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Abstract

OBJECTIVE—The objective of this study was to evaluate clinical features and response to deep 

brain stimulation (DBS) in G2019S LRRK2-Parkinson disease (LRRK2-PD) and idiopathic PD 

(IPD).

METHODS—The authors conducted a clinic-based cohort study of PD patients recruited from 

the Mount Sinai Beth Israel Genetics database of PD studies. The cohort included 87 participants 

with LRRK2-PD (13 who underwent DBS) and 14 DBS participants with IPD enrolled between 

2009 and 2017. The baseline clinical features, including motor ratings and levodopa-equivalent 

daily dose (LEDD), were compared among LRRK2-PD patients with and without DBS, between 

LRRK2-PD with DBS and IPD with DBS, and between LRRK2-PD with subthalamic nucleus 

(STN) and internal segment of the globus pallidus (GPi) DBS. Longitudinal motor scores (Unified 

Parkinson’s Disease Rating Scale–part III) and medication usage were also assessed pre- and 

postoperatively.

RESULTS—Compared to LRRK2-PD without DBS (n = 74), the LRRK2-PD with DBS cohort 

(n = 13) had a significantly younger age of onset, longer disease duration, were more likely to 

have dyskinesia, and were less likely to experience hand tremor at disease onset. LRRK2-PD 
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participants were also more likely to be referred for surgery because of severe dyskinesia (11/13 

[85%] vs 6/14 [43%], p = 0.04) and were less likely to be referred for medically refractory 

tremor (0/13 [0%] vs 6/14 [43%], p = 0.02) than were IPD patients. Among LRRK2-PD patients, 

both STN-DBS and GPi-DBS targets were effective, although the sample size was small for both 

groups. There were no revisions or adverse effects reported in the GPi-DBS group, while 2 of 

the LRRK2-PD participants who underwent STN-DBS required revisions and a third reported 

depression as a stimulation-related side effect. Medication reduction favored the STN group.

CONCLUSIONS—The LRRK2-PD cohort referred for DBS had a slightly different profile, 

including earlier age of onset and dyskinesia. Both the STN and GPi DBS targets were effective 

in symptom suppression. Patients with G2019S LRRK2 PD were well-suited for DBS therapy 

and had favorable motor outcomes regardless of the DBS target. LRRK2-DBS patients had longer 

disease durations and tended to have more dyskinesia. Dyskinesia commonly served as the trigger 

for DBS surgical candidacy. Medication-refractory tremor was not a common indication for 

surgery in the LRRK2 cohort.
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Pathogenic variants of the leucine-rich repeat kinase 2 (LRRK2) gene have been identified 

as a leading genetic cause of Parkinson disease (PD).1 The most common LRRK2 
pathogenic variant is the glycine to serine substitution at position 2019 (G2019S), which 

is present in approximately 1% of patients with sporadic PD and 4% of patients with familial 

PD.2

Patients with G2019S LRRK2 parkinsonism (LRRK2-PD) develop a motor phenotype 

similar to those with idiopathic PD (IPD). This motor phenotype includes asymmetrical 

resting tremor, bradykinesia and rigidity, and a positive response to levodopa.3 LRRK2-

PD patients are also at risk for developing motor fluctuations, dystonia, and bothersome 

dyskinesias.4 Group-wise clinical differences from IPD, however, have been identified. 

These differences include more frequent lower-extremity and gait impairment without 

associated cognitive impairment;4–6 furthermore, longitudinal analyses of LRRK2-PD 

suggest slower motor decline.7 Thus, many LRRK2 characteristics including levodopa 

responsiveness, motor fluctuations, and better cognitive performance align well with optimal 

candidacy for deep brain stimulation (DBS). Other features such as greater postural 

instability and gait disorder3 may augur a less positive response. How these factors influence 

DBS candidacy and response is not well described.

DBS can improve motor performance in patients with IPD, specifically alleviating the 

cardinal symptoms of tremor, rigidity, and bradykinesia and addressing motor fluctuations 

and dyskinesias.8–10 DBS is less efficacious for freezing of gait and balance disorders.11 

The most common brain targets for PD are the subthalamic nucleus (STN) and the internal 

segment of the globus pallidus (GPi). Both targets have been shown to be safe and effective 

in IPD,12 although there is a paucity of target-specific information, especially as it relates to 

genotype.13
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The objectives of the current study were to compare baseline clinical characteristics 

driving decisions to pursue DBS among G2019S LRRK2-PD. We also aimed to compare 

longitudinal motor and medication DBS outcomes between LRRK2-PD and IPD and to 

gather preliminary information about target-specific differences.

