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Abstract

We interrogate the joint genetic architecture of 11 major psychiatric disorders at biobehavioral, 

functional genomic, and molecular genetic levels of analysis. We identify four broad factors 

(Neurodevelopmental, Compulsive, Psychotic, and Internalizing) that underlie genetic correlations 

among the disorders, and test whether these factors adequately explain their genetic correlations 

with biobehavioral traits. We introduce Stratified Genomic Structural Equation Modeling, which 

we use to identify gene sets that disproportionately contribute to genetic risk sharing. This 
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includes protein-truncating variant–intolerant genes expressed in excitatory and GABAergic brain 

cells that are enriched for genetic overlap across disorders with psychotic features. Multivariate 

association analyses detect 152 (20 novel) independent loci that act on the individual factors and 

identify nine loci that act heterogeneously across disorders within a factor. Despite moderate-to-

high genetic correlations across all 11 disorders, we find little utility of a single dimension of 

genetic risk across psychiatric disorders either at the level of biobehavioral correlates or at the 

level of individual variants.

Psychiatric disorders aggregate both within individuals and within families. Offspring of 

parents with psychiatric illness are at higher risk for developing a broad range of psychiatric 

disorders, not just the specific parental disorder1-3. Moreover, approximately half of 

individuals with a psychiatric illness will concurrently meet criteria for a second disorder4. 

Comorbidity is the norm, rather than the exception. Factor analyses that have modeled these 

comorbidity patterns consistently identify a transdiagnostic p-factor representing general 

risk across psychiatric disorders, along with several intermediate factors representing more 

specific clusters of psychiatric risk (e.g., psychotic disorders, mood disorders)5-7. Modern 

genomics has built on these findings to begin to elucidate the genetic basis for shared 

risk across disorders8,9, with new statistical tools paired with genome-wide association 

study (GWAS) data being used to identify variants associated with multiple disorders10,11. 

Most recently, Lee et al.12 identified three major dimensions of genetic risk sharing 

(Neurodevelopmental, Compulsive and Psychotic) across eight psychiatric disorders, raising 

the possibility that key mechanisms of individual disorder risk may operate through these 

more general factors. Importantly, however, neither phenotypic comorbidity nor genetic 

correlations among disorders are by themselves sufficient to establish the etiological, 

diagnostic, or therapeutic utility of the identified factors.

Here we apply Genomic Structural Equation Modelling (Genomic SEM)13 to GWAS data 

to examine the genetic architecture of 11 major psychiatric disorders (average total sample 

size per disorder = 156,771 participants; range = 9,725–802,939) across biobehavioral, 

functional genomic, and molecular genetic levels of analysis. Genomic SEM is able to 

investigate the multivariate genetic architecture across disorders that were not measured in 

the same sample, thereby offering novel insights across the diagnostic spectrum. We begin 

by estimating several potential genomic factor models and identify four broad factors that 

index shared genetic liability within and across constellations of disorders. We then evaluate 

the utility of these factors using a multi-step approach. First, we test the extent to which the 

factors adequately explain the patterns of genetic correlation between psychiatric disorders 

and a wide range of external biobehavioral traits. Second, we introduce Stratified Genomic 

SEM, which we apply to identify gene sets and categories (e.g., protein-truncating variant–

intolerant genes, low minor allele frequency (MAF) SNPs) for which genetic risk sharing 

across subclusters of disorders, as indexed by each of the factors, and genetic differentiation, 

as indexed by disorder-specific residuals, is enriched. Finally, we capitalize on Genomic 

SEM for multivariate GWAS to identify loci that confer risk to multiple disorders via 

the factors, along with loci that operate heterogeneously across disorders within a given 

factor. Collectively, these results offer key insights into the shared and disorder-specific 

mechanisms of genetic risk for psychiatric disease.
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Results

Genomic factor analysis across 11 psychiatric traits.

We curated the most recent European ancestry GWAS summary data for 11 major 

psychiatric disorders: attention-deficit/hyperactivity disorder (ADHD)14, problematic 

alcohol use (ALCH)15, anorexia nervosa (AN)16, autism spectrum disorder (AUT)17, anxiety 

disorders (ANX)18,19, bipolar disorder (BIP)20, major depressive disorder (MDD)21,22, 

obsessive compulsive disorder (OCD)23, post-traumatic stress disorder (PTSD)24,25, 

schizophrenia (SCZ)26, and Tourette syndrome (TS)27 (Table 1 and Supplementary Table 1). 

A heatmap of genetic correlations estimated using LD Score regression (LDSC)8 indicates 

pervasive overlap across the 11 disorders, with more pronounced clustering observed among 

certain constellations of disorders (Fig. 1a and Supplementary Table 2).

We formally modeled this genetic covariance structure in Genomic SEM13, finding that 

a four correlated factors model fit the data well (Fig. 1b). Factor 1 consists of disorders 

characterized largely by compulsive behaviors (AN, OCD, TS). Factor 2 is characterized 

by disorders that may have psychotic features (SCZ, BIP). Factor 3 is characterized 

primarily by childhood-onset neurodevelopmental disorders (ADHD, AUT). Factor 4 is 

characterized by internalizing disorders (ANX, MDD). In line with prior evidence for 

a higher-order transdiagnostic “p-factor”5-7, we find that a hierarchical model also fit 

the genetic covariance structure well (Fig. 1c). We retained these two models—the four 

correlated factors model and the hierarchical factor model—to examine the utility of the 

genomic factors at biobehavioral, functional genomic, and molecular levels of analysis. We 

discuss a post-hoc bifactor model (Fig. 1d) at the end of the Results section.

Psychiatric genetics factors and biobehavioral traits.

We examined patterns of correlations across the psychiatric factors and 49 biobehavioral 

traits28, 101 metrics of brain morphology29, and circadian activity across 24 hours30. Results 

for brain morphology are presented in Supplementary Figures 3 and 4 and Supplementary 

Table 4, as none of these associations were significant at a Bonferroni-corrected threshold 

for 174 tests (P < 2.87 × 10−4). To evaluate the extent to which external traits operated 

through a given factor, we calculated χ2difference tests comparing a model in which 

the trait predicted the factor only to one in which it predicted the individual disorders 

of a given factor (or the first-order factors in the case of analyses using the p-factor 

model; Supplementary Fig. 5). We term the χ2difference across these two models the 

Qtrait heterogeneity index (Fig. 2). A significant Qtrait index indicates that the pattern of 

associations between the individual disorders and the external trait is not well accounted for 

by the factor.

