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Abstract

The blood-brain barrier (BBB) continues to represent one of the most significant challenges 

for successful drug-based treatments of neurological disease. Mechanical modulation of the 

BBB using focused ultrasound and microbubbles has shown considerable promise in enhancing 

therapeutic delivery to the brain, but questions remain regarding possible long-term effects of 

such forced disruption. This review examines the available evidence for inflammation associated 

with ultrasound-induced BBB disruption, and potential strategies for managing such inflammatory 

effects to improve both the efficacy and safety of therapeutic ultrasound in neurological 

applications.
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Challenges for treatment of central nervous system (CNS) diseases

A significant proportion of the global population is diagnosed annually with some form of 

neurological disorder or disease – 16.5% of global deaths can be attributed to CNS diseases 

[1]. There have consequently been many efforts to develop effective CNS-acting compounds 

and biomolecules. Unfortunately, despite being one of the more heavily funded areas of 

research in the pharmaceutical industry, CNS drug discovery and development is associated 

with a low rate of return. Although there is an abundance of promising in vivo animal 

data from pharmacokinetic and pharmacodynamic studies, very few drug candidates show 

comparable efficacy in human trials [2,3]. Amongst the reasons for this are key differences 

in anatomy and physiology between humans and animal models including of the blood-brain 

barrier (BBB) [4].

Conventional methods of structural modification for small compounds have produced only 

modest improvements in terms of BBB penetration [5]. Consequently, in recent years, 

there has been increased interest in drug delivery methods to the brain based on local 

permeabilization of the BBB using focused ultrasound (FUS), especially in combination 

with microbubbles (MB). These methods have shown considerable promise, with several 

first-in-human clinical trials reporting successful outcomesi, ii, iii [6–8]. There are, however, 

important safety concerns relating to mechanical disruption of the BBB, specifically in 

relation to the metabolic and physiological pathways required for brain homeostasis. If 

the permeability of the BBB is modulated to increase drug extravasation, it is imperative 

to understand the potential consequences of that disruption, especially in neurological 

conditions in which BBB may already be compromised.

This paper aims to provide an overview of the evidence for ultrasound induced 

neuroinflammation, its implications, and strategies by which adverse effects could 

potentially be mitigated to maximize the benefit-risk ratio in clinical applications.

A brief overview of the blood-brain barrier

The BBB provides both a physical and a physiological barrier between the brain 

parenchyma and the bloodstream (Figure 1). It is composed primarily of microvascular 

endothelial cells supported by pericytes and astrocytic foot processes [9]. The BBB prevent 

entrance of exogenous toxins and agents from the bloodstream into the brain parenchyma 

and maintains separation between the CNS and the peripheral nervous system (PNS). Given 

the BBB’s ability to selectively determine the passage of biomolecules and chemicals, its 

i https://clinicaltrials.gov/ct2/show/NCT03321487 
ii https://clinicaltrials.gov/ct2/show/NCT02986932 
iii https://clinicaltrials.gov/ct2/show/NCT03608553 

Jung et al. Page 2

Trends Neurosci. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03321487
https://clinicaltrials.gov/ct2/show/NCT02986932
https://clinicaltrials.gov/ct2/show/NCT03608553


role in homeostasis, in multiple diseases, and in accurate evaluation of drug efficacy, are 

topics of great interest for clinicians and researchers.

Potential side effects of BBB disruption

There is a growing body of data demonstrating an important role for the BBB in mediating 

CNS diseases [10–13]. In developing drug delivery methodologies that disrupt the BBB, it 

is therefore important to consider the downstream effects of modulating the BBB (Figure 1). 

