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Summary
While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predic-

tive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mech-

anisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to

improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan

on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in

the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both

on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from

TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD)

and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease

than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio
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[OR] ¼ 1.24 [95% confidence interval [CI]: 1.08–1.43] for PTRS versus 1.10 [0.96–1.26] for PRS among heavy smokers with R 40 pack-

years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test

p < 2.2 3 10�16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our

study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.
Introduction

Chronic obstructive pulmonary disease (COPD), character-

ized by irreversible airflow obstruction, is currently a lead-

ing cause of death in the United States1,2 and worldwide.3

COPD is diagnosed using two spirometric measures of lung

function, namely forced expiratory volume in one second

(FEV1) and its ratio to forced vital capacity (FEV1/FVC).

While the main risk factor for COPD is cigarette smoking,

non-smokers can also develop COPD,4,5 which suggests ge-

netic variation in susceptibility to the disease. Further-

more, COPD is a highly heterogeneous disease with herita-

bility estimates ranging from 35% to 60% even after

accounting for smoking behavior.6–8 Currently, there is

no convincing therapy that prevents the development

and progression of COPD, which reflects limited under-

standing of its biological mechanisms. Thus, early diag-

nosis can provide a crucial path toward prevention of

more severe disease.

Large-scale genome-wide association studies (GWASs) of

COPD and lung function have identified numerous ge-

netic variants associated with COPD risk.9–13 However,

the individual contribution of the identified disease-associ-

ated variants to complex disease is generally very

small.14,15 The polygenic risk score (PRS) framework, aggre-

gating the cumulative effects of genetic variants, tends to

capture a reasonable proportion of variation in COPD

risk and exhibits generally stronger association with dis-

ease when more genetic variants are included in the risk

score.9,11,16–18

Additionally, PRS has the benefit that it can translate the

results of GWASs into clinical application for the early

identification of genetic risk of complex diseases. With

recent increases in the scale of GWASs, the PRS approach

has become more powerful. Many studies have demon-

strated the predictive power of PRS on a wide range of com-

plex diseases or traits.19–23 However, populations with

varying genetic ancestry may possess different allelic fre-

quencies and linkage structures, and as a result, the predic-

tive power of PRS is limited when the discovery and target

populations are from different genetic ancestry groups,

which is referred to as limited cross-ethnic portability.

For example, a study of seventeen anthropometric and

blood-panel quantitative traits in the UK Biobank has

shown that prediction accuracy was far lower for non-Eu-

ropean-ancestry populations when the PRS was derived

from summary statistics for studies of individuals with Eu-

ropean ancestry.24

For COPD, Shrine and colleagues derived a 279-variant

weighted PRS from large-scale GWASs of lung function car-

ried out in individuals with European ancestry from the

UK Biobank.11 Their results show that the derived PRS per-
858 The American Journal of Human Genetics 109, 857–870, May 5,
formed significantly better for individuals with European

ancestry than for individuals with African ancestry in the

external validation cohorts. In addition, Moll and col-

leagues derived an expanded PRS for COPD using Shrine’s

GWAS11 results and showed that the gap in odds ratio of

COPD between individuals with European and non-Euro-

pean ancestry increased with the decile of PRS.18 As the

majority of GWASs have been performed in individuals

with European ancestry, disparity in prediction accuracy

across non-European-ancestry individuals from GWAS-

derived PRS is a major concern in consideration of poten-

tial clinical applications.24,25,26

While heterogeneity in genetic architectures limits

cross-ethnic portability of PRS,27–30 the results from several

cross-ethnic GWAS replication studies provide evidence for

some causal variants shared across populations.31–34 Given

that a substantial proportion of GWAS variants demon-

strate gene regulation effects,35 constructing risk scores

built on expression quantitative-trait locus (eQTL) variants

presents a promising path toward incorporating biological

information in genetic prediction. Motivated by the hy-

pothesis that the underlying biological mechanisms of

trait or disease are shared across ancestry groups, Liang

and colleagues proposed to improve cross-ethnic risk pre-

diction using a polygenic transcriptome risk score (PTRS)

constructed using multi-SNP predictors of gene expres-

sion.36 The proposed PTRS builds on the widely used

PrediXcan approach, an integrative method that leverages

gene expression information to identify trait-associated

genes from GWAS.37 Compared with more conventional

PRS approaches, the PTRS uses the cumulative effect of

genes to construct genetic predictors of traits. Their results,

which focused on seventeen anthropomorphic and blood

phenotypes, showed substantial benefits in cross-ethnic

portability from PTRS prediction compared with standard

PRS approaches.36. Another benefit of the PTRS as a gene-

based risk score is that it provides an additional layer of

biological interpretability, as the PrediXcan-based predic-

tors can be tied directly to gene expression traits corre-

sponding to specific genes.

In this paper, we explored the benefits of PTRS for pre-

dicting COPD risk across self-reported race/ethnic groups

by adapting the PTRS approach proposed by Liang

et al.,36 with the main difference being that the current

work leverages summary statistics from published GWASs

rather than individual-level data. We constructed PTRSs

for prediction of two quantitative lung function traits

(FEV1 and FEV1/FVC ratio) and two definitions of COPD

(moderate-to-severe COPD and severe COPD) using sum-

mary statistics from the recent large-scale GWAS of pulmo-

nary function traits (FEV1 and FEV1/FVC ratio) conducted

in individuals with European ancestry from the UK
2022
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Figure 1. Study design
(A) Study workflow.
(B) Four methods of selecting genes included in each PTRS model.
PRS, polygenic risk score; PTRS, polygenic transcriptome risk score; 279 variants are the SNPs used to derive weighted genetic risk score
for COPD in Shrine’s work; TWAS, transcriptome-wide association study; S-PrediXcan, Summary-PrediXcan.
Biobank.11. We focused on these specific quantitative traits