Using a Bonferroni correction for 174 tests, 7/49 correlations with biobehavioral traits were 

significant for Qtrait for the Compulsive factor, 18/49 for the Psychotic factor, 39/49 for 

the Neurodevelopmental factor, 17/49 for the Internalizing factor, and 38/49 for the p-factor 

(Fig. 3 and Supplementary Table 5). Excluding genetic correlations significant for Qtrait, 

and using the same Bonferroni correction, 17 genetic correlations were significant for the 

Compulsive factor, 12 for the Psychotic factor, five for the Neurodevelopmental factor, 20 
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for the Internalizing factor, and three for the p-factor. We provide a more detailed assessment 

of significant correlations in the Supplementary Note.

Atypical patterns of physical movement throughout the 24-hour cycle may reflect 

disturbances in basic homeostatic processes that confer transdiagnostic psychiatric risk31. 

Using accelerometer data from UK Biobank30, we examined genetic correlations between 

the individual psychiatric traits and factors and physical movement across a 24-hour period 

(Fig. 4 and Supplementary Table 6). One correlation was significant for Qtrait for the 

Compulsive factor, two for the Psychotic factor, 12 for the Neurodevelopmental factor, seven 

for the Internalizing factor, and 18 for the p-factor. Excluding significant Qtrait correlations, 

eight correlations were significant for the Compulsive factor, four for the Psychotic factor, 

one for the Neurodevelopmental factor, six for the Internalizing factor, and two for the 

p-factor.

Compulsive disorders were positively genetically correlated with physical movement 

throughout the daylight hours and into the evening. Psychotic disorders were positively 

genetically correlated with excess movement in the early morning hours. The pattern 

of associations deviated from the factor structure largely in the daylight and evening 

hours, with larger positive genetic correlations observed for BIP. Genetic correlations 

with movement throughout the day were heterogeneous across disorders that load on the 

Neurodevelopmental disorders factor. Internalizing disorders were negatively genetically 

correlated with movement throughout the daylight and earlier evening hours.

Stratified Genomic SEM.

Overview and validation via simulation.—We developed Stratified Genomic SEM 

to allow the basic principles of Genomic SEM to be applied to genetic covariance 

matrices estimated within different gene sets and categories (Methods). These gene sets 

and categories, collectively referred to as annotations, can be constructed based on a 

variety of sources, such as collateral gene expression data obtained from single-cell RNA 

sequencing. Such an analysis goes beyond methods such as Stratified LDSC (S-LDSC)32 

that estimate enrichment of heritability for particular traits within functional annotations. 

Rather, Stratified Genomic SEM utilizes a multivariate framework to ask whether shared 

and unique genetic signal across a set of traits is enriched within particular annotations. 

Enrichment is defined as the ratio of the proportion of genome-wide risk sharing indexed by 

the annotation to that annotation’s size as a proportion of the genome (Methods). The null, 

corresponding to no enrichment, is a ratio of 1.0, with values above 1.0 indicating enriched 

signal within a functional annotation.

In order to validate the key statistical properties of Stratified Genomic SEM, we began by 

simulating genetically correlated phenotypes that were enriched in six annotations. We then 

show that our multivariate extension of S-LDSC produces accurate estimates of stratified 

genetic covariance along with unbiased standard errors (Supplementary Figs. 8-10 and 

Supplementary Tables 7-9). Finally, we demonstrate that these stratified genetic covariance 

matrices can be used as input to Stratified Genomic SEM to produce unbiased factor 

loadings and unbiased standard errors (Supplementary Fig. 11).
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Genetic enrichment of psychiatric factors.—We fit Stratified Genomic SEM models 

to examine whether the degree of risk sharing and differentiation is enriched across 

disorders. In total, enrichment analyses were based on 168 binary annotations. This included 

29 annotations created to examine the interaction between expression patterns for protein-

truncating variant (PTV)–intolerant (PI) genes (obtained from the Genome Aggregation 

Database; gnomAD33) and human brain cells in the hippocampus and prefrontal cortex 

(obtained from GTEx34). Using a Bonferroni correction for 168 tests, we identify 40 

annotations significantly enriched for the Psychotic disorders factor, one annotation 

(conserved primate) for the Neurodevelopmental disorders factor, four annotations for the 

Internalizing disorders factor, and 38 annotations for the p-factor (Supplementary Table 10 

and Supplementary Figs. 12-18).

PI results revealed that these annotations were particularly enriched for the Psychotic 

disorders factor, with 5 out of the 10 most significantly enriched gene sets falling 

in this category (Fig. 5). The most enriched annotations for the Neurodevelopmental 

and Internalizing disorders factors were fetal female brain DNase and fetal male brain 

H3K4me1, respectively. For specific tissues, brain regions were generally enriched, as 

was also observed for other complex traits35, but were most enriched for the Psychotic 

disorders factor. Genetic sharing across disorders, as estimated by a higher order p-factor, 

was enriched in conserved annotations, and enrichment increased from low to high MAF 

alleles (Supplementary Figs. 19-24).

We went on to examine enrichment of residual (i.e., unique) variance for the individual 

disorders in the correlated factors model and the residuals of the psychiatric factors in 

the hierarchical model (Supplementary Table 10). Results for the individual disorders 

revealed 17 significant residual enrichment estimates at a Bonferroni-corrected threshold. 

This included 13 significant estimates for various disorders within evolutionarily conserved 

annotations (e.g., conserved primate), along with significant enrichment unique to MDD for 

coding regions and the PI × excitatory dentate gyrus neurons annotation.

Multivariate GWAS.

Simulations.—We conducted a series of simulations to further validate the calibration of 

Genomic SEM for multivariate GWAS in the specific context of the analyses presented here. 

For each simulation, we used Genomic SEM to estimate factor-specific SNP effects and 

factor-specific indices of heterogeneity, as indexed by QSNP
13. QSNP indexes violation of 

the null hypothesis that the SNP acts on the individual disorders entirely via the factor on 

which they load (Fig. 2; see Methods). As expected, simulation results revealed that the 

power to detect multivariate SNP effects and QSNP decreased and increased, respectively, 

as population SNP effects increasingly deviated from those implied by the factor structure 

(Supplementary Figs. 25-28 and Supplementary Table 11). These simulations additionally 

illustrated that that SNP effects on factors, as estimated with Genomic SEM, are not simply 

the reflection of the most high-powered univariate GWAS that defines the factor, that there 

is null signal when the population of SNP effects is set to 0, and that power for QSNP 

is particularly high when there are directionally discordant SNP effects across the factor 

indicators.
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We present additional results benchmarking Genomic SEM against existing methods— 

Multi-trait Analysis of GWAS (MTAG)36, Model Averaging Genome-wide Association 

Meta-analysis (MA-GWAMA), and N-weighted Multivariate GWAMA (N-GWAMA)37—in 

the Supplementary Note. In addition, we examined the performance of multivariate GWAS 

in Genomic SEM when specified as an unstructured model that computes an omnibus 

index of association across all 11 disorders. Unstructured model results were obtained 

by comparing a maximally complex model in which the SNP is allowed to have direct 

regression relations with each of the 11 disorders against a null model in which the SNP is 

associated with none of the disorders. This is in contrast to the multivariate GWAS specified 

as a factor model discussed initially that estimates SNP effects on the factors, as this defines 

a structure of the relationship between the SNP and the 11 disorders. Briefly, we find the 

unstructured model is particularly well suited when the aim is to identify an exhaustive 

set of SNPs relevant to psychiatric risk, but does little to elucidate the specific patterning 

of associations. In contrast, the factor model allows us to systematically probe the genetic 

underpinnings of convergence and divergence across clusters of psychiatric disorders.