For example, BBB breakdown is known to coincide with peripheral immune cell infiltration 

and the inflammation of the brain parenchyma in diseases such as multiple sclerosis (MS) 

[14,15]. There is also some evidence of BBB involvement in the progression of other 

neurological diseases, such as lysosomal storage disorders [16–19]. For intensively studied 

neurological diseases such as Parkinson’s (PD) and Alzheimer’s disease (AD), there is now 

experimental evidence showing that the BBB may play an active role early on in their 

etiology [20–22]. In PD, accumulation of α-synuclein has been shown to be the dominant 

pathophysiology that leads to clinical manifestations observed in patients. While there have 

been previous reports of neurovascular impairment in PD patients, recent data have shown 

that with α-synuclein overexpression in mice, BBB integrity is also compromised [23]. In 

AD research, the accumulation of amyloid-β plaques and neurofibrillary tangles has been a 

central theme over the past few decades. In recent years, however, there has been increased 

interest in the effects of neurovascular factors as well [24]. For example, it has been 

proposed that a compromised BBB could allow passage of exogenous toxins and agents into 

the brain, leading to inflammatory responses that could cause plaque and tangle formation 

as a byproduct [25]. There is also evidence of a correlation between BBB degradation in 

AD tissue and bacterial and viral infiltration leading to an innate immune response cascade 

[26][27,28]. At the time of writing, these represent areas of considerable uncertainty and 

debate. For example, it has yet to be established whether BBB dysfunction is a causative 

agent in the disease processes, or a symptom of disease progression. These questions, 

nevertheless, have important implications for drug discovery, design, and development, as 

well as for preclinical in vivo drug evaluation. Leukocytic infiltration through the BBB 

is known to drive the pathophysiology in neuroimmune diseases [29], while non-specific 

transcytosis and tight junction dysregulation are upregulated in response to changes in 

the microenvironment surrounding neurons, e.g., during stroke [30]. The emerging use of 

alternative drug delivery techniques that modify the BBB integrity thus has to be balanced 

against the fact that many of the patients being treated may already have neurovascular 

complications and/or clinical symptoms that are driven by BBB dysfunction, as much 

as by neuronal dysregulation [11]. It is therefore critical to investigate the mechanism(s) 

behind BBB opening via ultrasound-mediated cavitation and the consequences of this 

manipulation, especially for the treatment of non-terminal diseases, for which patients may 

receive multiple treatments over several years.
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Ultrasound and microbubble-mediated BBB opening

Initial studies.

FUS was first used therapeutically for tissue ablation. In this type of procedure, a large, 

single element, spherically focused transducer, operating at a center frequency between 0.5 

and 10 MHz generates a region of sufficient intensity to cause tissue denaturation. Typically, 

the focal region of a FUS transducer is ~16 mm3 which enables good spatial control of 

energy deposition. FUS can rapidly destroy tissue via a range of both mechanical and 

thermal effects. A common side effect of high intensity FUS is cavitation, i.e. the formation 

and subsequent oscillation of bubbles as a result of the changes in tissue temperature 

and pressure. The presence of these bubbles can be beneficial, for example accelerating 

the rate of heating and promoting mechanical erosion [31,32]. Cavitation is, however, a 

stochastic process and it was found that similar benefits could be achieved at much lower 

ultrasound intensities by injecting a suspension of pre-existing MB into the target tissue. 

This was particularly important in early, preclinical studies of BBB opening using FUS to 

mitigate the risk of collateral damage [33]. MB-mediated BBB opening was reported as 

a possible alternative drug delivery technique as well as a theranostic some two decades 

ago, when FUS was used with contrast agents and magnetic resonance imaging (MRI) to 

open and detect BBB opening in rabbits [34]. Subsequent studies in mice, rats, and rabbits, 

focused on the observed bioeffects, which included: vascular wall damage, ischemia and 

tissue necrosis [35]. The findings suggested that limiting parameters such as the acoustic 

pressure amplitude and pulse duration, would be critical in producing therapeutic effects 

with minimal adverse reactions [36,37]. There have also been multiple follow-up studies 

investigating the mechanism behind BBB opening [38]. Technical details regarding the 

physics of ultrasound and microbubbles can be found in Box 1.

Therapeutic applications.

Over the last two decades, the therapeutic potential of FUS+MB has been explored for a 

range of neurological conditions (excluding cancer) in pre-clinical models including the 

delivery of quercetin-modified sulfur nanoparticles to minimize endoplasmic reticulum 

(ER) stress in AD [39], BDNF retrovirus also for treatment of AD [40], curcumin and 

neurotrophic factors for treatment of PD [41,42] and to increase laronidase uptake as 

part of enzyme replacement therapy (ERT) in an animal model of mucopolysaccharidosis 

type I disease [43]. In clinical trials, FUS+MB with MRI guidance have been shown to 

enable localized BBB opening in amyotrophic lateral sclerosis (ALS) [6]i, AD ii, and 

PD iii patients. Several studies, however, have highlighted potential risks associated with 

FUS+MB. These include neuroinflammation, which is discussed in more detail in the next 

section.