Methods

Participants

All participants were identified from the Genetics of PD Studies at Mount Sinai Beth 

Israel between July 2009 and July 2017. The main inclusion criteria included a diagnosis 

of IPD. Those harboring an LRRK2 G2019S pathogenic variant were classified as LRRK2-

PD. Participants enrolled in Genetics of PD Studies without known pathogenic variants, 

classified as IPD, were recruited if they had undergone unilateral or bilateral STN or 

GPI DBS. Motor and nonmotor symptom data were systematically collected from medical 

records. Additional information was also obtained from medical records of the subset who 

underwent DBS surgery. IRB approval was received, and informed written consent was 

obtained from all patients.

Clinical Assessments

The assessments included: demographic information, Unified Parkinson’s Disease Rating 

Scale part I–IV (UPDRS- I–IV),14 Hoehn and Yahr stage, levodopa-equivalent daily 

dose (LEDD), and cognitive status as measured by the Montreal Cognitive Assessment 

(MoCA). Motor assessments were performed in the ON state, as defined by the clinician 

and patient, as part of routine clinical visits. Because postoperative motor evaluations 

in the OFF state were not systematically collected, motor OFF assessments were not 

included. Longitudinal assessments were obtained at multiple time points before and after 

surgery, with postoperative assessments at least 3 months after surgery to account for 

any microlesion effects. For subjects undergoing DBS, the following information was 

additionally and systematically extracted from the medical record: indication for DBS, 

date of surgery, brain target and rationale for target, implanting surgeon, and any surgical 

complications.

DBS Surgery

DBS eligibility and brain target choice were determined clinically through a 

multidisciplinary team discussion. Inclusion criteria for DBS eligibility were: presence of 

at least 2 cardinal motor features (resting tremor, bradykinesia, or rigidity), disease duration 

longer than 5 years, robust response to levodopa, persistent disabling symptoms such as 

motor fluctuations with troublesome OFF periods or dyskinesia despite optimal medical 

therapy, a minimum UPDRS-III OFF medication score of 25, stable medical therapy for at 

least 1 month prior to baseline, and the ability to comply with follow-up visits. Exclusion 

criteria were intracranial abnormalities contraindicating surgery, medical contraindications 

to surgery, clinical evidence of an atypical parkinsonian syndrome, active alcohol or drug 

abuse, pregnancy, dementia or significant cognitive impairment, or uncontrolled mood 

disorder. Surgical implantation of DBS electrodes was performed as previously described.15 

In brief, all patients underwent stereotactic frame-based placement of bilateral DBS leads 
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as well as microelectrode recording for target refinement. Procedures were performed by 

experienced functional neurosurgeons in New York or Florida. Once the optimal track 

was identified for implantation, the DBS lead was inserted. Lead location was confirmed 

using intraoperative CT (O-arm, Medtronic) merged with preoperative MRI/CT images. 

Postoperative programming and selection of optimal stimulation contacts were performed 

using clinical criteria.16

Statistical Analysis

All statistical analyses were completed using Stata (version 15, StataCorp LP). Univariate 

analyses of demographic variables were performed using chi-square test and Student t-test 

or nonparametric equivalents when necessary (Table 1). Linear mixed models adjusted by 

gender, age at PD onset, LEDD (as a time-dependent covariate), age at first visit or at 

surgery, and baseline UPDRS-III, allowing for subject-specific random intercepts to be used 

to compare UPDRS-III trajectories between LRRK2-PD and IPD groups. No corrections 

were made for multiple comparisons, as the analysis presented was deemed predominately 

descriptive and exploratory.