Empirical results.—Using the 4,775,763 SNPs present across the 11 disorders, the 

unstructured multivariate GWAS identified 184 associated loci at a conventional genome-

wide significance threshold (P < 5 × 10−8)38, 39 of which were not in LD with any of the 

univariate associations (see Fig. 6 for Miami plots, Supplementary Fig. 32 for QQ-plots, and 

Supplementary Table 12 for individual hits).

We went on to perform the structured multivariate GWAS analyses using two factor models: 

the correlated factors model (with Factors 1-4 as the GWAS target) and the hierarchical 

factor model (with the higher order p-factor as the GWAS target; Fig. 6, Supplementary Fig. 

32 for QQ-plots, and Supplementary Fig. 33 for bar plots of individual variants estimated as 

genome-wide significant). We also estimate QSNP specific to each factor used as a GWAS 

target (see Methods for details).

We identified one hit for the Compulsive disorders factor, a locus also associated with AN16 

(Supplementary Tables 14 and 15). We identified two loci for the Compulsive disorders 

factor-specific QSNP statistic (Supplementary Table 16), including a locus (rs1906252) with 

strong opposing effects on AN and TS. We identified 108 hits for the Psychotic disorders 

factor, 96 of which were in LD with previously reported associations for BIP and SCZ 

(Supplementary Table 17), and 12 of which were novel relative to the contributing univariate 

GWASs. The Psychotic disorders factor-specific QSNP statistic revealed six hits, three of 

which were in LD with hits for ALCH (Supplementary Table 19), including a locus in 

the well-described Alcohol Dehydrogenase 1B (ADH1B) gene that was significant for 

factor-specific QSNP for all four factors.

We identified nine hits for the Neurodevelopmental disorders factor (Supplementary 

Table 20), three of which were in LD with hits for ADHD or MDD, and two of 

which were novel relative to the contributing univariate GWASs. There were seven hits 

for the Neurodevelopmental QSNP statistic, many of which appeared to be specific to 

AUT (Supplementary Table 22). We identified 44 independent hits for the Internalizing 

disorders factor, six of which were unique of hits from the contributing univariate GWASs 
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(Supplementary Table 23). Three loci were identified for the Internalizing factor-specific 

QSNP statistic, all three of which were in LD with hits for ALCH (Supplementary Table 25). 

We note that the discrepancy in the number of univariate MDD hits (109) relative to the 

number of Internalizing factor hits (44) can be attributed to a combination of signal specific 

to MDD and splitting the MDD signal across two factors (Supplementary Fig. 38).

Nine hits from the correlated factors model were in LD across the factors, and one hit was 

in LD with a QSNP hit. In total, our structured GWAS discovered 152 independent loci that 

are likely to operate broadly within constellations of phenotypes, 20 of which were novel 

relative to the univariate traits. We identify nine independent QSNP hits that do not conform 

to the identified factor structure (Table 2), a third of which appeared to operate through 

pathways unique to ALCH.

We identified only two genome-wide hits for the higher-order p-factor, both of which were 

in LD with univariate hits for MDD and SCZ (Supplementary Table 26), and have been 

described in multiple external GWAS of psychiatric traits (Supplementary Table 27). The 

p-factor was characterized by the highest level of heterogeneity, with 69 loci identified for 

QSNP (Supplementary Table 28), 49 of which were in LD with hits on the four psychiatric 

factors from the correlated factors model. Despite few hits for p, its considerable mean χ2 

(1.795) may be attributable to the aggregation of heterogeneous signal across factors 1-4 in 

the hierarchical factor GWAS.

In a post-hoc analysis, we specified the p-factor in the context of a bifactor model5,6 in 

which the p-factor and four domain-specific factors are orthogonal to one another and 

directly predict the 11 disorders (Fig. 1d). In contrast to the hierarchical model, the bifactor 

model allows for direct associations between p and the 11 disorders. We identified 66 

independent hits on the bifactor p-factor, including the two hits for the hierarchical p-factor 

(Supplementary Table 29). Among these 66 hits, 38 were in LD with hits from the correlated 

factors model, eight were novel relative to univariate hits, and seven were novel relative 

to both univariate and correlated factors hits. We identified 76 QSNP hits, 50 of which 

were in LD with hierarchical p, QSNP hits (Supplementary Table 31). Although the bifactor 

specification of p produced more factor hits than did the hierarchical specification, the 

pattern of results with respect to the large number of QSNP hits and high overall mean χ2 of 

QSNP was similar, and the LDSC genetic correlation across these two specifications of p was 

> 0.99. Collectively, these results indicate low utility of either specification of the p-factor at 

the level of individual genetic variants.

Estimating causal effects of problematic alcohol use.

One third of the QSNP discoveries from the correlated factors model appeared to operate 

through pathways unique to ALCH. This motivated an examination of the causal effects of 

ALCH on the disorders and factors using a form of multi-trait Mendelian randomization 

(MR) within the Genomic SEM framework. We ran two types of MR models: one using the 

QSNP variant in the ADH1B gene as a single instrumental variable for ALCH, and a second 

multi-variant MR approach using eight loci identified from an independent ALCH discovery 

GWAS as instrumental variables39. The multi-variant approach allowed for additional effects 

of the loci on other disorders or factors where appropriate (Supplementary Note). Results 
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from the ADH1B and multi-variant Genomic SEM-MR approaches tentatively supported a 

causal effect of ALCH on MDD and BIP (Supplementary Note and Supplementary Figs. 

39 and 40). In these models, ALCH loadings on factors 2-4 were no longer significant, but 

the remaining disorders continued to load significantly on their respective factors. Multiple 

causation by ALCH is thus insufficient to fully account for widespread genetic overlap 

observed across disorders.

Discussion

We used Genomic SEM to identify four broad factors (Neurodevelopmental, Compulsive, 

Psychotic, and Internalizing) that provide a reasonable model of the genetic correlations 

among 11 major psychiatric disorders. We find that the Compulsive, Psychotic, and 

Internalizing factors are generally effective at describing the genetic relationships between 

psychiatric disorders at biobehavioral, functional genomic, and molecular levels of analysis. 