Ultrasound-induced neuroinflammation

Identification of sterile inflammation as a possible bioeffect of FUS+MB for BBB opening.

At the low frequencies (<1 MHz) required for efficient transmission of ultrasound through 

the skull, the probability of inertially driven bubble collapse is higher due to the prolonged 

rarefactional period. In vitro and modeling studies suggest that this can lead to significant 
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and permanent biological damage in the local tissue [44,45]. In addition, studies in rats from 

recent years have indicated that FUS+MB can induce sterile inflammation [46], a possibility 

that requires more extensive and rigorous investigation. In some applications, stimulation 

of an immune response may be beneficial, e.g. it has been suggested that FUS+MB may 

contribute to killer T cell activation and infiltration in tumors [43,47]. Similar approaches 

have been suggested for brain-specific tumors such as glioblastoma multiforme (GBM), an 

aggressive brain cancer with very poor prognosis [48].

Since the identification of FUS as a promising alternative delivery technique for CNS 

therapeutics, there has been extensive assessment of its safety. Table S1 provides a summary 

of selected studies using FUS+MB for BBB opening. Prior to 2017, a primary focus of 

the research on FUS for BBB opening was identifying acoustic parameters that minimize 

visible red blood cell (RBC) extravasation, as assessed by histological analyses in mice, rats 

and rabbits [36,49–54]. In recent years, studies, primarily in rats, have begun to address 

FUS-induced CNS inflammation in more detail, over time periods between 24h and 6 weeks 

post-ultrasound treatment and there have been several reviews and discussions of sterile 

inflammation as a response to BBB opening [55]. An area that requires further investigation, 

however, is the relationship between inflammation and the acoustic exposure parameters. 

There has been considerable investigation of how the selection of acoustic parameters affects 

the degree of BBB permeabilisation and how this relates to extravasation of differently 

sized molecules [51,56], but it remains to be examined whether there is a corresponding 

modulation of sterile inflammatory effects.

Mechanisms.

FUS+MB exposure has been shown to permeabilize the blood brain barrier through the 

disruption of tight junction protein complexes between endothelial cells – thought to be 

facilitated by oscillating MB along the endothelial surfaces [57,58]. Localized disruption 

allows blood-borne components such as circulating therapeutics or albumin to diffuse into 

the brain parenchyma. In addition to the formation of paracellular holes, neurovascular units 

may also be stimulated by the oscillating MBs. In rodent studies, this has been shown to 

stimulate a neuroinflammatory cascade, which upregulates the expression of chemokines, 

cytokines, and other relevant trophic factors [59–61] (Figure 2).

Several studies have suggested that permanent tissue damage is avoidable when the 

appropriate ultrasound settings and MB dose are used (Table S1). In view of these 

findings, subject-specific, pre-operative planning should be considered as a possible path 

to reduce tissue damage. In addition, active monitoring of MB response allows potential 

real-time feedback and control of the treatment by modifying the peak negative pressure 

and/or pulsing regime of the FUS, as exemplified in a recent preclinical study in non-

human primates [62]. However, even when using the minimum acoustic settings to cause 

BBB permeabilization, it is conceivable that a sterile inflammatory response can still 

occur, although this requires further investigation. Studies in rats have shown that sterile 

inflammation following FUS-mediated BBB permeabilization is mediated through the 

NFkB pathway, with evidence of endothelial activation (high ICAM-1 expression) and 

a cytokine cascade including production of tumor necrosis factor, a potent inflammatory 
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cytokine, elevated even at 24 hours post sonication [63]. There have been studies looking 

at providing prophylactic treatment (i.e., anti-integrin α4β1/VLA-4) to mitigate possible 

immune infiltration or responses [64–66], but this has not been investigated specifically in 

the context of FUS+MB treatment for CNS diseases.

