 6 cohorts. More specifically, 

we in turn used one of the 6 cohorts as the testing dataset, and meta-analyzed the remaining 

5 cohorts with the 10 PGC EAS cohorts using an inverse-variance-weighted meta-analysis 

to generate the discovery GWAS summary statistics for the EAS population. The prediction 

accuracy of different PRS construction methods was then evaluated in the left-out (testing) 

cohort, adjusting for sex and top 20 PCs.

Consistent with previous observations, PRS trained on EAS GWAS were more predictive 

in EAS cohorts than those trained on PGC EUR summary statistics15, despite the larger 

sample size for the EUR GWAS (Fig. 4a; Supplementary Table 17). Among single-

discovery methods examined, LDpred2 and PRS-CS performed substantially better than 

PT, highlighting the importance of modeling LD patterns for highly polygenic traits. 

By integrating EUR and EAS summary statistics, Bayesian multi-discovery methods 

dramatically increased the prediction accuracy relative to single-discovery methods. 

Compared with LDpred2, the best-performing single-discovery method in this analysis, 

PRS-CSx increased the median R2 on the liability scale (assuming 1% of disease 

prevalence) from 0.043 (LDpred2 trained on EAS GWAS) and 0.031 (LDpred2 trained 

on EUR GWAS) to 0.063, a relative increase of 45.4% and 104.9%, respectively. PRS-

CSx also approximately doubled the prediction accuracy of PT-meta and PT-mult, with a 

relative increase of 135.9% (from 0.027 to 0.063) and 95.3% (from 0.032 to 0.063) in 

the median liability R2, respectively. In addition, PRS-CSx provided consistent, although 

relatively small, improvement over LDpred2-mult (relative increase in median R2: 8.7%) 

and PRS-CS-mult (relative increase in median R2: 5.9%), suggesting that in practice 

PRS-CSx can increase predictive power over Bayesian “mult” methods even for highly 

polygenic architecture (Fig. 4a; Supplementary Table 17), a scenario where the benefit of 

the coupled prior was reduced in simulations (Extended Data Fig. 1; Supplementary Table 

2). Other performance metrics, including Nagelkerke’s R2, odds ratio (OR) per standard 

deviation change of PRS, and OR comparing top 10% with bottom 10% of the PRS 

distribution, showed a consistent pattern (Supplementary Table 17). Finally, PRS-CSx can 

more accurately identify individuals at high/low schizophrenia risk than alternative methods, 

showing a 2.9, 3.5 and 4.2-fold increase in the proportion of schizophrenia cases across the 

6 testing cohorts when contrasting the top 10%, 5% or 2% of the PRS distribution with the 

bottom 10%, 5% or 2%, respectively (Fig. 4b; Supplementary Table 18).
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DISCUSSION

We have presented PRS-CSx, a Bayesian polygenic prediction method that integrates GWAS 

summary statistics from multiple populations to improve the prediction accuracy of PRS 

in ancestrally diverse samples. PRS-CSx leverages the correlation of genetic effects and 

LD diversity across populations to more accurately localize association signals and increase 

the effective sample size of the discovery dataset, while accounting for population-specific 

allele frequency and LD patterns. We have shown, via simulation studies, that PRS-CSx 

robustly improves cross-population prediction over existing methods across traits with 

varying genetic architectures, genetic overlaps between populations, and discovery GWAS 

sample sizes. Using quantitative traits from multiple biobanks as well as schizophrenia 

cohort studies of European and East Asian ancestries, we have further demonstrated the 

PRS-CSx can leverage large-scale European GWAS to boost the accuracy of polygenic 

prediction in non-European populations, for which ancestry-matched discovery GWAS may 

be orders of magnitude smaller in sample size.

PRS-CSx is expected to provide larger power gains when the GWAS in the target population 

has lower statistical power, while well-powered GWAS from other populations are available. 

This often happens when predicting into a non-EUR population, where ancestry-matched 

GWAS have limited sample sizes but large-scale EUR GWAS already exist. By integrating 

EUR and non-EUR GWAS, PRS-CSx can significantly improve the prediction accuracy 

in non-EUR populations, which alleviates the imminent challenge of polygenic prediction 

in under-represented populations. In contrast, PRS-CSx may provide limited increase in 

prediction accuracy when a well-powered GWAS in the target population already exists and 

GWAS from other populations have smaller sample sizes and lower statistical power. In 

practice, this happens almost exclusively for predictions in the EUR population. We note 

that while PRS-CSx increased the prediction in non-European populations for the majority 

of the traits examined in this study, the amount of improvement in prediction accuracy 

over alternative methods varied across traits. Future research is needed to dissect the effects 

of potential factors on the accuracy of cross-ancestry polygenic prediction and to better 

understand the behavior of different prediction algorithms for individual traits.