At the biobehavioral level, the pattern of associations with external correlates was 

informative with respect to the shared and distinct characteristics across the disorders. For 

example, the accelerometer results displayed both divergent patterns of findings across the 

factors and convergent patterns for the disorders within a factor. This provides evidence 

for both the validity and the utility of the genetic factor model for characterizing genetic 

associations with basic aspects of everyday functioning that may be, at face, relatively distal 

from the biological mechanisms of the disorders themselves. Results were less consistent 

with respect to the utility of a Neurodevelopmental disorders factor. For example, the 

Neurodevelopmental disorders factor exhibited much higher degrees of heterogeneity with 

respect to relationships with external correlates and with respect to effects of individual 

variants, a finding that seemed to be largely driven by divergent patterns for AUT.

Although the genetic correlations among the 11 disorders were somewhat consistent with 

the concept of a general p-factor, a hierarchical factor model that specified such a p-factor 

was found to offer limited biological insight, obscuring patterns of genetic correlations 

with external biobehavioral traits, enrichment within specific biological annotations, and 

associations with individual variants. Compared to the hierarchical model, a bifactor model 

identified a larger number of GWAS hits for p, but continued to exhibit a great deal of 

SNP-level heterogeneity. Given that a p-factor was found to be insufficient for accounting 

for patterns of multivariate associations at biobehavioral and variant levels of analysis, 

the question arises: what processes give rise to the moderate genetic correlations observed 

among the four, first-order factors? One possibility is that genetic correlations among the 

four factors originate from shared biology underlying pairwise combinations of factors 

and not from any biology that is shared across all factors. Similarly, genetic correlations 

among the factors themselves may reflect combinations of shared biology among subsets of 

disorders spanning factors that are not shared across all disorders within the corresponding 

factors.

In some circumstances, genetic correlations across disorders may arise from direct, 

potentially mutual, causation between the factor or disorder-specific liabilities and one 

another40 or reflect causation directly between the symptoms of different disorders41. Based 

on significant locus-specific violations of the four factor model at loci relevant to ALCH, 
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we incorporated MR into Genomic SEM models, with both single and multi-variant MR 

indicating causal effects of ALCH on MDD and BIP.

In order to identify gene sets and categories in which shared and unique genetic signal 

for multiple disorders is disproportionally localized, we developed and validated both a 

multivariate extension of S-LDSC and Stratified Genomic SEM. In line with prior findings 

linking SCZ and BIP to excitatory hippocampal CA142,43 and CA344,45 neurons and 

GABAergic neurons46,47, we observe that the intersection between PI genes and genes 

expressed in both excitatory and GABAergic neurons explained an outsized proportion 

of the genetic variance in the Psychotic disorders factor. These results converge with 

considerable evidence from prior univariate work in indicating shared risk pathways for SCZ 

and BIP. Enrichment of variance unique to MDD, rather than shared across internalizing 

disorders, in excitatory dentate gyrus (DG) neurons is consistent with prior findings on 

the anti-depressive effects of DG stimulation in mouse models48 and the observation that 

anti-depressants increase neurogenesis in this region49.

We provide a more detailed account of limitations in the Supplementary Note, but highlight 

limitations particularly relevant to future work here. Summary statistics from well-powered 

GWASs spanning the wide range of psychiatric disorders investigated here were only 

consistently available for individuals of European ancestry. A major priority for continued 

work in this area will be to increase the diversity of populations for which psychiatric 

GWAS are available. Recently developed methods for the stratified analysis of genetic 

correlations across ancestral populations will be invaluable for the analysis of such data50. 

Moreover, our results may have been influenced by the phenotyping and case-ascertainment 

methods used. Cai et al.51 have specifically reported that psychiatric phenotypes derived 

using minimal phenotyping (defined as “individuals’ self-reported symptoms, help seeking, 

diagnoses or medication”) may produce GWAS signals of low specificity. Although our 

sensitivity analyses suggested minimal differences when excluding GWAS that used self-

report cohorts, this issue should continue to be explored in future work. It will also be 

informative for future research to examine further the effect of heterogeneity in how samples 

are ascertained and disorders are assessed on genetic relationships among disorders52.

The current analyses revealed four correlated psychiatric factors that account for extensive 

genetic overlap across disorders. We elucidate the composition of these factors by 

demonstrating patterns of correlations with external biobehavioral traits, develop and apply 

Stratified Genomic SEM to identify classes of genes that explain disproportionate levels 

of genetic risk sharing and uniqueness, and distinguish pleiotropic loci with directionally 

concordant effects on the individual factors from those acting heterogeneously across 

disorders within a factor. Our results offer critical insights into shared and disorder specific 

mechanisms of genetic risk and suggest possible avenues for revising a psychiatric nosology 

currently defined largely by clinical observation. Evidence derived from multivariate genetic 

analysis, alongside evidence at other levels of explanation (e.g., cognitive neuroscience, 

environmental stressors), could guide the development of novel treatments and revision of 

established diagnostic taxonomies.

Grotzinger et al. Page 10

Nat Genet. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

The section directly below gives an overview of Genomic SEM followed by the validation 

and application of the novel method introduced here, Stratified Genomic SEM. The 

Supplementary Note provides additional details about the curation of the psychiatric 

phenotypes, model fitting procedure, results excluding self-report GWAS, comparison to 

prior results from the second iteration of results from the PGC cross-disorder group (i.e., 

CDG2)12, genetic correlations with external traits, interpretation and estimation of the 

Q metrics (QTrait and QSNP), multivariate GWAS simulations, multivariate MR analyses, 

S-LDSC results, quality control procedures, and an extended account of the limitations 

outlined in the Discussion.

Overview of Genomic SEM.

Genomic SEM is a two-stage Structural Equation Modelling approach. In the first stage, 

a genetic covariance matrix (S) and its associated sampling covariance matrix (VS) are 

estimated with a multivariate version of LD Score regression (LDSC). S consists of 

heritabilities on the diagonal and genetic covariances (co-heritabilities) on the off-diagonal. 