and definitions of COPD (1) for consistency with prior ge-

netic studies11–13 and risk scores for COPD11,18 and (2) for

their clinical relevance to diagnosis of COPD. We further

proposed multiple approaches for the construction of

PTRS, leveraging gene expression prediction functions

fromGTEx38 and theMulti-Ethnic Study of Atherosclerosis

(MESA).39 To assess the prediction performance and the

cross-ethnic portability of our proposed PTRS candidates,

we leveraged multi-ethnic participants in the NHLBI

Trans-Omics for Precision Medicine (TOPMed) program

to select the best-performing candidates from popula-

tion/family-based cohorts and then tested their perfor-

mance on COPD-enriched studies.
Material and methods

Overview of approach
An overview of the study design is shown in Figure 1. For the deri-

vation of risk scores (both PRS and PTRS), we leveraged summary

statistics from the recent large-scale GWASs of pulmonary function

traits (FEV1 and FEV1/FVC ratio) conducted in individuals with Eu-

ropean ancestry from the UK Biobank.11 For the two COPD defini-

tions (moderate-to-severe COPD and severe COPD), the risk-score

candidates were constructed usingGWAS results for FEV1/FVC ratio.

We assessed these candidate scores on the TOPMed population/

family-based cohorts (training data) to select the best-performing

candidate by maximal area under the curve (AUC) from the set of

risk scores derived for each model and trait. Both association and

cross-ethnic portability (prediction accuracy for non-European

ancestry relative to European ancestry) of the best risk scores with

disease were then tested on TOPMed COPD-enriched studies.
The Ame
PTRS derivation
Gene expression prediction models for integrative analysis

We selected two existing types of gene expression prediction

models for investigation in construction of the PTRS:

d PTRS_GTEx models: based on European ancestry-dominant

GTEx_V8 RNA-seq data. We used MASHR-based40 prediction

models that are recommended by the PrediXcan team for

GTEx_V8 RNA-seq data.38 In the analysis, both lung (n ¼
444, PTRS_GTEx[Lung]) and whole blood (n ¼ 573,

PTRS_GTEx[WB]) tissues of MASHR-based GTEx models

were applied.

d PTRS_MESA model: based on multi-ethnic microarray tran-

scriptome data collected from monocytes (total, n ¼ 1,163;

non-Hispanic Whites [NHW], n ¼ 578; African Americans

[AA], n ¼ 233; and Hispanics/Latinos [HIS], n ¼ 352).39 We

used the multi-ethnic elastic net prediction model (trained

with mixing parameter a ¼ 0:5) as presented in Mogil

et al.39 for our analysis, and we refer this model as PTRS_ME-

SA(monocytes).
Construction of risk scores

Building on the concept of genetically regulated gene expression

(GReX) introduced as part of the widely used PrediXcan frame-

work,37 we calculated the PTRS for the ith individual using the

following formula:

PTRSi ¼
Xm
j¼1

Tijbgj;

where Tij is the GReX of gene j for individual i, the calculation of

Tij is detailed in PrediXcan framework,37 bgj is the estimated effect

size of gene j, the calculation of bgj is detailed in Summary-PrediX-

can (S-PrediXcan),41 andm is the total number of genes. The PTRS

approach used in the current manuscript was adapted from
rican Journal of Human Genetics 109, 857–870, May 5, 2022 859



previous work,36 with the main difference being that the current

work leverages summary statistics from published GWASs rather

than individual-level data. We applied S-PrediXcan41 using the

selected gene expression prediction models with the published

lung function GWASs to obtain the estimated effects correspond-

ing to each gene ðbgjÞ. Finally, the PTRS was inverse-normal trans-

formed in the analysis.

We then applied four methods to select genes for inclusion in

the PTRS:

(1) The first method was to take genes within a5 1-Mb region

of 279 variants from previous GWASs11 and then overlap

with genes from each of the three PTRS models (‘‘279-

1Mb’’).

(2) The second method is a variation of the first method

(above). We restricted to 261 genes identified in previous

GWAS (Table S9 in Shrine’s work11) harboring the 279 var-

iants and then selected genes overlapping with each of the

three PTRS models (‘‘279-nearby’’).

(3) The third method was to apply different p value thresholds

on transcriptome-wide association study (TWAS) results

from S-PrediXcan. Nominal, qval, and Bonf represented

the p value, q value, and Bonferroni corrected cut-offs at

0.05, respectively (‘‘TWAS-nominal,’’ ‘‘TWAS-qval,’’ and

‘‘TWAS-Bonf’’).

(4) The last method was to select genes by regional colocaliza-

tion probability (RCP). We applied FastEnloc42 on eQTLs

and GWASs11 to compute RCP for genes. For eQTLs, we

adopted GTEx_V8 eQTL43 for PTRS_GTEx models and

MESA eQTLs39 for PTRS_MESA models. The genes were

selected first by the range of RCP (from 0.1 to 0.9) and

then overlapped with genes from each of the three PTRS

models (‘‘Coloc0.1’’ to ‘‘Coloc0.9’’).

A summary of the number of genes selected by each method is

reported in Table S1.
PRS calculation
To provide a comparisonwith our proposed PTRS, we incorporated

in our study two models that reflect a more standard PRS frame-

work. We further applied inverse normal transformation to the

PRS values to standardize the scores.

d PRS_279 model: denotes the previously published genetic

risk score that leverages weights for 279 selected variants

from previous GWASs11 (‘‘SNPs-279’’).

d PRS_(pþt) model: applied pruning and thresholding by

PLINK 1.90b –clump and –score,44 a p value and linkage

disequilibrium (LD)-driven procedure, to build additional

PRS candidates where 1,864 European ancestry samples

from MESA who had-whole genome sequence data through

TOPMed were used to construct a LD reference panel. For

each trait, a range of p values (5310�4 and 53 10�8) and

pairwise correlation r2 (0.2, 0.4, 0.6, and 0.8) thresholds

were used to create an additional eight PRS candidates

(‘‘5e-4_0.2’’ to ‘‘5e-8_0.8’’).
Study samples
The training data comprised the participants from eight popula-

tion/family-based cohorts (the Atherosclerosis Risk in Commu-
860 The American Journal of Human Genetics 109, 857–870, May 5,
nities [ARIC] study, the Coronary Artery Risk Development in