PRS-CSx is designed to flexibly model GWAS summary statistics from multiple populations 

where SNP effect sizes and/or LD patterns differ. For two or more GWAS conducted in 

independent samples from the same population where effect sizes and LD patterns are 

expected to be highly concordant, a fixed-effect meta-analysis is probably the optimal 

approach to combine the GWAS and maximize statistical power. However, we do not 

recommend meta-analyzing summary statistics across populations and applying single-

discovery methods (e.g., LDpred2 or PRS-CS) to the meta-GWAS for two reasons: (1) The 

LD pattern of a cross-ancestry meta-analyzed GWAS is a mixture of population-specific LD, 

which is difficult to appropriately model. Rather, accurately modeling LD patterns is often 

crucial to the performance of Bayesian polygenic prediction methods. (2) The predictive 

performance of these “meta” methods heavily depends on whether the assumption of the 

fixed-effect meta-analysis (i.e., consistent SNP effects across populations) is accurate. These 

methods are thus less adaptive to a wide range of cross-population genetic architectures 

compared with PRS-CSx or the “mult” methods. That said, many existing studies have only 
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released summary statistics from cross-population meta-analysis, in which case applying 

single-discovery methods to the meta-GWAS remains useful approaches in practice. We 

believe that releasing ancestry-specific summary statistics from multi-ancestry genomic 

studies is critical for understanding comparative genetic architectures between populations, 

and for flexible and accurate cross-population polygenic modeling and prediction.

The use of PRS-CSx, as well as the “mult” methods examined in this work, requires a 

validation dataset to tune hyper-parameters and learn the optimal linear combination of 

population-specific PRS, and an independent testing dataset where the final PRS can be 

generated and evaluated. As non-European genomic resources remain limited, independent 

validation and testing datasets are often difficult to identify, and a single target cohort 

may be too small to be split into validation and testing sets. To facilitate the use of 

PRS-CSx, we have released posterior SNP effects and linear combination weights for all 

the traits and target populations examined in this study. In addition, in certain applications, 

it may be preferable to calculate PRS for all samples within the target cohort rather than 

stratifying them into different ancestry groups. For example, returning genomic predictions 

to patients with recently admixed ancestries in clinical settings would be difficult as 

ancestries are not distinct entities, and genetic ancestry assignments may be inconsistent 

with self-reported race/ethnicity, illuminating the complexity of communicating population-

stratified PRS results to patients. In these scenarios, PRS-CSx provides an “auto” version 

which automatically learns the global shrinkage parameter from the discovery summary 

statistics, and a “meta” option which integrates population-specific posterior SNP effects 

using an inverse-variance-weighted meta-analysis within the Gibbs sampler. Combining the 

“auto” and “meta” algorithms thus generates a trans-ancestry PRS that can be applied to 

all samples in the target cohort without the need for a validation dataset39. We note that, 

although simpler to implement, the “meta” option is expected to be less accurate compared 

with the linear combination approach that optimizes PRS estimation separately in each target 

population.

While PRS-CSx can take an arbitrary number of GWAS summary statistics as input, an 

ancestry-matched LD reference panel is required for each discovery sample, which may 

be challenging to build for GWAS conducted in admixed populations or in samples with 

large genomic diversity40. Although we have shown that PRS-CSx is robust to imperfectly 

matched LD reference panels, future work is needed to better model summary statistics from 

recently admixed populations41,42.

Lastly, we note that although PRS-CSx can improve cross-population polygenic prediction, 

the gap in the prediction accuracy between European and non-European populations remains 

considerable. Indeed, sophisticated statistical and computational methods alone will not 

be able to overcome the current Eurocentric biases in GWAS. Broadening the sample 

diversity in genomic research to fully characterize the genetic architecture and understand 

the genetic and non-genetic contributions to human complex traits and diseases across 

global populations is crucial to further improve the prediction accuracy of PRS in diverse 

populations.
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METHODS

PRS-CSx.

PRS-CSx is an extension of PRS-CS19, which enables the integration of GWAS 

summary statistics from multiple populations to improve cross-population polygenic 

prediction. Consider the following Bayesian high-dimensional linear regression model for K 
populations:

yk = Xkβk + ϵk, ϵk MVN 0, σk
2I , π σk

2 ∝ σk
−2, k = 1, 2, ⋯, K,

where, for each population k, yk is a vector of standardized phenotypes (zero mean and 

unit variance) from Nk individuals, Xk is an Nk × Mk matrix of standardized genotypes 

(each column has zero mean and unit variance), βk is a vector of SNP effect sizes, ϵk is a 

vector of normally distributed non-genetic effects with variance σk
2, for which we assign a 

non-informative scale-invariant Jeffreys prior, and I is an identify matrix. We use j = 1, 2, 