V consists of squared standard errors of S on the diagonal and sampling covariances on 

the off-diagonal, which capture dependencies between estimating errors that will arise in 

situations such as participant sample overlap across GWAS phenotypes. In the second stage, 

a structural equation model is fit to S by optimizing a fit function that minimizes the 

discrepancy between the model-implied genetic covariance matrix (Σ(θ)) and S, weighted 

by the elements within V. We use the diagonally weighted least squares (WLS) fit function 

described in Grotzinger et al.13:

FW LS ( θ ) = s − σ ( θ ) ′ DS
−1 s − σ ( θ )

where S and Σ(θ) have been half-vectorized to produce s and σ(θ), respectively, and DS is 

VS with its off-diagonal elements set to 0. The sampling covariance matrix of the stage 2, 

Genomic SEM parameter estimates (Vθ) are obtained using a sandwich correction described 

in Grotzinger et al.13:

V θ = Δ ′Γ
−1Δ −1Δ ′Γ

−1V S Γ −1Δ Δ ′Γ
−1Δ −1

where Δ is the matrix of model derivatives evaluated at the parameter estimates, Γ is the 

stage 2 weight matrix, DS, and VS is the sampling covariance matrix of S. Validation of 

Genomic SEM in Grotzinger et al.13 demonstrated that the framework produces unbiased 

standard errors, appropriately accounts for sample overlap in multivariate GWAS, and 

produces accurate point estimates for different population generating models. In addition, 

polygenic scores derived from Genomic SEM summary statistics were found to better 

predict the individual traits that define the factor than polygenic scores constructed from 

the summary statistics for the individual traits. As part of the current analyses, we 

sought to further validate Genomic SEM via a series of simulations based directly on the 
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factor structure identified here and additionally benchmark Genomic SEM against existing 

multivariate methods.

Overview of Stratified Genomic SEM.

Stratified Genomic SEM extends the overall Genomic SEM framework by allowing 

potentially different structural equation models to be fit to genetic covariance matrices 

estimated in different gene sets and categories. These gene sets and categories, collectively 

referred to as annotations, can be constructed based on a variety of sources, such as 

collateral gene expression data obtained from single-cell RNA sequencing. We develop a 

multivariate extension of Stratified LD Score Regression (S-LDSC)32 below to estimate 

these annotation-specific genetic covariance matrices and their associated sampling 

covariance matrices. We describe two types of annotation-specific genetic covariance 

matrices, S0 and Sτ. S0 contains estimates of genetic covariance within a specific annotation 

without controlling for overlap with other annotations. In other words, it is composed 

of the zero-order coefficients implied by the multivariate S-LDSC model. Sτ contains 

estimates of genetic covariance controlling for annotation overlap. In other words, it is 

composed of multiple regression coefficients estimated by the multivariate S-LDSC model. 

The distinction between S0 and Sτ directly parallels the distinction made in univariate 

S-LDSC32 between overall heritability explained by an annotation and the incremental 

contribution of an annotation to heritability beyond all other annotations considered. Note 

that the estimates required to populate elements of an overall genome-wide S matrix can 

be produced either from the zero-order annotation that includes all SNPs or by aggregating 

parameters corresponding to each annotation from the multivariate S-LDSC model used to 

estimate Sτ.

Below, we validate via simulation that Stratified Genomic SEM produces unbiased model 

parameter estimates and standard errors, and that model fit indices appropriately favor the 

population generating model within a given annotation. There is a wide array of research 

questions that can be asked using Stratified Genomic SEM. In this paper, we examine 

genetic enrichment of variance in psychiatric genetic factors across a broad range of 

annotations.

Multivariate Stratified LDSC.

Under a multivariate extension of the S-LDSC model, the expected value of the product of z 
statistics for each pairwise combination of phenotypes for SNP j equals:

E z1j z2j = N1N2∑
c

τc
ℓ(j, c)

Mc
+

ρNs
N1N2

+ a

where Ni is the sample size for study i, c indexes a genomic annotation, Mc is the number 

of SNPs in annotation c, ℓ(j,c) is the LD score of SNP j with respect to annotation c 
(that is, the sum of squared LD this SNP has with all SNPs in the annotation), τc is a 

vector of free parameters used to compute the conditional contribution to heritability or 

coheritability (genetic covariance) in annotation c, Ns is the number of individuals included 

in both GWAS samples, ρ is the phenotypic correlation within the overlapping samples, 
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and a is a term representing unmeasured sources of confounding such as shared population 

stratification across GWASs53. The inclusion of the term Mc in the above equation produces 

LD scores (ℓ(j, c)
Mc

) that are scaled relative to the size of the respective annotations, thereby 

allowing τc to be interpreted on the same scale as genome-wide estimates of heritability and 

coheritability, rather than on a per SNP scale. Note that when the z statistics for the same 

phenotype is double entered on the left hand side of the above equation, such that E[z1j z2j] 

becomes E χj2 , the equation reduces to the univariate S-LDSC model8.

Following Finucane et al.32, the multivariate S-LDSC model is estimated by regressing 

the product of z statistics against the annotation-specific LD scores using a weighted 

regression model (see online supplement of Finucane et al.32 for a description of how 

weights are calculated). Standard errors and dependencies among estimation errors (i.e., 

sampling covariances) are estimated using a multivariate block jackknife. As sample overlap 

creates a dependency between z statistics for the two traits, thus increasing their products, 

the S-LDSC intercept (ρNs/√(N1N2) + a) is affected, but the regression slope is unaffected, 

and the estimates of partitioned genetic covariance and their standard errors are not biased.

Derivation of Sτ and S0.

Sτ,c is a matrix containing estimates of genetic variance and covariance in annotation 

c, controlling for overlap with other annotations. It is composed of multiple regression 

coefficients, τc, estimated directly with the multivariate S-LDSC model by populating each 

of its cells with the corresponding τ estimate from the multivariate S-LDSC model.

S0,c is a matrix containing estimates of genetic covariance in annotation c, without 

controlling for overlap with other annotations. The elements ζc composing S0,c can be 

derived from the τc estimates from the multivariate S-LDSC model in combination with 

knowledge of annotation overlap. Thus, the zero-order contribution of target annotation t to 

heritability or co-heritability is written as:

ζt = ∑
c

∣ Cc ∩ Ct ∣
∣ Cc ∣ τc

where ∣Cc ∩ Ct∣ is the number of SNPs in annotation c that are also in target annotation 

t, and ∣Cc∣ is the total number of SNPs in annotation c (alternatively expressed as Mc), 

such that 
∣ Cc ∩ Ct ∣

∣ Cc ∣  reflects the proportion of SNPs in annotatio c that are also in target 

annotation t. This proportion is used to weight the term τc for each annotation in deriving the 

zero-order contribution of target annotation t to heritability or coheritability.

When the multivariate S-LDSC model is correct, Sτ is expected to produce unbiased 

estimates of the conditional contribution of an annotation to genetic covariance, after 

controlling for the effects of variants in all other annotation (i.e., accounting for the fact 

that variants can reside in multiple annotations). In comparison, S0 is expected to produce 

unbiased estimates of the total contribution of all genetic variants in an annotation to genetic 

covariance (i.e., irrespective of its overlap with the other annotations). S0 has two desirable 
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properties. First, its estimate is not as directly contingent on which other annotations 

are included in the multivariate S-LDSC model. Second, because it does not decompose 

contributions of an annotation into those that are shared vs. unique of other annotations, it 

is expected to produce more stable estimates at small and moderate sample sizes. For this 

reason, the empirical Stratified Genomic SEM analyses reported here employ S0 matrices, 

and should be interpreted accordingly.

Simulations of stratified genetic covariance.