Young Adults [CARDIA] study, the Cleveland Family Study [CFS],

the Cardiovascular Health Study [CHS], the Framingham Heart

Study [FHS], the Hispanic Community Health Study/Study of

Latinos [HCHS/SOL], the Jackson Heart Study [JHS], and the

Multi-Ethnic Study of Atherosclerosis [MESA]). The test data con-

sisted of the participants from two COPD-enriched studies (the

Genetic Epidemiology of COPD [COPDGene] study and the Sub-

Populations and Intermediate Outcome Measures in COPD Study

[SPIROMICS]). For all of the included studies, Institutional Review

Boards at each field center approved study protocols, and written

informed consent was obtained from all participants. Detailed

cohort descriptions are provided in the supplemental methods.

Whole-genome sequence data
Whole-genome sequencing (WGS) in TOPMed had, on average,

deep (�303) coverage with joint-sample variant calling and

variant level quality control in �140,000 TOPMed samples for

Freeze 8 and �159,000 samples for Freeze 9b.45 Analyses in the

population/family-based cohorts, as well as COPDGene, used

WGS from TOPMed Freeze 8. Study-specific analyses in

SPIROMICS used the newer Freeze 9b WGS genotypes as (1) these

analyses were carried out at a later stage in our research, and (2) the

SPIROMICSWGS data were only available starting from the newer

Freeze 9b release. Additional details regarding quality control of

genotype data for the present analyses are included in the supple-

mental methods.

Phenotype definition
The phenotype harmonization of pulmonary function traits (pre-

bronchodilator FEV1 and FEV1/FVC ratio) was conducted

following the protocol of the NHLBI Pooled Cohorts Study (sup-

plemental methods, Oelsner et al.17). We followed Zhao et al.13

to proceed with phenotype QC and calculate the race/ethnic-spe-

cific predicted values of FEV1 using the equations of Hankinson46

that were determined for NHW, AA, and HIS, respectively, COPD

cases, and controls were then defined as follows:

d Moderate-to-severe COPD: pre-bronchodilator FEV1 < 80%

predicted and FEV1/FVC < 0.7

d Severe COPD: pre-bronchodilator FEV1 < 50% predicted and

FEV1/FVC < 0.7

d Controls: pre-bronchodilator FEV1 R 80% predicted and

FEV1/FVC R 0.7
Statistical analysis to examine prediction performance
We carried out pooled analyses across self-reported race/ethnic

groups for the training data (population/family-based cohorts).

For the test data (COPD-enriched studies), analyses were stratified

by self-reported race/ethnic group (NHW versus AA) and then

meta-analyzed using an inverse-variance weighted fixed effect

model. Statistical analyses were conducted using R/GENESIS

v.2.21.3,47 and meta-analyses were implemented in R/meta

v4.13-0.48

For dichotomous traits, the score with the best prediction accu-

racy for each set of risk scores corresponding to each model was

determined by the maximal AUC. The AUC was calculated using

a generalized linear mixed model for association of the dichoto-

mous trait with thescore candidate and including additional co-

variate adjustment for age, sex, race, study, sequence center,
2022



pack-years of smoking, ever versus never smoking, and principal

components (PCs) of ancestry. The genetic relationship matrix

(GRM) was used to specify the covariance structures of the random

effects term in the model. The AUC was calculated by risk score

only, and the confidence intervals of AUC were calculated using

R/pROC v.1.17.0.1.49

For quantitative traits, we followed Zhao et al.13 and Sofer

et al.50 to obtain study-specific variance adjusted residuals as phe-

notypes for the analyses. More specifically, we applied linear

mixed models to obtain study-specific residuals, along with

study-specific standard deviations of the residuals. The inverse-

normal transformed residuals were scaled by their study-specific

standard deviations. The resulting values were used to assess the

association with each proposed risk score using a linear mixed

model. The linear mixed models included covariate adjustment

for age, age-squared, sex, height, height-squared, race, study,

sequence center, pack-years of smoking, current smoking, former

smoking, PCs of ancestry, and the GRM. Prediction performance

of each score was quantified as the proportion of variance ex-

plained (%), estimated as 100 3 the squared correlation (R2) be-

tween the observed phenotypes and the predicted phenotypes

by score only.

The GRM of samples and PCs of ancestry for all studies except

SPIROMICS were generated on TOPMed Freeze 8 and obtained

directly from the TOPMed Data Coordinating Center. For

SPIROMICS, the GRM and PCs were based on TOPMed Freeze 9b

and were computed by following TOPMed Freeze 8 procedures us-

ing R/GENESIS v.2.21.3.47 Analyses in TOPMed Freeze 8 (popula-

tion/family-based and COPDGene) included adjustment for the

first 11 PCs of ancestry, whereas analyses in SPIROMICS included

adjustment for the first 4 PCs of ancestry after checking pairwise

PC plots.
Smoking interaction
For the best-performing risk-score candidate identified for each

model, the smoking 3 score interaction effects were assessed by

adding an interaction term for pack-years of smoking 3 score in

the (generalized) linear mixed models for each of the four traits

(moderate-to-severe COPD, severe COPD, FEV1, and FEV1/FVC ra-

tio) on population/family-based cohorts.
Portability analysis
Cross-ethnic portability was defined as the prediction accuracy

(AUC) ratio for non-European- versus European-ancestry popula-

tions. We applied bootstrapped sampling (i.e., random sampling

with replacement) on two COPD-enriched studies to generate

95% confidence intervals of cross-ethnic portability. For each

bootstrapped sample of COPD cases and controls, we calculated

the cross-ethnic portability. The 95% CIs for portability estimates

were then obtained using the percentile method on 10,000 boot-

strapped samples, separately for each of the two COPD-enriched

studies.
Examination of a combined risk score
To explore the performance of a single risk score that combines

PRS and PTRS, we selected one candidate to represent

each approach (PRS_279: SNPs-279 and PTRS_GTEx(Lung):

279-nearby) for further investigation. These two risk scores are

relevant but provide different levels of genetic risk information.