⋯ , M to index the M unique SNPs across populations. For SNP j in population k, we place 

a continuous shrinkage prior on its effect size βjk, which can be represented as global-local 

scale mixtures of normals:

βjk N 0,
σk

2

Nk
ψj , ψj Gamma a, δj , δj Gamma b, ϕ ,

where ϕ is a global shrinkage parameter shared across all SNPs that models the overall 

sparseness of the genetic architecture, and Ψj is a local, SNP-specific shrinkage parameter 

that is adaptive to marginal GWAS associations. By assigning a gamma-gamma hierarchical 

prior on Ψj (specifically, the Strawderman-Berger prior with a = 1 and b = 1/2 in this work), 

the marginal prior density of βjk has sizable amount of mass near zero to impose strong 

shrinkage on small noisy signals, and in the meantime, heavy Cauchy-like tails to avoid 

over-shrinkage of truly non-zero effects.

We note that when SNP j is available in multiple GWAS summary statistics, the continuous 

shrinkage prior is shared across populations (i.e., both ϕ and Ψj do not depend on 

k), enabling information sharing between summary statistics while allowing for varying 

SNP effect sizes across populations to retain modeling flexibility. More specifically, 

given the variance parameters σk
2, ϕ and Ψj, and the marginal least squares estimates 

of the SNP effect sizes in population k, βk = Xk
Tyk/Nk, the posterior mean of βk is 

E βk |βk = (Dk + Ψ−1)−1βk, where Dk = Xk
TXk/Nk is the LD matrix for population k, and Ψ 

= diag{Ψ1, Ψ2, ⋯ ,ΨM} is a diagonal matrix (Supplementary Note). It can be seen that Ψ 
does not depend on k and thus the amount of shrinkage applied to each SNP is shared across 

populations. Meanwhile, population-specific LD patterns are explicitly modelled via the LD 

matrix Dk.
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Given the summary statistics and ancestry-matched LD reference panel for each discovery 

sample, the PRS-CSx model can be fitted using a Gibbs sampler with block update of 

posterior SNP effect sizes, without the need to access individual-level data (Supplementary 

Note). Monomorphic or rare variants not present in the GWAS summary statistics or 

population-specific LD reference panel of population A are not included in the construction 

of PRS for population A. If a SNP is present in population A but is monomorphic or rare in 

other populations, its effect size is not coupled across populations in posterior inference but 

the SNP is included in the PRS of population A such that population-specific associations 

can be captured (Fig. 1). In the extreme, unlikely scenario, where there is no overlapping 

SNP between input GWAS summary statistics, PRS-CSx reduces to applying PRS-CS 

separately to each discovery GWAS. PRS-CSx inherits many features from PRS-CS, 

including robustness to varying genetic architectures, multivariate modeling of population-

specific LD patterns, and computational efficiency. In this work, we used pre-calculated 

1KG Phase 3 LD reference panels43 for EUR, EAS, AFR and AMR populations, which 

were constructed for HapMap3 variants with MAF >1%. We recommend using 1,000*K 
Markov Chain Monte Carlo (MCMC) iterations with the first 500*K steps as burin-in in 

Gibbs sampling, where K is the number of discovery populations, reflecting the growing 

number of unknown parameters with the number of discovery GWAS jointly modelled. For a 

fixed global shrinkage parameter ϕ, PRS-CSx returns posterior SNP effect size estimates for 

each discovery population, which can be used to calculate K population-specific PRS in the 

target sample. For each ϕ value, we fitted a linear (or logistic) regression of the z-scored PRS 

(one for each discovery population) in the validation dataset:

y wϕ, 1PRSϕ, 1 + wϕ, 2PRSϕ, 2 + ⋯ + wϕ, KPRSϕ, K,

where y is the trait of interest, PRSϕ,k is the standardized PRS for population k, and wϕ,k 

is the regression coefficient. We screened four different ϕ values, 10−6, 10−4, 10−2 and 

1.0, in this work. The ϕ value and the corresponding regression coefficients for the linear 

combination of PRS that maximized the R2 in the validation dataset were used in the testing 

dataset to calculate the final PRS:

PRS = wϕ, 1PRSϕ, 1 + wϕ, 2PRSϕ, 2 + ⋯ + wϕ, KPRSϕ, K .