Simulation procedure.—Using raw, individual-level genotype data simulation, we 

sought to validate the point estimates and standard errors (SEs) produced by Stratified 

Genomic SEM. We compare results for S0 and Sτ. We began by generating 100 sets of 

45, 100% heritable phenotypes (“orthogonal genotypes”) using the GCTA package54. Each 

100% heritable phenotype was specified to have 10,000 randomly selected causal variants 

from within a particular annotation. These phenotypes were paired with genotypic data for 

100,000 randomly selected, unrelated individuals of European descent from UK Biobank 

data for the 1,209,498 SNPs present in HapMap3.

The simulated genotypes were used to construct six different factor structures for six 

causal annotations. All orthogonal genotypes were scaled M = 0, SD = 1. For three of 

the causal annotations (DHS Peaks, H3K27ac, and PromoterUSC), seven genotypes for 

each annotation were used to construct six new correlated genotypes, each as the weighted 

linear combination of a domain-specific genetic factor and a general genetic factor, which 

was constructed from the seventh genotype. For the remaining three causal annotations 

(FetalDHS, H3K9ac, and TFBS), eight genotypes for each annotation were used to construct 

two sets of three correlated genotypes for two correlated general genetic factors, constructed 

from the seventh and eighth genotypes. A set of six “total” genotypes was created by 

summing a factor indicator genotype from each of the six causal annotations. As each 

genotype within each annotation was specified to have 10,000 causal SNPs, the “total” 

genotypes created as the sum of six annotations had 60,000 causal SNPs in the population 

generating model.

Phenotypes were subsequently constructed as the weighted linear combination of one of the 

six “total” genotypes and domain-specific environmental factors (randomly sampled from 

a normal distribution with M = 0, SD = 1). Heritabilities for phenotypes 1-6 were all set 

to ℎk
2 = 60 %, such that the weights for the genotypes were ℎk

2 and the weights for the 

environmental factors were (1 − ℎk
2). Each of the 600 phenotypes (100 sets of 6 phenotypes) 

was then analyzed as a univariate GWAS in PLINK55 to produce univariate GWAS summary 

statistics. The summary statistics were then munged, and Stratified Genomic SEM using the 

1000 Genomes Phase 3 BaselineLD Version 2.2 model was used to construct 100 sets of 6 × 

6 stratified zero-order genetic covariance matrices (S0), τ covariance matrices (Sτ), and their 

corresponding sampling covariance matrices (VS0 and VSτ).

Validating S0 and VS0.—For the zero-order genetic covariance matrix, we would 

expect the annotation including all SNPs—i.e. the genome-wide annotation—to reflect the 

weighted linear combination of the generating covariance matrices specified for the six 
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causal annotations, with weights equal to the proportion of all SNPs contained in each of 

the corresponding causal annotations. For each of the six causal annotations, we expect the 

zero-order covariance matrix for the corresponding annotation to be a linear combination of 

that annotation’s population-generating matrix and the remaining annotations’ population-

generating matrices weighted by the proportion of SNPs overlapping across the annotations. 

To test these expectations, we created average observed covariance matrices across the 

100 simulations for the genome-wide annotation and six causal annotations. The estimated 

S0 genome-wide covariance matrix approximately reflected an additive mixture of the six 

population generating covariance matrices, and was estimated with minimal bias (absolute 

value of mean discrepancy = 0.004; Supplementary Fig. 8). In addition, the observed 

covariance matrices for each of the causal annotations were minimally biased relative to 

the generating population (Supplementary Table 7).

In order to evaluate the accuracy of the SEs, we analyzed the ratio of the mean SE estimate 

across the 100 simulations over the empirical SE (calculated as the standard deviation 

of the parameter estimates across the 100 simulations). A value above 1 for this ratio 

indicates conservative SE estimates. This ratio was calculated within each of the annotations 

and for each cell of the covariance matrix. The average ratio across annotations and cells 

of the covariance matrix was 1.030 (see Supplementary Fig. 9 for distribution across all 

annotations and Supplementary Table 7 for ratio within causal annotations). Thus, we have 

produced a SE estimate for stratified heritability and covariance that performs as expected. 

In fact, our estimates are very slightly conservative as the mean SE was slightly larger than 

the empirical SE. Moreover, the average z statistic for heritability and covariance estimates 

within the causal annotations were all highly significant, suggesting more than adequate 

power under the conditions of the current simulation.

Validating Sτ and VSτ.—The expectation for the genetic Sτ covariance matrices is 

that the observed covariance matrices will reflect the generating model within only that 

annotation. Indeed, the causal annotations closely matched their respective population 

generating covariance matrices and bias was minimal (Supplementary Fig. 10 and 

Supplementary Table 7). We then analyzed the ratio of the mean SE estimate across the 100 

runs over the empirical SE (calculated as the standard deviation of the parameter estimates 

across the 100 runs). The average ratio of SE estimates was 1.014 across all annotations 

(Supplementary Fig. 9) and, importantly, was also close to 1 for the causal annotations. 

Results for 4,459 of the total 5,300 covariance matrices produced negative heritability 

estimates. This included some of the causal annotations (Supplementary Table 30), but was 

largely true for the non-causal annotations. Negative heritability estimates are unsurprising 

for the non-causal annotations as their population generating effect is 0. The z statistics for 

the Sτ heritabilities and covariances were, on average, smaller relative to the S0 covariance 

matrices. This is to be expected as the S0 covariance matrices include power gained from 

variance shared with overlapping annotations.

The Sτ covariance matrices for the causal annotations were then used as input for Genomic 

SEM models. The two types of population generating models—a common factor and 

correlated factors model—were run for each annotation. For all causal annotations, Genomic 

SEM estimates closely matched the parameters specified in the generating population 
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(Supplementary Table 8 and Supplementary Fig. 11). In addition, the ratio of the mean 

model SEs over the empirical SEs was near 1. Model fit statistics (CFI, AIC, and model 

χ2) also generally favored the generating model for a particular annotation (Supplementary 

Table 9). This was least true for the H3K27ac annotation. This is unsurprising as the 

population-generating model for the H3K27ac annotation—a correlated factors model 

with a factor correlation of 0.7—most closely matched the competing common factor 

model. Collectively, these results indicate that Stratified Genomic SEM produces unbiased 

parameter estimates and standard errors for S0 and Sτ, that Sτ shows specificity to the causal 

annotations of interest, and that model fit indices generally favor the appropriate model.

Estimating genetic enrichment of model parameters.