We first examined the interaction between these two scores in

the training data (population/family-based cohorts). The interac-
The Ame
tion was assessed by adding a score interaction term in the same

prediction model as for risk-score prediction evaluation. We then

explored two schemes to combine two individual risk scores, un-

weighted sum and weighted sum. The unweighted sum is ob-

tained as the direct sum of the two individual risk scores. The

weights in the weighted sum were obtained as the regression coef-

ficients of two individual risk scores in the score interactionmodel

using the population/family-based cohorts. The weights were also

applied to COPD-enriched studies to calculate the combined risk

score. Finally, we evaluated the predictive performance of the

risk scores for eachCOPD trait (1) using the same predictionmodel

used for our primary analyses as described above, (2) using a base-

line set of clinical risk factors alone (age, sex, race, pack-years of

smoking), (3) using the risk score alone, and (4) using the combi-

nation of clinical risk factors and risk score.
Results

Participant characteristics

Demographic and clinical characteristics of our study sam-

ples are summarized in Table 1, which includes 29,381 par-

ticipants from the eight population/family-based cohorts

and 11,771 participants from the COPD-enriched studies.

Based on participant self-reported race/ethnicity, 50%

and 74% of the participants were categorized as NHW in

the population/family-based cohorts and COPD-enriched

studies, respectively. The remaining participants repre-

sented AA (24% and 26% in the population/family-based

and COPD-enriched studies, respectively) and HIS (26%

in the population/family-based cohorts).
Selection of best-performing risk-score candidate for

each model

The overview of study design is shown in Figure 1.We used

large-scale GWASs of individuals with European ancestry

from the UK Biobank reported by Shrine et al.11 (n ¼
321,047) to derive both PRS and PTRS candidates for

FEV1/FVC ratio and FEV1, respectively. For the two COPD

definitions (moderate-to-severe COPD and severe COPD),

the risk-score candidates were constructed using GWAS re-

sults for FEV1/FVC ratio. Specifically, we derived 42 candi-

dates for PTRS by three different transcriptome reference

models (i.e., PTRS_GTEx[Lung], PTRS_GTEx[WB], and

PTRS_MESA[monocytes]) and by four different gene selec-

tion methods for each transcriptome reference model (i.e.,

‘‘279-1Mb,’’ ’’279-nearby,’’ ‘‘TWAS-nominal, qval, and

Bonf,’’ and ‘‘Coloc0.1 to Coloc0.9’’), and 9 candidates for

PRS by two models (i.e., PRS_279 and PRS_[pþt]) for each

of the complex traits (material and methods). We assessed

these candidate scores on the TOPMed population/family-

based cohorts (training data) to select the best-performing

risk score by maximum AUC for each model and for each

trait. Both association strength and cross-ethnic portability

of the best risk scores with diseases were then tested in the

TOPMed COPD-enriched studies (Figure 1).

Figure 2 shows that the two definitions of COPD (mod-

erate-to-severe COPD and severe COPD) shared the same
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Table 1. Characteristics of the study-participants included in the analyses

Stratum Study NHW AA HIS
Age,
years

Female
(%)

Smoking
pack-years

FEV1%

predicted
FEV1/FVC
ratio

Moderate-
to-severe
COPD

Severe
COPD

Population-
and family-
based

ARIC 5,717 1,458 – 62.81 5
9.69

3,998 (56) 17.28 5 23.41 92 5 19 0.73 5 0.09 1,115 199

CARDIA 1,386 1,373 – 42.17 5
6.62

1,525 (55) 0.71 5 1.58 95 5 14 0.79 5 0.06 – –

CFS 402 388 – 47.21 5 16.07 432 (55) 10.29 5 16.26 91 5 20 0.79 5 0.07 64 16

CHS 2,321 312 – 78.74 5
6.09

1,574 (60) 16.08 5 24.85 91 5 25 0.72 5 0.11 500 155

FHS 3,321 – – 48.86 5
11.85

1,771 (53) 6.72 5 15.76 96 5 15 0.76 5 0.07 239 26

HCHS/SOL – – 6,750 46.65 5
13.64

3,969 (59) 7.43 5 15.97 92 5 15 0.80 5 0.07 394 69

JHS – 2,511 – 54.54 5
12.54

1,621 (65) – 93 5 18 0.81 5 0.08 123 26

MESA 1,580 983 879 66.40 5
9.84

2,088 (52) 10.69 5 20.90 94 5 18 0.75 5 0.08 408 52

Total 14,727 7,025 7,629 – – – – – 2,843 543

COPD-
enriched

COPDGene 6,609 3,258 – 59.55 5
9.04

4,602 (47) 44.27 5 24.87 73 5 26 0.65 5 0.16 3,981 2,022

SPIROMICS 1,535 369 – 63.50 5
9.06

886 (47) 47.60 5 27.91 67 5 27 0.59 5 0.16 1,115 547

Total 8,144 3,627 – – – – – – 5,096 2,569

Mean 5 standard deviation. ARIC, Atherosclerosis Risk in Communities; CARDIA, Coronary Artery Risk Development in Young Adults; CFS, Cleveland Family
Study; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; HCHS/SOL, Hispanic Community Health Study/Study of Latinos; JSH, Jackson Heart
Study; MESA, Multi-Ethnic Study of Atherosclerosis; COPDGene, Genetic Epidemiology of COPD; SPIROMICS, Sub-Populations and Intermediate Outcome Mea-
sures in COPD Study; NHW, non-Hispanic White; AA, African American; HIS, Hispanic; FEV1, forced expiratory volume in 1 s; FEV1/FVC ratio, FEV1 ratio to forced
vital capacity.
pattern of the best-performing risk-score candidates for