Alternative PRS construction methods

PT: LD-informed pruning and p-value thresholding (PT)35 selects clumped SNPs of a 

certain statistical significance to be included in the PRS calculation. We performed PT using 

PRSice-244 with the default parameter settings: the clumping was performed with a radius 

of 250kb and an r2 threshold of 0.1. We used 1KG super-population samples (EUR, EAS, 

AFR or AMR) whose ancestry matched the discovery sample as the LD reference panel 

for clumping. The p-value threshold among 10−8, 10−7, 10−6, 10−5, 3×10−5, 10−4, 3×10−4, 

0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1.0 that maximized the R2 in the validation dataset 

was selected, and used in the independent testing dataset to calculate the final PRS and its 

performance metrics.
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LDpred2: LDpred220, an improved version of the LDpred algorithm21, is a Bayesian 

polygenic prediction method that adjusts marginal SNP effect size estimates from GWAS 

summary statistics to calculate the PRS. LDpred2 assigns a point-normal prior to SNP effect 

sizes, where the proportion of causal variants is a tunable parameter, and infers posterior 

effects using a Gibbs sampler. We constrained the computation to HapMap3 variants with 

MAF >1%, and used 1KG super-population samples (EUR, EAS, AFR or AMR) whose 

ancestry matched the discovery sample as the LD reference panel. We ran LDpred2-grid 

using the genome-wide option with the full LD matrix, and tested the proportion of causal 

variants from a sequence of 17 values equally spaced from 10−4 to 1.0 on the log scale. 

The proportion that maximized the R2 in the validation dataset was selected, and used in the 

independent testing dataset to calculate the final PRS and its performance metrics.

PRS-CS: PRS-CS19 is a Bayesian polygenic prediction method that infers posterior SNP 

effect sizes from summary statistics using a continuous shrinkage prior, which is robust 

to varying genetic architectures, accurate in LD modeling and computationally efficient. 

PRS-CS has one hyper-parameter, the global shrinkage parameter, which models the overall 

sparseness of the genetic architecture. We used default parameter settings and the pre-

calculated 1KG LD reference panel (EUR, EAS, AFR or AMR) that matched the ancestry 

of the discovery sample, which was constructed for HapMap3 variants with MAF >1%. The 

global shrinkage parameter among 10−6, 10−4, 10−2 and 1.0 that maximized the R2 in the 

validation dataset was selected, and used in the independent testing dataset to calculate the 

final PRS and its performance metrics.

PT-meta: PT-meta applies PT to the meta-GWAS that combines all discovery summary 

statistics through an inverse-variance-weighted fixed-effect meta-analysis. We used the same 

clumping parameters and screened the same list of p-value thresholds as the PT method. 

The 1KG LD reference panel (EUR, EAS, AFR or AMR) that had matched ancestry with 

each of the discovery samples was in turn used for clumping, producing multiple sets of 

clumped variants. The best combination of the LD reference panel and the p-value threshold 

that maximized the R2 in the validation dataset was selected, and used in the independent 

testing dataset to calculate the final PRS and its performance metrics.

PT-mult, LDpred2-mult and PRS-CS-mult: PT-mult26, LDpred2-mult and PRS-CS-

mult apply PT, LDpred2 and PRS-CS to each discovery summary statistics separately. The 

most predictive PRS derived from each discovery sample were then used to fit a linear 

regression in the validation dataset:

y w1PRS1 + w2PRS2 + ⋯ + wKPRSK,

where PRSk is the standardized PRS for population k, and wk is the corresponding 

regression coefficient. The optimal hyper-parameter for each discovery sample and the 

estimated regression coefficients for the linear combination of standardized PRS were used 

in the independent testing dataset to calculate the final PRS and its performance metrics. We 

screened the same grid of hyper-parameters for each method (i.e., the p-value threshold for 

PT; the proportion of causal variants for LDpred2; and the global shrinkage parameter for 
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PRS-CS). The 1KG super-population samples (EUR, EAS, AFR or AMR) whose ancestry 

matched the discovery sample were used as the LD reference panel.

Simulations.

Genotypes: We simulated individual-level genotypes of EUR, EAS and AFR populations 

using HAPGEN237 with ancestry-matched 1KG Phase 336 super-population samples as the 

reference panel. We grouped CEU, IBS, FIN, GBR and TSI into the EUR super-population, 

CDX, CHB, CHS, JPT and KHV into the EAS super-population, and ACB, ASW, LWK, 

MKK and YRI into the AFR super-population. To calculate the genetic map (cM) and 

recombination rate (cM/Mb) for each super-population, we downloaded the maps and rates 

for their constituent subpopulations (Data availability), linearly interpolated the genetic 

map and recombination rate at each position (Code availability), and averaged the genetic 

maps and recombination rates across the subpopulations within each super-population. We 

simulated 320K EUR samples, 100K EAS samples and 100K AFR samples, and confirmed 

that the allele frequencies and LD patterns of the simulated genotypes were highly similar to 

those of the 1KG reference panels. We note, however, that while highly scalable, genotypes 

simulated by HAPGEN2 may not fully capture the complex population structure within and 

across ancestry groups. We saved 20K samples for each of the three populations as the target 

dataset, which was evenly split into validation and testing datasets. The remaining samples 

served as the discovery dataset, which was used to produce GWAS of varying sample sizes. 