In recent years, significant efforts have been made to understand the mechanisms 

underpinning observable bioeffects following BBB opening at the cellular and molecular 

levels [67–69]. In particular, there have been several studies investigating specific 

immunomodulatory pathways [46,60,61,63,70] in microglia and astrocytes. Interestingly, 

there has been less investigation of the role played by endothelial cells and pericytes in 

potentially inducing the inflammatory cascade post-FUS+MB treatment. This is despite 

evidence suggesting that these cells and their interactions are critical to the process [71–76]. 

Better understanding of the initial physiological responses produced by endothelial cells and 

pericytes (with and without astrocyte and microglia activity) will be critical in assessing 

the cell-type specific effects of FUS+MB as well as the cell-cell crosstalk that ultimately 

generates tissue-level neuroinflammation.

It has also been shown that in rats, an innate immune response can be activated for 

up to 6 days after FUS+MB exposure, as evidenced by infiltration of CD68+ monocytes/

macrophages [46]. Infiltration of the CNS by peripheral monocytes/macrophages is a 

hallmark of tissue damage that cannot be managed through microglial activation alone, 

and can be indicative of impending fibrosis [77], and potentially long-term implications. 

Even in cases where BBB integrity is restored within 24 hours post-sonication, the 

neuroinflammatory response does not always subside [70,78]. Additionally, FUS+MB 

exposure has been shown to reduce P-glycoprotein (Pgp) (encoded by the ABCB1 gene) 

expression; this may allow for increased retention of therapeutics in the parenchyma, which 

could have immediate therapeutic benefits, but the downstream physiological effects should 

be further investigated, as Pgp expression and regulation are closely associated with pro-

inflammatory and anti-inflammatory cytokine expression and release. [79,80]. Additionally, 

while there have been preliminary studies showing that FUS does not necessarily lead to 

tight junction complex damage [81], it has yet to be seen how non-homeostatic changes to 

the microenvironment may induce or facilitate biological changes in the integrity of the tight 

junctions or cellular membranes.

Clinical studies of the neuroinflammatory effects from FUS+MB treatment.

Table 1 presents an overview of recent clinical trials using FUS+MB in a range of CNS 

conditions, together with details of any inflammatory (or anti-inflammatory) pathways, 

where these are explicitly mentioned. In non-neurological conditions, FUS+MB exposure 

has been shown to stimulate immune responses that may be beneficial e.g. in metastatic 

cancer; or in other cases, to directly induce anti-inflammatory effects at the target site 

[82–85]. Recent studies have also shown that immunomodulation can be successfully 

used to treat GBM; and that FUS+MB can be effective in inducing targeted immune 

effects and to deliver immunotherapeutics with promising results [86,87]. It has yet to be 

determined, however, whether an immunomodulatory approach is appropriate for treatment 

of non-oncological CNS diseases [88–94]. While most current clinical trials report no 
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significant inflammation post-FUS+MB treatment (Table 1), the evaluation of potential 

neuroinflammation in many of these studies is limited, lacking for instance molecular 

biomarker data in regard to cytokine levels in the cerebrospinal fluid (CSF) or tissue 

biopsies.

Strategies for mitigating sterile inflammation in ultrasound-mediated 

therapy

As mentioned earlier, the use of FUS+MB has shown promising results for treatment 

of glioblastoma [95–97]. For as long as uncertainties remain over its long-term safety, 

however, the case for using FUS+MB in non-terminal CNS conditions is less clear [98]. 

There have been several studies looking at the immediate and short-term consequences 

of FUS treatment in humans, but these studies have focused primarily on functional 

measures designed to observe whether there were rises in biomarkers of concern [99,100]. 

To the best of the authors’ knowledge, long-term follow up studies of the treated patients 

are still lacking. Such studies are inevitably difficult to perform, due to the complexity 

of neurological diseases and desegregation of confounding factors that may influence 

interpretation of clinical data. Examining long-term, post-procedure effects in animal models 

could provide one step towards addressing these complex issues.