each model. Taking moderate-to-severe COPD for

example, PRS_279 had the best prediction accuracy over-

all (AUC ¼ 0.579 [95% CI: 0.567–0.590]). The best-per-

forming candidate for the PRS pruning and thresholding

model was from the accumulation of independently

genome-wide significant variants (i.e., PRS_[pþt]: 5e-

8_0.2 with AUC ¼ 0.566 [95% CI: 0.555–0.578]). Among

our proposed PTRSs, the PTRS with genes near 279

variants had the best AUC for PTRS_GTEx(Lung) model

(i.e., PTRS_GTEx[Lung]: 279-nearby with AUC ¼ 0.549

[95% CI: 0.537–0.560]). Among the PTRS_GTEx(WB)

model risk scores, the candidate with genes selected using

the q value method was the best performing (i.e.,

PTRS_GTEx[WB]: TWAS-qval with AUC ¼ 0.525 [95%

CI: 0.513–0.536]). The PTRS with the second-largest

gene size was the best performing for the MESA model

(i.e., PTRS_MESA[monocytes]: TWAS-nominal with

AUC ¼ 0.537 [95% CI: 0.525–0.548]). The best PRS candi-

date (PRS_279) has significantly higher AUC than the best

PTRS candidate (PTRS_GTEx[Lung]: 279-nearby) for mod-

erate-to-severe COPD (Delong p value ¼ 7.46 3 10�6).

The detailed prediction performance of all proposed risk

scores for the two COPD traits are shown in Tables S2

and S3.
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The genes included in the best-performing PTRS for two

COPD traits may provide additional information to priori-

tize genes for further investigation of the underlying bio-

logical mechanism of COPD (Tables S4–S6). Taking the

best-performing PTRS of the GTEx(Lung) model (i.e.,

PTRS_GTEx[Lung]: 279-nearby) for example, there are

126 genes included in this PTRS that represent a subset

of the 261 genes identified based on GWASs of lung func-

tion in the UK Biobank.11 Among these, 43 of the genes

included in the risk score achieved Bonferroni significance

(i.e., TWAS p value< 0.05/126, Table S4). Furthermore, the

small number of overlapped genes among the three best-

performing PTRS candidates suggested that the best candi-

date from each PTRS model provided information on a

relatively distinct set of genes (Table S1 and Figures S2–S4).

For the two quantitative lung function traits, PRS_279 has

overall better prediction accuracy than the other risk scores

examined for both traits, and the best-performing PTRS

candidate differed by trait (Figure S1). Overall, the risk scores

from the model PTRS_GTEx(Lung) presented higher R2

among all PTRS candidates for both traits. The detailed pre-

diction results for all proposed risk scores are shown in

Tables S7 and S8, and the genes included for the best-per-

forming score from each PTRS model for two lung function

quantitative traits are shown in Tables S9–S13.
2022



Figure 2. Prediction accuracy of all risk-score candidates on multi-ethnic population/family-based cohorts for two COPD traits
AUC, area under the curve, was evaluated by the risk score only. Data are shown as AUCwith 95%CI. PRS_279, PRS derived by previously
published 279 variants for FEV1/FVC ratio; PRS_(pþt), PRS derived by pruning and thresholding (a range of p value and pairwise corre-
lation thresholds were used to create eight candidates, 5e-4_0.2 to 5e-8_0.8); 279-nearby and 279-1Mb, PTRS derived by genes nearby
and within 5 1 Mb region of 279 variants, respectively; TWAS-nominal, TWAS-qval, and TWAS-Bonf, PTRS derived by genes passing
TWAS p value threshold of 0.05, q value, and Bonferroni, respectively; Coloc0.1 to Coloc0.9, PTRS derived by genes with regional coloc-
alization probability ranging from 0.1 to 0.9.
PTRS presents stronger association than PRS with COPD

in African Americans

Defining subgroups for stratified analysis

As shown in Table 1, the participants in COPD-enriched

studies had heavier smoking history than those in

TOPMed population/family-based cohorts. Hence, to

examine the association strength of best risk scores on

COPD-enriched studies, we first examined the impact of

pack-years of smoking on the relationship between the

proposed risk scores and COPD risk via smoking interac-

tion analysis (material and methods). For each of the

four traits (two definitions of COPD and two quantitative

traits: FEV1 and FEV1/FVC ratio), at least one selected

candidate score showed nominally significant interaction

with smoking (i.e., interaction p value < 0.05, Table S14).

We then conducted smoking-stratified analyses on

COPD-enriched studies to examine the association perfor-

mance of best risk scores on different smoking strata.

Within smoking strata, we undertook separate analyses

for NHW and AA. Due to the limited samples with pack-

years of smoking < 20 in SPIROMICS (Table S15), we

only applied analyses in COPDGene for the light smokers

(i.e., pack-years of smoking< 20) for all four traits. For each

of the five risk-score models (i.e., PRS_279, PRS_[pþt],
The Ame
PTRS_GTEx[Lung], PTRS_GTEx[WB], and PTRS_MESA