We constrained the simulations to 1,296,253 HapMap3 variants with MAF >1% in at least 

one of the EUR, EAS and AFR populations, and removed triallelic and strand ambiguous 

variants.

Phenotypes: In our primary simulation, we randomly sampled 1% of the HapMap3 

variants as causal variants. We assumed that causal variants are shared across the 

three populations and simulated their per-allele effect sizes using a multivariate normal 

distribution with the correlation between populations set to 0.7. For each population, we 

used a normally distributed random variable to model the non-genetic component such that 

the heritability was fixed at 50%. The phenotype was then generated in each population 

using y = Xβ + ϵ, where X was the genotype matrix, β was the simulated per-allele effect 

size vector in which causal variants had non-zero effects and the rest of the variants had zero 

effect sizes, and ϵ was the simulated non-genetic component. The simulation was repeated 

20 times. GWAS was performed on 100K EUR, 20K EAS and 20K AFR discovery samples, 

respectively, using PLINK 1.945.

We conducted a series of secondary simulations to assess the robustness of PRS-CSx in 

a wide range of settings: (i) varying polygenicity of the genetic architecture (0.1% vs. 

1% vs. 10% of causal variants); (ii) varying cross-population genetic correlations (rg=0.4 

vs. rg=0.7 vs. rg=1.0); (iii) varying sample sizes of the discovery GWAS (50K EUR + 

10K non-EUR; 100K EUR + 20K non-EUR; 200K EUR + 40K non-EUR; 300K EUR + 

60K non-EUR); (iv) varying ratios of the EUR vs. non-EUR GWAS sample sizes (120K 

EUR + 0K non-EUR; 100K EUR vs. 20K non-EUR; 80K EUR + 40K non-EUR; 60K 

EUR + 60K non-EUR); (v) varying SNP heritability of the simulated trait in different 

populations (h2=0.5 in EUR + h2=0.5 in non-EUR; h2=0.5 in EUR + h2=0.25 in non-EUR; 
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h2=0.25 in EUR + h2=0.5 in non-EUR); (vi) varying proportions of shared causal variants 

across populations (100% vs. 70% vs. 40%); (vii) allele frequency and LD dependent 

genetic architecture: instead of sampling per-allele SNP effect sizes from a multivariate 

normal distribution with homogeneous variance across the genome, we assumed that the 

variance of SNP j in population k is proportional to [2fjk 1 − fjk ]α ℓjk
α , where fjk and ℓjk 

are the MAF and LD score of SNP j in population k, respectively. When α < 0 , variants 

with lower MAF and variants located in lower LD regions tend to have larger effects on 

the trait46–48. We used α = −0.25 in this set of simulations, which has been empirically 

estimated to reflect the relationship between effect size and allele frequency46. This α value 

produced approximately a 4-fold difference in the variance of per-allele effect size for both 

high-frequency vs. low-frequency variants and high-LD vs. low-LD variants included in the 

simulations; (ix) varying hyper-parameters in the continuous shrinkage prior (a=0.5, b=0.5 

vs. a=1.0, b=0.5 vs. a=1.5, b=0.5 vs. a=1.0, b=1.0).

UKBB, BBJ, PAGE and TWB analysis.

Discovery data: We downloaded GWAS summary statistics from UKBB28, BBJ29 and 

PAGE31 (Data availability). We selected 33 quantitative traits that were available in both 

UKBB and BBJ, among which 14 were also available in PAGE (Supplementary Table 

10). We used 1KG EUR and EAS samples as the LD reference panel for UKBB and 

BBJ summary statistics, respectively, when constructing PRS. The PAGE study was largely 

comprised African American and Hispanic/Latino samples, for which we used the 1KG 

AMR reference panel as an approximation in the PRS analyses. UKBB target data: 

All UKBB target samples are unrelated UKBB individuals that are non-overlapping and 

unrelated with the UKBB GWAS sample. To perform population assignment on the UKBB 

samples, we selected variants that are available in both 1KG and the UKBB genotyped 

dataset, and removed variants meeting one of the following criteria in 1KG: (i) strand 

ambiguous; (ii) located on sex chromosomes or in long-range LD regions (chr6: 25–35Mb; 

chr8: 7–13Mb); (iii) call rate <0.98; and (iv) MAF <0.05. We performed LD pruning on 

the remaining variants in 1KG using PLINK45 (--indep-pairwise 100 50 0.2), yielding 

149,501 largely independent, high-quality common variants. We then conducted principal 

component analysis using these LD-pruned SNPs in 1KG samples, and projected SNP 

loadings onto UKBB samples with the scale appropriately adjusted. Using 1KG as the 

reference, we trained a random forest model to predict the 5 super-population labels (AFR, 

AMR, EAS, EUR, SAS) using the top 6 PCs, and applied the trained random forest classifier 

to UKBB samples to predict the genetic ancestry of each UKBB participant. We retained 