Results

Between July 2009 and July 2017, 94 participants with PD were identified who carried 

at least one copy of the G2019S pathogenic variant, 4 of whom were excluded for also 

harboring a GBA pathogenic variant. Demographic and clinical information was available 

for 87 LRRK2-PD participants, including 13 who had undergone DBS surgery (LRRK2-

DBS). Of this subset, 4 LRRK2-PD participants had undergone GPi-DBS (3 bilateral and 

1 unilateral) while 9 had undergone STN-DBS (8 bilateral and 1 unilateral). Of the 14 

IPD-DBS patients identified with known genetic status, 2 had undergone GPi-DBS (1 

bilateral and 1 unilateral) and 12 had undergone STN-DBS (11 bilateral and 1 unilateral; 

Supplementary Table 5).

Comparisons Among LRRK2-PD: DBS Versus No DBS

Univariate comparisons between 74 LRRK2-PD participants who had not undergone DBS 

(LRRK2-nonDBS) during the observation period and the 13 LRRK2-PD patients who had 

been treated with DBS are listed in Table 1. No significant differences were found in gender, 

baseline UPDRS-III score, Hoehn and Yahr stage, or baseline cognitive status (as measured 

by MoCA and UPDRS-I question 1). However, LRRK2-DBS participants had a younger age 

of onset (mean 49.2 ± 11.3 vs 61.6 ± 10.8 years, p < 0.001) and longer duration of disease 

at baseline (12.4 ± 6.3 vs 9.8 ± 10.3 years, p = 0.04). They were also less likely to have 

presented with hand tremor at onset (38.5% vs 77.6%, p = 0.01) and were more likely to 

have developed dyskinesia prior to DBS surgery (100% vs 40.3%, p < 0.001).

Longitudinal information was available for 32 LRRK2-nonDBS and 9 LRRK2-DBS 

individuals. LRRK2-nonDBS participants were seen an average of 6.2 times (range 1–15 

times), whereas LRRK2-DBS participants were seen an average of 8.3 times (range 1–13 

times), of which 3.8 visits (range 1–5 visits) took place prior to DBS surgery. An exploratory 

analysis was conducted on progression of symptoms. Prior to DBS, the LRRK2-DBS group 
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progressed 0.02 UPDRS-III points per month, which was 0.10 points per month less rapidly 

than the LRRK2-nonDBS group (Fig. 1, Supplementary Table 1). This difference, however, 

was not found to be statistically significant and the sample size was small (odds ratio [OR] 

0.10, 95% confidence interval [CI] −0.2 to 0.2, p = 0.93).

Comparisons Among Participants Undergoing DBS: LRRK2-PD Versus IPD

Baseline information was available for 9 LRRK2-DBS and 14 IPD-DBS participants (Table 

2, Supplementary Table 1). LRRK2-DBS individuals had a significantly longer duration of 

disease at diagnosis than IPD-DBS patients (1.7 ± 1.2 vs 0.7 ± 0.7 years, p = 0.03), but 

the groups were otherwise comparable with similar gender distribution, age at diagnosis and 

disease onset, site of onset, duration of disease at surgery, UPDRS-III scores at baseline, 

and age at surgery. Additionally, there were no statistically significant differences between 

LEDD and median UPDRS-III scores (Table 2) at the time of surgery.

The majority of individuals in both groups underwent bilateral DBS placement (11/13 in 

the LRRK2-DBS group and 12/14 in the IPD-DBS group), and the frequency of surgical 

complications and adverse effects were similar: 3/13 revisions for LRRK2-DBS patients 

versus 2/14 for IPD-DBS, 3/13 adverse effects for the LRRK2-DBS group versus 5/14 for 

IPD-DBS. However, LRRK2-DBS participants were significantly more likely to be referred 

for surgery because of severe dyskinesia (11/13 [85%] vs 6/14 [43%], p = 0.04) and were 

significantly less likely to be referred for medically refractory tremor (0/13 [0%] vs 6/14 

[43%], p = 0.02) relative to IPD-DBS participants (Supplementary Table 5).

An exploratory longitudinal analysis of progression was performed. LRRK2-DBS and 

IPD-DBS participants had similar rates of motor worsening prior to surgery (Fig. 2 

left, Supplementary Table 1), with IPD-DBS participants progressing an average of 0.10 

UPDRS-III points per month less rapidly than LRRK2-DBS participants (95% CI −0.16 

to 0.36, p = 0.47). Following surgery (Fig. 2 right, Supplementary Table 1), IPD-DBS 

participants worsened at a rate of 0.07 points per month more rapidly than did LRRK2-DBS 

participants (95% CI −0.16 to 0.02, p = 0.14). However, these differences in trajectories did 

not reach statistical significance.