[monocytes]), we selected the best risk scores based on

their AUCs in each smoking stratum on population/fam-

ily-based cohorts and then applied them in analysis of

COPD-enriched studies (Tables S16–S19). The meta-

analyzed odds ratios for the association of best risk scores

with COPD traits on COPD-enriched studies are shown

in Figure 3A. Overall, PRS_279 still showed stronger associ-

ation with both COPD traits in NHW participants from

COPD-enriched studies and for each smoking strata (e.g.,

odds ratio [OR] ¼ 1.57 [95% CI: 1.48–1.67] for moderate-

to-severe COPD and OR ¼ 1.66 [95% CI: 1.55–1.79] for se-

vere COPD for smoking pack years R 0). For light smokers

(i.e., pack-years of smoking < 20) in AA, PTRS showed

either a similar or stronger association than PRS with two

COPD traits (OR ¼ 1.33 [95% CI: 1.06–1.68] from

PTRS_GTEx[WB] versus 1.33 [95% CI: 1.06–1.68] from

PRS_279 for moderate-to-severe COPD, and OR ¼ 1.51

[95% CI: 1.04–2.19] from PTRS_GTEx[WB] versus 1.31

[95% CI: 0.87–1.96] from PRS_279 for severe COPD). For

heavy smokers (i.e., pack-years of smoking R 40) in AA,

the PTRS presented a stronger association than the PRS

for moderate-to-severe COPD (OR ¼ 1.24 [95% CI: 1.08–

1.43] from PTRS_GTEx[Lung] versus OR ¼ 1.10 [95%
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Figure 3. Association and cross-ethnic portability of best risk scores with two COPD traits in COPD-enriched studies
The risk-score candidates used in the analyses were based on the best AUC of each smoking stratum on multi-ethnic population/family-
based cohorts for both PRS and PTRS.
(A) Association of the best risk scores with twoCOPD traits. NHW, non-HispanicWhites; AA, African Americans. Data are shown asmeta-
analyzed odds ratio with 95% CI.
(B) Cross-ethnic portability of the best risk scores; portability was calculated as the ratio of AUC of AA over NHW. Data are shown as raw
portability, and error bars are 95% CIs from 10,000 bootstrapped samples.
CI: 0.96–1.26] from PRS_279). For the other two lung func-

tion traits, FEV1/FVC ratio and FEV1, PRS_279 outper-

formed in both NHW and AA (Figures S5 and S6).

PTRS improves cross-ethnic portability of prediction

The noticeably decreased performance of PRS fromNHW to

AA is shown in Figure 3A. For example, considering the per-

formance of all participants (i.e., pack-years of smoking R

0) for moderate-to-severe COPD, the OR was 1.57 [95%

CI: 1.48–1.67] by PRS_279 for NHW, but it dropped to

1.24 [95% CI: 1.14–1.36] for AA (Table S16). To test the

cross-ethnic portability of prediction for both PRS and

PTRS, we generated 10,000 bootstrapped samples for two

COPD-enriched studies (material and methods). By defini-

tion of cross-ethnic portability, the reference portability is

1. As shown in Figure 3B, the PTRS models retained overall
864 The American Journal of Human Genetics 109, 857–870, May 5,
better portability than that from PRSmodels for both defini-

tions of COPD. More specifically, we compared the perfor-

mance of the best portability between PTRS and PRS. For

example, in pooled analysis across all smoking strata (i.e.,

pack-years of smoking R 0) for moderate-to-severe

COPD, the PTRS with the best portability was

PTRS_GTEx(Lung) model (portability ¼ 1 [95% CI: 0.95–

1.05] for COPDGene and portability ¼ 1.05 [95% CI:

0.89–1.19] for SPIROMICS), whereas the PRS with the best

portability was the PRS_(pþt) model (portability ¼ 0.95

[95% CI: 0.91–1] for COPDGene and portability ¼ 1 [95%

CI: 0.87–1.13] for SPIROMICS). Hence, the gain of porta-

bility from PTRS was 5% from both cohorts in this smoking

strata for moderate-to-severe COPD, and based on a paired t

test comparing the bootstrapped distributions, the PTRS_

GTEx(Lung) model has significantly higher portability
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Figure 4. Risk for two COPD traits by different risk groups and by the combined risk scores
(A) Odds ratios of two COPD traits for different risk groups on multi-ethnic population/family-based cohorts. The reference group was
defined as low risk and light smoker; low and high risk are referring to the 1st and the 5th quintile of genetic risk score, respectively; light
and heavy smokers are referring to the participants with pack-years of smoking < 20 and R 40, respectively; the risk-score candidates
used in the analyses were based on the prediction performance of non-smoking stratum on population/family-based cohorts. Data are
shown as odds ratio with 95% CI.
(B) Association of the combined risk scores with two COPD traits. The risk-score candidates, PTRS_GTEx(Lung): 279-nearby and
PRS_279: SNPs-279 were used for PTRS and PRS, respectively, in the analyses. Unweighted sum and weighted sum refer to the direct sum-
mation and the weighted summation of PTRS and PRS, respectively. Data are shown as odds ratio with 95% CI. For COPD-enriched
studies, the odds ratios were meta-analyzed. NHW, non-Hispanic Whites; AA, African Americans; Population_MultiEthnic, multi-ethnic
samples in population/family-based cohorts.
than that from the PRS_(pþt) model for both cohorts

(p < 2:23 10�16). We also observed the significantly

improved portability from PTRS (gain ranges from 5% to

28%, Tables S16 and S17) for the other three smoking strata

for both definitions of COPD.

Comparison of genetic versus smoking-related risk of

disease

To aid with practical interpretation, we examined the

impact of the combination of genetic risk scores and smok-

ing history on the risk of COPD. These exploratory ana-

lyses were conducted on population/family-based cohorts

only, as these studies allowed us to examine the popula-
The Ame
tion-level risk of disease. Participants were divided into

risk categories by the values of both risk scores (quintiles)

and pack-years of smoking (< 20 and R 40). The reference

group was defined as the participants with low genetic risk

(i.e., 1st quintile of genetic risk score) and light smoking

(i.e., pack-years of smoking < 20). Comparing the individ-

uals with high genetic risk (i.e., 5th quintile of genetic risk

score) and heavy smoking history (i.e., pack-years of smok-

ing R 40) to those in the reference group, the OR by the

PRS_279model was 11.26 (95% CI: 5.94–21.35) for moder-

ate-to-severe COPD and 21.21 (95% CI: 7.93–56.74) for se-

vere COPD (Figure 4A). The impact of smoking history was

observed to be greater than genetic risk, as quantified by
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either the PRS or the PTRS. Taking the results from PRS_279

for example, if an individual has low genetic risk but heavy

smoking, then the OR for moderate-to-severe COPD was

4.45 (95% CI: 2.50–7.93). However, for an individual in

the light smoking group, even with high genetic risk, the

OR was comparably lower at 2.58 (95% CI: 2.14–3.11) for

moderate-to-severe COPD (Figure 4A). The same pattern

was also observed for severe COPD.