UKBB samples that can be assigned to one of the super-populations with a predicted 

probability >90%. For each population in UKBB, we selected a set of unrelated individuals 

and performed sample-level quality control (QC) by removing individuals meeting one 

of the following criteria: (i) mismatch between self-reported and genetically inferred sex; 

(ii) missingness or heterozygosity outliers; and (iii) sex chromosome aneuploidy. For the 

validation and testing of PRS in the EUR population, we used non-British EUR samples 

that are unrelated to the White British samples included in Neale Lab UKBB GWAS. Lastly, 

we converted imputed dosage data into hard coded genotypes using PLINK 2.0 with default 

parameters (i.e., dosage was rounded to the nearest hardcall when the distance was no 
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great than 0.1; otherwise a missing hardcall was saved), and performed variant-level QC 

within each target population by removing variants meeting one of the following criteria: 

(i) call rate <0.98; (ii) MAF <0.01; (iii) Hardy-Weinberg equilibrium test p-value <10−10; 

and (iv) imputation INFO score <0.8. The final target dataset included 7,507 AFR, 687 

AMR, 2,181 EAS, 14,085 EUR and 8,412 SAS individuals, with 12,886,200, 8,593,932, 

6,506,126, 8,211,053 and 8,032,121 variants, respectively. TWB target data: The Taiwan 

Biobank (TWB)32,33 is a prospective cohort study of the Taiwanese population. Participants 

were 30 to 70 years old at recruitment. Among the 33 quantitative traits examined in 

UKBB, we identified 21 traits that were also available in TWB. We used 14,232 samples 

genotyped on the TWBv2 custom array and imputed against the 1KG samples, the same 

dataset used in the PRS analysis of our recent TWB quantitative trait GWAS study32, to 

evaluate the predictive performance of different polygenic prediction methods. Following the 

same sample-level and variant-level QC procedures used in the UKBB analysis, the final 

analytic sample included 10,149 unrelated individuals of EAS ancestry that had complete 

data across the 21 traits. Detailed information on the sample characteristics and collection of 

phenotypes can be found in Chen et al.32,33

Heritability and cross-population genetic correlation.

Heritability of each trait in UKBB, BBJ and PAGE was estimated using LD score 

regression49 with ancestry-matched LD reference panels. We calculated the cross-population 

genetic correlation between UKBB, BBJ and PAGE using POPCORN16 with default 

parameters. POPCORN requires the LD score49 and cross-covariance score as the input. 

We used the pre-computed EUR-EAS scores (available from the POPCORN website), and 

computed EUR-AFR and EAS-AFR scores on 1KG Phase 3 samples using the ‘compute’ 

function provided by POPOCORN.

Schizophrenia datasets.

Schizophrenia data used in this study is summarized in Supplementary Table 16. PGC wave 

2 schizophrenia GWAS summary statistics34 were used as the European discovery dataset. 

Except for one cohort (TMIM1), EAS samples used as discovery and target datasets were 

described in Lam et al.15 TMIM1 was recruited from multiple university hospitals and 

local hospitals in Japan. Patients were diagnosed according to the Diagnostic and Statistical 

Manual of Mental Disorders, 4th Edition (DSM-IV) with consensus from at least two 

experienced psychiatrists. All patients agreed to participate in the study and provided written 

informed consent. The study was approved by the Institutional Review Boards of the Tokyo 

Metropolitan Institute of Medical Science and all affiliated institutions. DNA samples were 

genotyped on the Illumina Infinium Global Screening Array-24 v1.0 (GSA) BeadChip at 

the Broad Institute, using standard reagents and HTS workflow procedures. GWAS QC and 

imputation were performed using Ricopili50 with default parameters. When used as a target 

cohort, SNPs were further filtered by imputation INFO score <0.9 and MAF <0.01.

Ethics.

Collection of the UKBB data was approved by the UKBB’s Research Ethics Committee. 

UKBB individual-level data used in the present work were obtained under application 

#32568. BBJ and PAGE: only publicly available GWAS summary statistics, without 
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individual-level information, were used in this study. Collection of the TWB data was 

approved by the Ethics and Governance Council (EGC) of TWB and the Department of 

Health and Welfare, Taiwan (Wei-Shu-I-Tzu NO.1010267471). TWB obtained informed 

consent from all participants for research use of the collected data. The access to and the 

use of TWB data in the present work was approved by the EGC of TWB (approval number: 

TWBR10907-05) and the Institutional Review Board of National Health Research Institutes, 

Taiwan (approval number: EC1090402-E). Schizophrenia GWAS summary statistics of 

EUR and EAS ancestries are available via the Psychiatric Genomics Consortium, and do 

not contain any individual-level information. The following institutions provided ethics 

oversight for schizophrenia East Asian samples used in this work: Samsung Medical 

Center; Bio-X Institutes of Shanghai Jiao Tong University; Fujita Health University; 

Tokyo Metropolitan Institute of Medical Science; University Medical Center Utrecht; The 

University of Western Australia; The University of Indonesia; RIKEN Center for Integrative 

Medical Sciences; Nagoya University; Osaka University; Niigata University; Chonnam 

National University Hospital, and Mass General Brigham (Protocols 2014P001342 and 

2011P002207). Informed consent and permission to share the data were obtained from all 

subjects, in compliance with the guidelines specified by the recruiting center’s institutional 

review board.