There are already data showing that ultrasound-induced BBB disruption can induce 

inflammatory responses even at low acoustic intensities [46,61,101,102] and ultimately, 

the clinical applicability of FUS+MB is dependent upon understanding the underpinning 

mechanisms and the immediate, as well as long-term effects, of both single and multiple 

FUS+MB treatments. For example, it is critical to determine whether repeated treatment can 

produce adverse effects unrelated to the natural history of the neurological disease being 

treated. This is particularly important when identifying treatments for genetic and hereditary 

disorders in which many in the diagnosed population are pediatric patients.

Non-mechanical modulation of the BBB has also been shown to induce neuroinflammatory 

effects, indicating these are not specific to FUS+MB. For example, the use of d-mannitol, 

an osmotic agent that has been widely used for modulating intracranial pressure, has been 

reported to increase pro-inflammatory cytokines [103]. The opening of adjacent endothelial 

cells can induce a response from both astrocytes and microglial cells [60], such as a cascade 

of chemokines that encourage homing and chemotaxis of peripheral immune cells that are 

circulating in the neurovasculature, especially near the meninges [98]. A potential advantage 

of FUS+MB over d-mannitol is that the effects of FUS+MB can be much more easily 

localized to specific regions of the brain and their corresponding vasculature.

A key consideration for the use of FUS+MB in neurological disorders is the degree to which 

adverse reactions post-procedure can present and whether there are pre- or post-operative 

measures to minimize such effects. Some studies have shown that corrective measures can 

be taken post-treatment to inhibit an immune response using drugs such as dexamethasone 

[104]. In a similar manner, another group recently reported that the type of anesthetic used 

prior to FUS+MB disruption of the BBB can influence gene expression in the brain [105]. 
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Such differences may not have immediate implications post-procedure but are likely to be 

critical in understanding how cells respond long after the initial acute disruption of the BBB.

Concluding remarks and future perspectives

This review has sought to examine the current literature on the role of the BBB in mediating 

sterile inflammation following exposure to FUS+MB. The number of studies that have 

evaluated sterile inflammation associated with FUS+MB, either in vitro or in vivo, is 

relatively small; and while the technology shows great promise, there is a need to accelerate 

our understanding of the downstream physiological responses (Figure 2). This need is 

becoming increasingly pressing as the range of applications for FUS+MB mediated BBB 

permeabilization increases and is extended into non-terminal conditions. Further work is 

needed to elucidate the pathways associated with such reactive inflammatory responses 

when the BBB is disrupted (see Outstanding Questions). Addressing this knowledge gap 

will hopefully encourage further discourse on potential improvements to FUS+MB-mediated 

treatments for neurological conditions, to maximize their benefit-risk ratio.
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Box 1

Focused Ultrasound (FUS) and microbubbles (MB).

Ultrasound is widely used in diagnostic imaging as it is non-ionizing and facilitates 

real-time imaging of anatomical structures within the body. A linear or curvilinear array 

of transducers is used to transmit and receive short pulses at frequencies between 2–

18 MHz. The received signals provide information about the nature and location of 

internal structures. While some features within the body can be easily distinguished by 

ultrasound, this is not the case for blood vessels and consequently gas microbubbles 

(MBs) have been used for over 2 decades as a contrast agent to improve imaging of the 

vasculature.

Being filled with gas, MB are highly compressible and hence respond strongly to the 

mechanical perturbations imposed by a sound field. The fluctuating pressure causes the 

MB to volumetrically oscillate and re-radiate the incident energy at multiple frequencies. 

This nonlinear response can be detected by an ultrasound transducer and is fundamental 

to both microbubble imaging and real-time control of BBB opening. In therapeutic 

applications, the oscillations of the MB are thought to mechanically stimulate BBB 

opening and thus locally enhance drug uptake.

The attenuation of ultrasound in most tissues increases with frequency via a power law 

relationship and leads to increased heat deposition due to viscous absorption. Thus, for 

FUS+MB, lower frequencies (~1 MHz) than those used in imaging are used to prevent 

off target heating of surrounding tissue especially of bony structures such as the skull. 

Therapeutic applications also typically employ longer pulses than those used in imaging 

to increase the probability of generating the desired biological effect.
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Outstanding Questions

• Can some of the hallmarks of neurological disease be attributed to 

neurovascular dysfunction as much as to neuronal dysregulation?

• What are the biological effects of mechanical modulation of the BBB 

produced by focused ultrasound (FUS) and microbubbles (MB)?