Combined PRS and PTRS improves association strength

To explore the performance of a single risk score that bor-

rows information from both PRS and PTRS for COPD, we

selected one risk score representing each approach,

PRS_279: SNPs-279 and PTRS_GTEx(Lung): 279-nearby,

for further examination. These two risk scores are corre-

lated (Pearson’s correlation ¼ 0.27, p < 2:23 10�16) but

provide different levels of genetic risk information.We first

examined the interaction between the two scores in the

population/family-based cohorts (material and methods).

The significant main effects (i.e., PRS and PTRS effects)

and non-significant interactions indicated that two indi-

vidual risk scores provided independent effects for all

four traits (Table S20). Then we applied unweighted- and

weighted-sum schemes to combine two individual risk

scores into a single score. Figure 4B presents the association

results of combined risk score with two COPD traits on

both training and test data. In general, the weighted-sum

score and PRS showed similar strength of association,

and both presented stronger association than un-

weighted-sum score and PTRS on both NHW dominant

training data (population/family-based cohorts) and

NHW participants in test data (COPD-enriched studies).

The similar performance between the weighted-sum score

and the PRS for NHW can be explained by the major

contribution from PRS to this combined score (i.e., the

weights mainly come from PRS, Table S20). For AA, the un-

weighted-sum score that equally borrows information

from both PRS and PTRS produced noticeable improve-

ment. Taking the AA participants with pack-years of smok-

ing between 20 and 40 for example, the OR was increased

from 1.50 (95% CI: 1.24–1.80) by PRS to 1.66 (95% CI:

1.37–2.02) by the unweighted-sum score for severe

COPD, which produced 10% increment for OR. The

same pattern of improvement was also observed for the

two lung traits FEV1/FVC and FEV1 (Figures S7 and S8).

For the prediction accuracy evaluated by AUC, the

weighted-sum score presented overall outperformance for

both COPD traits among risk scores in population/fam-

ily-based cohorts (Tables S21 and S22). Although the

AUC achieved by a baseline model (i.e., AUC based on clin-

ical risk factors) was higher than the AUC for the risk score

alone, we observed a trend of lower baseline AUC and high

risk-score AUC among heavy smokers compared to those

with reduced smoking exposures. Taking moderate-to-se-

vere COPD for example, the baseline AUC dropped from

0.742 (95% CI: 0.729–0.754) for light smokers (i.e., pack-

years of smoking < 20) to 0.63 (95% CI: 0.604–0.657) for
866 The American Journal of Human Genetics 109, 857–870, May 5,
heavy smokers (i.e., pack-years of smoking R 40), whereas

the weighted-sum risk-score AUC increased from 0.592

(95% CI: 0.576–0.608) to 0.599 (95% CI: 0.572–0.625)

(Table S21).
Discussion

In the current manuscript, we proposed and applied an

integrative framework to quantify genetic risk of COPD

and predict quantitative lung function traits. Our proposed

polygenic transcriptomic risk score (PTRS) framework,

built on the widely used PrediXcan approach used for sys-

tematic integration of GWASs with reference eQTL

data,39,43 bears a more direct connection to underlying dis-

ease biology than standard PRS approaches. Hypothesizing

that the underlying biology of complex disease traits is

shared across diverse race/ethnic groups, we further antic-

ipated that risk scores constructed under our PTRS frame-

work would have greater portability than the standard

PRS. Our application of PTRS to prediction of COPD in Af-

rican American individuals from COPD-enriched studies

demonstrated that our proposed PTRS had better porta-

bility for prediction of both moderate-to-severe COPD

and severe COPD than the PRS approaches that we exam-

ined. Further, examining correlation of our PTRS with a

standard PRS, we showed that the two classes of scores

are not strongly correlated and thus present independent

and complementary information that can be combined.

As the PTRS approaches are restricted primarily to eQTL

variants, the number of possible predictors available for

construction of these risk scores is relatively constrained

in relation to more standard PRS approaches. Thus, we

did not hypothesize that the PTRS would show overall

stronger predictive performance than comparable PRS ap-

proaches. As expected, the PRS approaches showed perfor-

mance advantages in prediction of COPD risk in individ-

uals with European ancestry. In examining performance

specifically among African Americans, we did note a stron-

ger association with COPD for the PTRS compared to PRS,

particularly in heavy smokers with 40 or more pack-years

of smoking for moderate-to-severe COPD and in light

smokers with pack-years of smoking less than 20 for severe

COPD. Although our present work did not include a direct

comparison to the more recently published COPD PRS18

that is a weighted sum of two individual PRSs for FEV1

and FEV1/FVC and includes more variants not reaching

genome-wide significance by lassosum,51 we observed

the same pattern as the Moll paper18 that the AUC based

on clinical risk factors was higher than the risk-score

AUC, but the combined AUC (including both clinical

and genetic factors) improved upon each of the separate

models. In addition, we observed that the AUC obtained

by clinical risk factors alone decreased with increasing

smoking history, whereas the AUC achieved by the risk

score alone was higher in strata with greater smoking expo-

sures. This result reflects the likely larger effects of the
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underlying SNPs in the presence of smoking and warrants

further investigation. While the Moll PRS18 demonstrated

improvements in predictive performance over the Shrine

et al.11 risk score for both individuals with European

ancestry and individuals with African ancestry, the perfor-

mance gap between these two ancestry groups was

increased (e.g., based on comparison of odds ratios for

the respective risk scores observed for COPDGene NHW

and AA from the Moll versus Shrine PRS). In our study,

the improved association performance of the PTRS in Afri-

can Americans is concordant with the portability advan-

tages that we also observed for the PTRS. Combined, these

results underscore the value of using PTRS approaches to

leverage large-scale genomic resources of primarily Euro-

pean ancestry to construct risk scores that can be extended

to non-European ancestry populations.