Extended Data

Extended Data Fig. 1. Prediction accuracy of different polygenic prediction methods across 
different genetic architectures.
Phenotypes were simulated using 0.1%, 1% or 10% of randomly sampled causal variants 

(shared across populations), a cross-population genetic correlation of 0.7, and SNP 
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heritability of 50%. PRS were trained using 100K EUR samples and 20K non-EUR (EAS or 

AFR) samples. Numerical results are reported in Supplementary Table 2.

Extended Data Fig. 2. Prediction accuracy of different polygenic prediction methods across 
different cross-population genetic correlations.
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across 

populations), a cross-population genetic correlation of 0.4, 0.7 or 1.0, and SNP heritability 

of 50%. PRS were trained using 100K EUR samples and 20K non-EUR (EAS or AFR) 

samples. Numerical results are reported in Supplementary Table 3.
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Extended Data Fig. 3. Prediction accuracy of different polygenic prediction methods across 
different discovery GWAS sample sizes.
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across 

populations), a cross-population genetic correlation of 0.7, and SNP heritability of 50%. 

PRS were trained using 50K EUR and 10K non-EUR (EAS or AFR) samples, 100K EUR 

and 20K non-EUR samples, 200K EUR and 40K non-EUR samples, or 300K EUR and 60K 

non-EUR samples. Numerical results are reported in Supplementary Table 4.
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Extended Data Fig. 4. Prediction accuracy of different polygenic prediction methods across 
different ratios of EUR vs. non-EUR GWAS sample sizes.
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across 

populations), a cross-population genetic correlation of 0.7, and SNP heritability of 50%. 

PRS were trained using 120K EUR samples without non-EUR samples, 100K EUR and 20K 

non-EUR (EAS or AFR) samples, 80K EUR and 40K non-EUR samples, or 60K EUR and 

60K non-EUR samples. Numerical results are reported in Supplementary Table 5.
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Extended Data Fig. 5. Prediction accuracy of different polygenic prediction methods across 
different SNP heritability.
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across 

populations) and a cross-population genetic correlation of 0.7. SNP heritability was fixed at 

50% in each population, 50% in the EUR population and 25% in the non-EUR population, 

or 25% in the EUR population and 50% in the non-EUR population. PRS were trained 

using 100K EUR samples and 20K non-EUR (EAS or AFR) samples. Numerical results are 

reported in Supplementary Table 6.
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Extended Data Fig. 6. Prediction accuracy of different polygenic prediction methods across 
different proportions of shared causal variants between populations.
Phenotypes were simulated using 1% of randomly sampled causal variants. 100%, 70% or 

40% of the causal variants were shared across populations. Shared causal variants had a 

cross-population genetic correlation of 0.7. SNP heritability was fixed at 50%. PRS were 

trained using 100K EUR samples and 20K non-EUR (EAS or AFR) samples. Numerical 

results are reported in Supplementary Table 7.
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Extended Data Fig. 7. Prediction accuracy of different polygenic prediction methods when SNP 
effect sizes are minor allele frequency (MAF) and linkage disequilibrium (LD) dependent.
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across 

populations), a cross-population genetic correlation of 0.7, and SNP heritability of 50%. 

SNP effect sizes were dependent on MAF and LD scores such that SNPs with lower MAF 

and located in lower LD regions tended to have larger effect sizes. PRS were trained using 

100K EUR samples and 20K non-EUR (EAS or AFR) samples. Numerical results are 

reported in Supplementary Table 8.
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Extended Data Fig. 8. Relative prediction accuracy for quantitative traits across target 
populations.
Relative prediction performance for single-discovery and multi-discovery PRS construction 

methods using discovery GWAS summary statistics a, from UKBB and BBJ, across 33 

traits, in different UKBB target populations (EUR, EAS and AFR); b, from UKBB and BBJ, 

across 21 traits, in the Taiwan Biobank (TWB); c, from UKBB, BBJ and PAGE, across 14 

traits, in different UKBB target populations (EUR, EAS and AFR). Each data point shows 

the relative increase of prediction performance, defined as R2/R2
PRS-CS (UKBB)-EUR - 1, in 