Medication use was compared before and after surgery between LRRK2 and IPD cohorts 

(Supplementary Table 2). Both the LRRK2-DBS and IPD-DBS groups had significant 

reductions in medication dose with a median LEDD reduction of 378 units (interquartile 

range [IQR] 774 units) among LRRK2-DBS participants and of 487.5 units (IQR 655 units) 

among IPD-DBS participants (p = 0.02 for each).

Brain Target Choice Within the LRRK2-DBS Group

Four LRRK2-DBS participants underwent GPi-DBS while 9 underwent STN-DBS 

(Supplementary Table 5). Across both groups, the majority received bilateral electrode 

placement (3/4 [75%] for GPi-DBS and 8/9 [88%] for STN-DBS). There were no 

revisions or adverse effects reported in the GPi-DBS group, but 2 of the LRRK2-DBS 

participants who underwent STN-DBS required revisions and a third reported depression 

as a stimulation-related side effect. Indications for DBS were similar across groups, with 

the most common being motor fluctuations (3/4 [75%] in the GPi-DBS group and 7/9 
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[78%] in the STN-DBS group) and severe dyskinesia (3/4 [75%] in the GPi-DBS group 

and 8/9 [89%] in the STN-DBS group). Medication reduction was the primary rationale 

for target choice for all 9 of the STN-DBS patients, whereas the targets for each of the 4 

GPi-DBS patients were chosen for different indications, including concern for cognition and 

significant dystonia.

Longitudinally, among the LRRK2-DBS cohort, those who underwent GPi-DBS had similar 

motor outcomes compared to those who underwent STN-DBS (Fig. 3). The LEDD was 

analyzed according to brain target. Overall, when combining groups, patients with STN-

DBS had greater medication reduction (median 542 units, IQR 760 units, p = 0.004) than 

did those with GPi-DBS (median 238 units, IQR 524 units, p = 0.10). This effect was also 

present within the LRRK2-PD group, with significant LEDD reduction shown only among 

those with STN-DBS (p = 0.04; Supplementary Tables 3 and 4).

Discussion

The current study characterized a cohort of patients with G2019S LRRK2 parkinsonism, 

with and without DBS, and collected preliminary outcome data on STN and GPi brain 

targets.

The cohort of 94 LRRK2-PD patients was relatively large and 13 were referred for DBS. 

Those referred for DBS had a distinct profile with a younger age of onset and longer 

duration of disease at the time of surgery (12.38 vs 9.75 years). The disease duration was 

longer than that observed in multiple randomized controlled DBS cohorts.17 This finding 

is consistent with prior studies showing slower LRRK2 progression7 and thus potentially 

presents a somewhat different, wider, optimum “window” for surgical intervention.17–23

The LRRK2-PD patients referred for surgery were less likely to present with hand tremor 

at disease onset (38% vs 78%). However, all LRRK2-DBS patients developed dyskinesia 

prior to DBS compared to only 40% of LRRK2-PD patients not referred for surgery. The 

causes for the excess of dyskinesia may be multifactorial and possible contributors include 

longer duration of disease and levodopa exposure. Regardless, the observation that the most 

common indication for surgical referral in LRRK2-PD patients was severe dyskinesia (85%) 

is an important one for the clinician. Another notable observation in this group is that 

medically refractory tremor did not occur in the LRRK2-DBS group and this information 

may be useful to the implanting team. Tremor is a commonly reported symptom in LRRK2-

PD,2 but in our series it did not translate to a reason for proceeding to DBS surgery.

Although the sample size was small, our exploratory analysis of longitudinal progression in 

patients with LRRK2-PD who underwent DBS showed that these patients had a slightly 

slower rate of motor progression postoperatively compared to IPD-DBS patients. This 

improvement was observed for more than 2 years following surgery. Our findings should 

be interpreted with caution, but add to the growing body of literature favoring improved 

motor outcomes in G2019S LRRK2 PD compared to IPD.24,25

Our results demonstrate the safety and potential effectiveness of both STN and GPi-DBS in 

LRRK2-PD and are consistent with the two largest published studies on LRRK2 STN-DBS, 
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which included 15 and 13 patients (all of whom had the G2019S pathogenic variant). 