The specific reasons contributing to the particular value

of PTRS in improving portability across ancestry groups are

not entirely straightforward. While we hypothesized

initially that the PTRS may show advantages due to its

use of eQTL variants that tie it to biological mechanisms

that may be shared across ancestry groups, part of the

portability of the PTRS may also stem in part from the

methods used to construct the gene expression prediction

models. The GTEx predictionmodels38 incorporated statis-

tical fine-mapped variants in selection of SNPs for gene

expression prediction, which may have helped in enrich-

ing the resulting predictors for causal variants. While the

MESA prediction models were built using the elastic net

model without initial selection based on fine mapping,

theseMESA predictionmodels were constructed leveraging

the diverse and multi-ethnic MESA participants,39 such

that the variants ultimately included in the predictors

were also enriched for eQTL variants exhibiting shared ef-

fects across ancestry groups.

Comparing performance of the PTRS across the different

gene expression prediction models used to construct these

risk scores, we did not observe a clear trend in terms of

which model resulted in better predictive performance

overall. Direct comparison of PTRS performance across

different gene expression predictionmodels is not straight-

forward, in part because the properties of the underlying

models from GTEx and MESA differ on multiple levels. Be-

sides the differences in statistical approaches used to

develop these prediction models noted earlier, other differ-

ences between the GTEx and MESA models include (1)

source tissues represented, (2) race/ethnic composition of

the underlying studies, with GTEx including roughly

15% non-European-ancestry individuals52 compared to

50% non-European-ancestry individuals in MESA,39 and

(3) sample sizes of the underlying models in GTEx lung

(n ¼ 444) and whole blood (n ¼ 573) versus MESA mono-

cytes (n ¼ 1,163).38,39 Further, the PTRS constructed using

different gene expression prediction models differed mark-

edly in the specific genes included in the final risk scores.

While these differences may reflect distinct biology

captured by each of the corresponding sources of tissue,
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we should keep in mind that the sample sizes used to

construct the underlying gene expression prediction

models were limited. In addition, the quality and disease

relevance of the GTEx lung data for application to chronic

lung diseases are limited.53 As resources used for eQTL

mapping expand in sample size and improve in tissue

quality in the future, we expect to gain additional resolu-

tion in examining the finer difference in performance

among the various PTRSs derived from distinct gene

expression prediction models.

In summary, we applied the PTRS framework toward ge-

netic risk prediction of COPD and demonstrated its value

in providing biologically interpretable disease risk predic-

tion that is portable across ancestry groups and provides in-

formation complementary to the standard polygenic risk

scores. A particular strength of our approach is that the

PTRS can be constructed using summary statistics from

large-scale GWASs and/or TWASs alone, allowing us to

leverage the abundant genome-wide summary data from

prior GWASs to construct these risk scores. Limitations of

our study include our use, for construction of the PTRS, of

existing gene expression prediction functions, which them-

selves rely on limited sample sizes and provide limited abil-

ity to compare performance of PTRS approaches across un-

derlying tissue models for gene expression prediction. In

future work, we will work to build gene expression predic-

tion models in expanded RNA-seq resources from

TOPMed and other sources, allowing us to leverage larger

sample sizes for gene expression prediction, while also

applying more consistent methods for gene expression pre-

diction to allow more direct comparison across tissues. In

addition, our proposed PTRS framework extends naturally

to other molecular omics types, and we intend to extend

our PTRS approach to leverage proteomics or additional

omics as they become more widely available.

While we have demonstrated the value of integrative ap-

proaches leveraging eQTLs toward improvement of cross-

ancestry portability of risk scores, we further emphasize

that constructing more portable risk scores represents

just one line of investigation toward achieving equity in

risk prediction and personalized medicine. Ultimately, a

crucial step toward improving performance of genomic

risk prediction for non-European-ancestry groups will be

to increase the diversity of participants included and

analyzed in genetic studies. Our long-term hope is that

our field canmake sufficient progress on expanding diverse

ancestry resources for genomics, for example from

TOPMed, the Population Architecture using Genomics

and Epidemiology (PAGE) Consortium,30 and All of Us

Research Program,54 such that we can leverage these

diverse ancestry resources more directly toward improved

prediction in diverse ancestry populations. As there re-

mains a long road ahead toward recruitment, phenotyp-

ing, and analysis of diverse ancestry samples for large-scale

diverse ancestry genetic studies, we suggest that construc-

tion of more portable risk scores will contribute toward im-

provements in equity in the near future.
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Data and code availability

Individual whole-genome sequence data for TOPMed whole ge-

nomes are available through dbGaP. The dbGaP accession

numbers are: Atherosclerosis Risk in Communities (ARIC)

phs001211, Coronary Artery Risk Development in Young Adults

(CARDIA) phs001612, Cardiovascular Health Study (CHS)

phs001368, Cleveland Family Study (CFS) phs000954, Framing-

ham Heart Study (FHS) phs000974, Hispanic Community Health

Study/Study of Latinos (HCHS/SOL) phs001395, Jackson Heart

Study (JHS) phs000964, Multi-Ethnic Study of Atherosclerosis

(MESA) phs001416, Genetic Epidemiology of COPD

(COPDGene) phs000951, and SubPopulations and InteRmediate

Outcome Measures in COPD Study (SPIROMICS) phs001927.

Data in dbGaP can be downloaded by controlled access with an

approved application submitted through dbGaP website. All

PrediXcan code used is available in the GitHub repository.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.03.007.
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