We can examine whether the proportional contribution of an annotation to a given genome-

wide parameter in Stratified Genomic SEM is different than would be expected on the basis 

of the relative size of that annotation, so long as the parameter is scaled comparably across 

all annotations considered56. This is formalized by testing the null hypothesis,

θc
θ =

Mc
M ,

where θc is the parameter estimate in annotation c, as estimated from a Genomic SEM 

model applied to S0,c; θ is the genome-wide parameter estimate, as estimated from a 

Genomic SEM model applied to the genome-wide S matrix derived via aggregating the 

conditional contributions of all annotations included in the multivariate S-LDSC model; Mc 

is the number of SNPs in annotation c; and M is the total number of SNPs used to computed 

the LD-scores. This formula can be rearranged to produce a ratio of ratios (the so-called 

enrichment ratio) that indexes the magnitude of enrichment:

θc
θ

Mc
M

,

with a value of 1.0 corresponding to the null of no enrichment, values greater than 1.0 

corresponding to enrichment (overrepresentation of signal in the annotation relative to its 

size), and values below 1.0 corresponding to depletion (underrepresentation of signal in the 

annotation relative to its size).

In the current application, we are interested in enrichment of genetic signal shared across 

subclusters of disorders and disorder-specific signal, as indexed by a factor model that 

allows the estimates of factor variances and disorder-specific uniquenesses, respectively, to 

vary across annotations, while holding all factor loadings invariant across annotations. We 

use a two-step model-fitting procedure to estimate the enrichment ratio in order to directly 

obtain an estimate of its SE. In Step 1, we estimate the factor loadings needed to scale the 

total genome-wide variances of the factors to 1.0. This is achieved by fitting a model to the 

genome-wide S-LDSC matrix in which unit variance identification is used. In Step 2, the 

loading estimates from the prior Step 1 model are fixed and the factor variance is freely 
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estimated separately in each annotation using the S0,c matrices. Thus, the estimated factor 

variances in Step 2 are scaled proportionally relative to the genome-wide factor variance 

(i.e., the numerator of the enrichment ratio). This estimate and its SE are subsequently 

divided by the proportion of SNPs in the corresponding annotation (i.e., the denominator 

of the enrichment ratio). For clarification, we note that genome-wide enrichment across all 

SNPs is exactly equal to 1. That is, for Step 2, if the genome-wide S-LDSC matrix is used as 

input, this produces a parameter estimate of 1, which is then divided by a proportion of 1.0, 

which reflects the ratio of M/M (i.e., all SNPs over all SNPs).

Selection and creation of annotations.

In order to construct the genome-wide S-LDSC matrix, and estimate stratified genetic 

covariance, we utilized pre-computed annotation files provided by the original S-LDSC 

authors32. In line with recommendations, we utilized all annotations from the most 

recent 1000 Genomes Phase 3 BaselineLD Version 2.257 that includes a total of 97 

annotations ranging from coding, UTR, promoter, and flanking window annotations. For 

tissue specific histone marks, we included annotations constructed based on data from 

the Roadmap Epigenetics Project58 for narrowly defined peaks for DNase hypersensitivity, 

H3K27ac, H3K4me1, H3K4me3, H3K9ac, and H3K36me3 chromatin. For tissue-specific 

gene expression, we include annotations constructed based on RNA sequencing data from 

human tissues from Genotype-Tissue Expression (GTEx)59 and for annotations constructed 

from human, mouse, and rat microarray experiments from the Franke Lab (i.e., DEPICT)60. 

For both tissue-specific histone/chromatin marks and gene expression, we utilized only brain 

and endocrine relevant regions in addition to 5 randomly selected control regions from each 

(i.e., 10 controls total).

We also created 29 annotations to examine the interaction between protein-truncating 

variant (PTV)–intolerant (PI) genes and human brain cells. PI genes were obtained from 

the Genome Aggregation Database (gnomAD), and ascertained using the probability of 

loss-of-function intolerance (pLI) metric. We selected genes with pLI > 0.9, producing a 

list of 3,063 genes33. Human brain cell gene sets were based on single-nucleus RNA-seq 

(sNuc-seq) data generated GTEx project brain tissues in the hippocampus and prefrontal 

cortex34. Excluding sporadic genes and genes with low expression, for the 14 cell types 

we selected the top 1,600 (~15%) differentially expressed genes in each cell type, which 

likely cover all genes that are important for a specific cell type. PI × human brain cell gene 

sets contained the intersection of genes that are PTV-intolerant and each human brain cell 

gene set. Annotations were created using a 100-kb window and LD information from the 

European subsample of 1000 Genomes Phase 3.

We do not estimate enrichment of psychiatric factors for continuous or flanking window 

annotations, yielding a total of 168 binary annotations across the baseline model, gene 

expression, histone marks, PI, and brain cell annotations. For a Bonferroni correction < 

0.05, this corresponds to P < 2.98 × 10−4. We note that continuous and flanking window 

annotations were retained for construction of the genome-wide, S-LDSC matrix.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The data that support the findings of this study are all publicly available or can be requested 

for access. Specific download links for various datasets are directly below.

Summary statistics for data from the PGC can be downloaded or requested here: https://

www.med.unc.edu/pgc/download-results/

Summary statistics for the Anxiety phenotype in UKB (TotANX_OR) can be downloaded 

here: https://drive.google.com/drive/folders/1fguHvz7l2G45sbMI9h_veQun4aXNTy1v

23andMe summary statistics are made available through 23andMe to qualified researchers 

under an agreement with 23andMe that protects the privacy of 23andMe participants. Please 

visit research.23andme.com/collaborate/#publication for more information.

Summary statistics for the volume-based neuroimaging phenotypes were downloaded from: 

https://github.com/BIG-S2/GWAS
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Summary statistics for the health and well-being complex trait correlations can be 

downloaded from: https://atlas.ctglab.nl/

Summary statistics for the circadian rhythm correlations across 24-hours can be downloaded 

from: https://cnsgenomics.com/software/gcta/#DataResource

Data from gnomAD used to identify PI genes for creation of annotations can 

be downloaded here: https://storage.googleapis.com/gnomad-public/release/2.1.1/constraint/

gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz

Gene count data per cell for creation of annotations were 

obtained from: https://storage.googleapis.com/gtex_additional_datasets/single_cell_data/

GTEx_droncseq_hip_pcf.tar

Data which map individual cells to cell types (e.g. neuron, astrocyte etc.) were 

obtained from: https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.4407/

MediaObjects/41592_2017_BFnmeth4407_MOESM10_ESM.xlsx

Links to the LD-scores, reference panel data, and the code used to produce the current 

results can all be found at: https://github.com/MichelNivard/GenomicSEM/wiki

Links to the BaselineLD v2.2 annotations can be found here: https://data.broadinstitute.org/

alkesgroup/LDSCORE/
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Figure 1 ∣. Multivariate genetic architecture of 11 psychiatric disorders.
a, Genetic correlations estimated using LDSC. b, Standardized results for the correlated 

factors. c, Standardized results from the hierarchical factor model. d, Standardized results 

from the bifactor model. The genetic components of disorders and common genetic factors 

of disorders are inferred variables that are represented as circles. Regression relationships 

between variables are depicted as one-headed arrows pointing from the independent 

variables to the dependent variables. Covariance relationships between variables are 

represented as two-headed arrows linking the variables. (Residual) variances of a variable 

are represented as a two-headed arrow connecting the variable to itself; for simplicity, 

residuals of the indicators are not depicted for the bifactor model. ADHD, attention-deficit/

hyperactivity disorder; OCD, obsessive-compulsive disorder; TS, Tourette syndrome; PTSD, 

post-traumatic stress disorder; AN, anorexia nervosa; AUT, autism spectrum disorder; 