Both of these previously published studies demonstrated improved motor outcomes for 

LRRK2-PD patients as compared to patients without pathogenic variants.25,26 In contrast, 

smaller studies have found either improvement or no difference in motor outcomes when 

comparing STN-DBS in LRRK2-PD to IPD.24,27,28

This is the first study to report on GPi-DBS outcomes in G2019S LRRK2 PD. The rationale 

for the GPi target choice in our cohort was concern for preserving cognition, mood, or the 

presence of significant dystonia. A few recent studies have suggested a slight worsening 

of cognition after STN-DBS,21,29 or a better effect on mood using GPi-DBS.30 More 

recent studies using different outcomes have shown conflicting results.31,32 GPi-DBS is, 

however, recognized for its strong antidyskinetic effects.33 Given that the majority of the 

LRRK2-DBS patients in this study were referred for DBS for severe dyskinesia, GPi-DBS 

may represent a reasonable and attractive brain target for LRRK2-PD with dyskinesia. 

Longitudinally, our GPi-DBS data demonstrated similar motor improvements to STN-DBS 

in UPDRS-III ON scores from 6 months to 2 years after surgery. The significant reduction in 

LEDD favored the STN-DBS group and this closely matched the results in other published 

cohorts.30,32 The number of surgical revisions and postoperative adverse effects was low in 

both cohorts and consistent with rates in IPD-DBS.21

This study has several limitations. The number of surgical subjects was small, which 

precluded confident interpretations of statistical analysis, especially regarding the brain 

target subgroups. Most, but not all, of the DBS procedures were performed by a single 

surgeon at a single site. The variability in site and surgeon may have also affected the DBS 

outcomes. Additionally, longitudinal data for motor outcomes were only available for ON 

UPDRS-III scores. A potential limitation of our study is the recruitment of all individuals 

from participants in genetics studies. Even among those not carrying known pathogenic 

variants, approximately half had a family history of PD, thus this comparison group may 

have not been as typical of a group with less likely genetic burden. However, if that was 

the case, it would have biased the results of our study toward the null hypothesis, and the 

found differences might have been more apparent had we compared them with a less genetic 

cohort.

Future larger longitudinal studies are warranted and should expand to examine cognitive and 

nonmotor outcomes, and quality of life. Lastly, our study was limited to one pathogenic 

LRRK2 genetic variant and investigating pathogenic and risk variants beyond G2019S will 

be needed but could be challenging, given even smaller numbers of available subjects.

Conclusions

Patients with G2019S LRRK2 parkinsonism are well-suited for DBS therapy and have 

favorable motor outcomes in both DBS targets. Among LRRK2-PD patients, those 

undergoing DBS have longer disease durations and tend to have more dyskinesia, and 

dyskinesia is commonly the trigger for DBS surgery. Medication-refractory tremor was not a 

common indication for surgery in our LRRK2 cohort.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CI confidence interval

DBS deep brain stimulation

GPi internal segment of the globus pallidus

IPD idiopathic PD

IQR interquartile range

LEDD levodopa-equivalent daily dose

MoCA Montreal Cognitive Assessment

OR odds ratio

PD Parkinson disease

STN subthalamic nucleus

UPDRS Unified Parkinson’s Disease Rating Scale
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FIG. 1. 
Spaghetti plot of fitted (predicted) motor trajectories (UPDRS-III) of LRRK2-PD subjects. 

Blue lines represent individual subjects and the red line is average trend of all subjects. 

Left: Preoperative motor trajectories of LRRK2-DBS subjects. Right: Preoperative motor 

trajectories of LRRK2 non-DBS subjects.
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FIG. 2. 
Spaghetti plot of fitted (predicted) motor trajectories (UPDRS-III) of LRRK2 and IPD 

subjects undergoing DBS. Blue lines represent individual subjects and the red line is 

average trend of all subjects. Left: Preoperative motor trajectories by LRRK2 status. Right: 
Postoperative motor trajectories by LRRK2 status.
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FIG. 3. 
Spaghetti plot of fitted (predicted) motor trajectories (UPDRS-III) of LRRK2-PD subjects 

undergoing DBS. Blue lines represent individual subjects and the red line is average trend 

of all subjects. Left: Preoperative motor trajectories by brain target. Right: Postoperative 

motor trajectories by brain target.
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