• Clinically, FUS+MB have so far been applied primarily as a treatment for 

terminal conditions such as glioblastoma. If, however, they are applied in the 

future to non-terminal CNS diseases, what are the potential long-term adverse 

effects that should be considered by clinicians and researchers?

• How would a course of several FUS+MB treatments affect the long-term 

integrity of the BBB?

• Should there be a strategic algorithm or pipeline in place for determining 

appropriate use of FUS+MB?

• How can the potential adverse effects of neuroinflammation arising from 

FUS+MB disruption of the BBB be minimized? Can pre- or post-operative 

strategies be developed to contain or mitigate such effects?
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Highlights

• The blood-brain barrier plays both a physical and a physiological “gate 

keeping” role in maintaining brain homeostasis.

• In recent years, there has been increasing interest in understanding the role 

of the blood-brain barrier in neurological disorders that were traditionally 

considered to be neuron-centric, for instance Parkinson’s and Alzheimer’s 

disease.

• Alternative drug delivery techniques, such as focused ultrasound (FUS), are 

emerging as powerful tools to bypass the blood-brain barrier and facilitate 

treatment of neurological conditions.

• To enable widespread clinical use of these techniques, there is an urgent 

need to investigate and address the associated safety concerns, for example, 

the consequences of sterile inflammation that may be induced by barrier 

disruption.
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Figure 1. An overview of the cellular composition of the brain vasculature.
The blood brain barrier (BBB) is composed of brain endothelial cells supported by pericytes 

and endfoot processes of astrocytes. The microvascular endothelial cells form continuous 

tight junctions with one another, and the astrocytes and pericytes support the vascular 

network along with the basement membrane lining along the basolateral aspect of the 

endothelia. In homeostasis, the BBB prevents harmful toxins and agents from entering 

the central nervous system. This is essential because neurons are especially sensitive to 

microenvironmental changes. In many neurological diseases, the ability of endothelial cells 

to form tight junctions is compromised, pericytes’ ability to effectively support the vascular 

network is impaired, and reactive astrocytes signal and interact with microglia, the resident 

brain “macrophages.” There is an increase in local inflammation that leads to further leakage 

and dysregulation of tight junction complexes, that can allow for chemotaxis of peripheral 

immune cells. In extreme circumstances, the increased permeability can be so severe that 

it allows exogenous agents to enter the brain parenchyma, which can be devastating for 

neurons and the relevant network near the disrupted BBB. Image created through Biorender.
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Figure 2. Biological effects of FUS+MB via disruption of the BBB.
The combination of FUS+MB has shown considerable promise as a drug delivery strategy 

but further understanding of the downstream effects is required. Depending on the 

ultrasound exposure conditions, a number of biological effects have been observed in 

preclinical rodent models, including: activation of microglia and astrocytes increasing with 

increasing acoustic pressure [60]; extravasation of RBCs, which can be minimized through 

appropriate adjustment of acoustic parameters and/or MB size [51, 56]; and release of 

cytokines in brain regions contralateral to the hemisphere treated with FUS+MB [46]. It 

has yet to be seen if these effects occur in humans. To date, clinical studies of FUS+MB 

applications have focused on treatment of GBM iv, vi, dissolution of protein aggregates in 

Alzheimer’s disease ii [7], and alleviation of symptoms in Parkinson’s disease iii, xi [8]. 

Further work is needed to examine potential longer-term biological effects, particularly as 

the range of clinical application is broadened, and clinical trials involve repeated treatments 

or younger populations ix, xiii, xiv,xv. Abbreviations: FUS: focused ultrasound; MB: 

microbubbles; RBC: red blood cell; GBM: glioblastoma. Image created through Biorender.

iv https://clinicaltrials.gov/ct2/show/NCT02253212 
vi https://clinicaltrials.gov/ct2/show/NCT02343991 
xi https://clinicaltrials.gov/ct2/show/NCT04370665 
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ix https://clinicaltrials.gov/ct2/show/NCT03782194 
xiii https://clinicaltrials.gov/ct2/show/NCT04620460 
xiv https://clinicaltrials.gov/ct2/show/NCT04804709 
xv https://clinicaltrials.gov/ct2/show/NCT05089786 
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Table 1.