which R2
PRS-CS (UKBB)-EUR is the R2 of the trait in the EUR population using PRS-CS 

trained on the UKBB GWAS summary statistics. In UKBB target populations (panels a 

and c), R2 were averaged across 100 random splits of the target samples into validation 

and testing datasets. The crossbar indicates the median of the relative increase of predictive 

performance across the traits examined. “median N” indicates the median sample size across 

the respective discovery GWAS.
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Extended Data Fig. 9. Trace plots and autocorrelation functions (ACFs) for assessing the 
convergence and mixing of the Gibbs sampler used in PRS-CSx.
Left panels: Trace plots, after discarding the burn-in iterations and thinning the Markov 

chain by a factor of 5, for the posterior effects of rs7412 on low-density lipoprotein 

cholesterol when integrating UKBB, BBJ and PAGE GWAS summary statistics using PRS-

CSx. Right panels: The autocorrelation functions (ACFs) for the traces shown on the left.
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Figure 1: Overview of polygenic prediction methods.
The predictive performances of three representative single-discovery methods: (i) LD-

informed pruning and p-value thresholding (PT); (ii) LDpred2; (iii) PRS-CS; and five 

multi-discovery methods: (i) PT-meta; (ii) PT-mult; (iii) LDpred2-mult; (iv) PRS-CS-mult; 

(v) PRS-CSx are compared in this study. LDpred2-mult and PRS-CS-mult depicted here are 

not published methods but are helpful for comparing potential improvements from PRS-CSx 

that uses a coupled continuous shrinkage prior for the effect sizes of genetic variants. 

The discovery samples (to generate GWAS summary statistics), validation samples (to tune 

hyper-parameters in PRS construction methods) and testing samples (to assess prediction 

accuracy) are non-overlapping. LD ref: LD reference panel; pop A/B/C: Population A/B/C.
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Figure 2: Prediction accuracy of single-discovery and multi-discovery polygenic prediction 
methods in simulations.
1% HapMap3 variants were randomly sampled as causal variants, which in aggregation 

explained 50% of phenotypic variation in each population. Causal variants were shared 

across populations with a cross-population genetic correlation of 0.7. 100K simulated EUR 

samples and 20K non-EUR (EAS or AFR) samples were used as the discovery dataset. Each 

bar shows the squared correlation (R2) between the simulated and predicted phenotypes 

for a polygenic prediction method in an independent testing dataset, averaged across 20 

simulation replicates. Error bar indicates the standard deviation of R2 across replicates. 

Prediction accuracy for each simulation replicate is overlaid on the bar plot.
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Figure 3: Relative prediction accuracy for quantitative traits within each target population.
Relative prediction performance for single-discovery and multi-discovery PRS construction 

methods using discovery GWAS summary statistics a, from UKBB and BBJ, across 33 

traits, in different UKBB target populations (EUR, EAS and AFR); b, from UKBB and BBJ, 

across 21 traits, in the Taiwan Biobank (TWB); c, from UKBB, BBJ and PAGE, across 14 

traits, in different UKBB target populations (EUR, EAS and AFR). Each data point shows 

the relative increase of prediction performance, defined as R2/R2
PRS-CS (UKBB) - 1, in which 

R2
PRS-CS (UKBB) is the R2 of the trait in the same target population using PRS-CS trained on 

the UKBB GWAS summary statistics. In UKBB target populations (panels a and c), R2 was 

averaged across 100 random splits of the target samples into validation and testing datasets. 

The crossbar indicates the median of the relative increase of predictive performance across 

the traits examined. “median N” indicates the median sample size across the respective 

discovery GWAS. The trait MCHC was not included in the AFR panel because its R2 from 

PRS-CS (UKBB) was almost 0, which inflated relative increase of prediction performance 

for other methods.
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Figure 4: Prediction accuracy of schizophrenia risk in EAS cohorts.
a, Prediction accuracy, measured as variance explained (R2) on the liability scale, of 

single-discovery (trained on EAS or EUR GWAS) and multi-discovery polygenic prediction 

methods (trained on both EAS and EUR GWAS: EAS+EUR) across 6 EAS schizophrenia 

cohorts. Each dot represents one testing cohort, with the size of the dot being proportional 

to its effective sample size, calculated as 4/(1/Ncase+1/Ncontrol), and the shape of the dot 

representing the country where the sample was collected. Crossbar indicates the median R2 

on the liability scale. b, The center of the error bar shows the proportion of schizophrenia 

cases of the bottom 2%, 5%, 10% and top 2%, 5%, 10% of the PRS distribution, constructed 

by LDpred2 trained on EAS GWAS (the best-performing single-discovery method) and 

PRS-CSx (the best-performing multi-discovery method), across 6 EAS schizophrenia 

cohorts (9,416 cases, 8,708 controls). Error bar indicates 95% confidence intervals.
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