ALCH, problematic alcohol use; ANX, anxiety; MDD, major depressive disorder; BIP, 

bipolar disorder; SCZ, schizophrenia.
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Figure 2 ∣. Model comparisons for producing Q metrics.
Unstandardized path diagrams for common pathway (right) and independent pathways (left) 

models used to compute the Genomic SEM heterogeneity statistics for associations with 

external traits (QTrait, top) and individual SNPs (QSNP, bottom). In this example, F is a 

common genetic factor of the genetic components of three GWAS phenotypes (Y1-Y3). 

Observed variables are represented as squares, and latent variables are represented as circles. 

The genetic component of each phenotype is represented with a circle as the genetic 

component is a latent variable that is not directly measured, but is inferred using LDSC. 

SNPs are directly measured, and are therefore represented as squares. Single-headed arrows 

are regression relations, and double-headed arrows are variances. Paths labeled 1 are fixed 

to 1 for model identification purposes. All unlabeled paths represent freely estimated model 

parameters. Q represents the decrement in model fit of the common pathway model relative 

to the more restrictive independent pathways model. Q is a χ2 distributed test statistic with 

k − 1 degrees of freedom, representing the difference between the k SNP-phenotype or 

Trait-phenotype b coefficients in the independent pathways model and the 1 SNP-factor or 

Trait-factor b coefficient in the common pathway model. Q is estimated here using a χ2 

difference test across the common and independent pathways models; this is statistically 

equivalent to the 2-step procedure outlined in the original Genomic SEM13 publication 

for calculating QSNP. QTrait indexes whether the pattern of genetic associations between 

the genetic component of an external trait (depicted as Xg) and the individual disorders is 

well accounted for by a given factor. QSNP indexes whether the associations between an 

individaul SNP (depicted as SNPm) and the individual dissorders is well accounted for by 

the factor. For simplicity, we depict a stylized representation containing only one factor and 

three disorders. The full models used to derive QTrait and QSNP for the empirical analyses 

reported in this paper are presented in Supplementary Figures 5 and 38.
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Figure 3 ∣. Genetic correlations with complex traits across psychiatric factors.
a-f, Panels depict point estimates for genetic correlations with complex traits of interest 

for the four psychiatric factors from the correlated factors model and the second-order, 

p-factor from the hierarchical model. Genetic correlations are shown for socioeconomic 

(a), anthropromorphic (b), personality (c), health and disease (d), cognitive (e), and 

risky behavior outcomes (f). Bars depicted with a dashed outline were significant at a 

Bonferroni-corrected threshold for model comparisons indicating heterogeneity across the 

factor indicators in their genetic correlations with the outside trait. Error bars are +/− 1.96 

SE. Bars depicted with an asterisk above produced a genetic correlation that was significant 

at a Bonferroni-corrected threshold and were not significantly heterogeneous. The total 

effective sample size for the factors was: Compulsive factor (n = 19,108), Psychotic factor 

(n = 87,138), Neurodevelopmental factor (n = 55,932), Internalizing factor (n = 455,340), 

and hierarchical p-factor (n = 667,343). Sample sizes for the complex traits are reported in 

Supplementary Table 5.
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Figure 4 ∣. Genetic correlations with accelerometer data across psychiatric disorders and factors.
a-e, Panels depicts genetic correlations between accelerometer-based average total hourly 

movement within the 24-hour day beginning at midnight (n ~ 95,000) and each psychiatric 

disorder, along with the respective psychiatric factor, for the compulsive disorders (a), 

psychotic disorders (b), neurodevelopmental disorders (c), internalizing disorders (d), and 

psychiatric factors (e). Across all panels, the psychiatric factors are depicted with larger 

points and lines. For the psychiatric factors, points depicted as diamonds were significant 

at a Bonferroni-corrected threshold for model comparisons indicating heterogeneity across 

the factor indicators in their genetic correlations with that particular time point. As it loaded 

on three different factors (see Fig. 1), ALCH was not as assigned to a panel above. Lines 

represent loess regression lines estimated in ggplot2.
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Figure 5 ∣. Genetic enrichment of factors for brain cell, PI, and PI × brain cell annotations.
Figure depicts enrichment of the four factors from correlated factors model and the second-

order, p-factor from the hierarchical factor model for the brain cell genes, protein-truncating 

variant (PTV)–intolerant (PI) genes, and PI × brain cell gene annotations. Enrichment is 

indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by 

the annotation to that annotation’s size as a proportion of the genome. The red dashed 

line reflects the null ratio of 1.0, corresponding to no enrichment. Ratios greater than 1.0 

indicate enrichment of shared signal, whereas ratios less than 1.0 indicate depletion of 

shared signal. Error bars depict 95% confidence intervals. Points depicted with an asterisk 

were significantly enriched at a Bonferroni-corrected threshold. To maintain equal scaling 

purposes across all panels, error bars are capped at 3 and 0 for the Compulsive disorders 

factor; no annotations were significant for this factor.
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Figure 6 ∣. Miami plots for psychiatric factors.
a, Results from an unstructured meta-analysis of the 11 psychiatric traits. b-e, Results from 

the correlated factors model for the Compulsive disorders factor (Factor 1; b), Psychotic 

disorders factor (Factor 2; c), Neurodevelopmental disorders factor (Factor 3; d), and 

Internalizing disorders factor (Factor 4; e). f, Results of the SNP effect on the second-order 

p-factor from the hierarchical model. g, Results from a model in which the SNP predicted 

the p-factor from a bifactor model. The top half of the plots depict the −log10(P) values for 

SNP effects on the factor; the bottom half depicts the log10(P) values for the factor-specific 

QSNP effects. As the omnibus meta-analysis does not impose a structure on the patterning of 

SNP-disorder associations, it does not have a QSNP statistic. The gray dashed line marks the 

threshold for genome-wide significance (P < 5 × 10−8). Black triangles denote independent 

factor hits that were in LD with hits for one of the univariate indicators and were not in LD 

with factor-specific QSNP hits. Large red triangles denote novel loci that were not in LD with 

any of the univariate GWAS or factor-specific QSNP hits. Purple diamonds denote QSNP hits.
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