Overview of clinical trials using FUS+MB for the treatment or diagnosis of CNS disease.

Clinical trial (NIH 
reference)

Clinical trial 
phase

Condition of 
interest

Study description & role of inflammation as modulator or side 
effect

NCT02343991 vi Phase not 
applicable Brain tumors

Evaluate whether FUS can increase passage of tumor-specific 
biomarkers into the vasculature, improving the quality of liquid biopsy 
[106]

NCT02253212 iv Phase III Glioblastoma 
(recurrent)

Evaluate BBB opening tolerated by patients before delivery of 
chemotherapeutics; discusses anticancer immune response in the 
context of other organ-specific cancers (e.g., breast cancer) and studies 
in other species (e.g., mouse models) in [107]

NCT02986932 ii Phase I Alzheimer’s disease Reduction of pathological protein aggregate in AD; no mention of 
inflammation as modulator or in post-treatment evaluation [7]

NCT03321487 i
Phase not 
applicable

Amyotrophic lateral 
sclerosis

Evaluation of BBB opening in primary motor cortex; MRI imaging 
show transient disruption via gadolinium perfusion [6]; the authors 
reported no significant inflammation 30 days post-procedure.

NCT03551249 vii Phase not 
applicable Glioma

Establishing safety profile for patients using FUS+MB as first line 
of therapy (standard chemotherapy); no mention of inflammation as 
immunomodulator for glioma treatment.

NCT03608553 iii Phase I Parkinson’s disease 
dementia

Performed BBB opening in parieto-occipito-temporal regions of the 
patients’ brains; no adverse effects reported [8]; no mention of 
inflammation

NCT03616860 viii Phase I Glioma
Evaluating FUS+MB to increase quality of liquid biopsy via increasing 
tumor biomarker perfusion into vasculature through transient BBB 
opening [108]; no mention of inflammation as possible modulator

NCT03671889 v Phase II Alzheimer’s disease

Evaluation of focal, transient BBB opening in the hippocampus; found 
indications of perivenous blood-meningeal permeability post-barrier 
disruption which may be indicative of tissue healing process (in the 
context of inflammation) [100]

NCT03782194 ix
Phase not 
applicable

Anxiety, obsessive 
compulsive disorder, 
posttraumatic stress 
disorder

Investigate whether usage of FUS pulsation can influence amygdala 
function to improve emotion regulation

NCT04118764 x
Phase not 
applicable Alzheimer’s disease

Prospective study done with non-human primates in which eosinophil 
count increased; low acoustic pressure leads to minimal inflammatory 
cell density [109]

NCT04370665 xi Phase not 
applicable Parkinson’s disease Delivering imiglucerase using Exablate MRgFUS system and Definity 

to open the BBB; no mention of inflammation

NCT04526262 xii Phase not 
applicable Alzheimer’s disease

Evaluated plaque removal and cognitive functions post-FUS+MB 
treatment (repeated opening) [110]; no mention of inflammation 
specific to the study

NCT04620460 xiii Phase not 
applicable Schizophrenia Investigate whether FUS pulsation can modulate cortical function; no 

mention of immunomodulation as mechanistic target

NCT04804709 xiv Phase I
Progressive diffuse 
midline glioma 
(DMG)

Evaluate whether FUS+MB delivery of Panobinostat through transient 
BBB opening is safe (phase I); no discussion on immunomodulation as 
possible mechanism

NCT05089786 xv Phase II
Treatment-resistant 
neurologic and 

To evaluate whether FUS can improve clinical measurements in 
neurological and psychiatric disorders; no discussion of inflammation

vii https://clinicaltrials.gov/ct2/show/NCT03551249 
viii https://clinicaltrials.gov/ct2/show/NCT03616860 
v https://clinicaltrials.gov/ct2/show/NCT03671889 
x https://clinicaltrials.gov/ct2/show/NCT04118764 
xii https://clinicaltrials.gov/ct2/show/NCT04526262 
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Clinical trial (NIH 
reference)

Clinical trial 
phase

Condition of 
interest

Study description & role of inflammation as modulator or side 
effect

psychiatric 
indications
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