
ARTICLE

Polygenic risk for prostate cancer: Decreasing relative risk with age but
little impact on absolute risk
Authors

Daniel J. Schaid, Jason P. Sinnwell,

Anthony Batzler, Shannon K. McDonnell

Correspondence
schaid@mayo.edu
Schaid et al., 2022, The American Journal of Human Genetics 109, 900–908
May 5, 2022 � 2022 American Society of Human Genetics.
https://doi.org/10.1016/j.ajhg.2022.03.008 ll

mailto:schaid@mayo.�edu
https://doi.org/10.1016/j.ajhg.2022.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.03.008&domain=pdf


ARTICLE

Polygenic risk for prostate cancer: Decreasing
relative risk with age but little impact on absolute risk

Daniel J. Schaid,1,* Jason P. Sinnwell,1 Anthony Batzler,1 and Shannon K. McDonnell1
Summary
Polygenic risk scores (PRSs) for a variety of diseases have recently been shown to have relative risks that depend on age, and genetic relative

risks decrease with increasing age. A refined understanding of the age dependency of PRSs for a disease is important for personalized risk

predictions and risk stratification. To further evaluate how the PRS relative risk for prostate cancer depends on age, we refined analyses for a

validated PRS for prostate cancer by using 64,274 prostate cancer cases and 46,432 controls of diverse ancestry (82.8% European, 9.8%

African American, 3.8% Latino, 2.8% Asian, and 0.8% Ghanaian). Our strategy applied a novel weighted proportional hazards model

to case-control data to fully utilize age to refine how the relative risk decreased with age. We found significantly greater relative risks

for younger men (age 30–55 years) compared with older men (70–88 years) for both relative risk per standard deviation of the PRS and

dichotomized according to the upper 90th percentile of the PRS distribution. For the largest European ancestral group that could provide

reliable resolution, the log-relative risk decreased approximately linearly from age 50 to age 75. Despite strong evidence of age-dependent

genetic relative risk, our results suggest that absolute risk predictions differed little from predictions that assumed a constant relative risk

over ages, from short-term to long-term predictions, simplifying implementation of risk discussions into clinical practice.
Introduction

Polygenic risk scores (PRSs), also called genomic risk scores,

provide a single measure of a large number of genetic var-

iants associated with common diseases and have potential

to improve personalized medical care and public health by

informing subjects of their future risk of developing dis-

ease. Because common diseases increase with age with

increasing impact of lifetime exposures, it is critical to eval-

uate whether the association of a PRS with disease changes

with age and the practical implications of ignoring age-

dependent risks. As stressed by others,1 understanding

the age dependency of PRSs for a disease is important not

only for personalized medical care and population health

but also to improve understanding of disease etiology.

A PRS for an individual is a weighted sum over the doses

of selected risk variants, on the order of hundreds to mil-

lions of genetic variants,2 and so creation of a PRS depends

on which variants are chosen and how weights are as-

signed. A variety of methods to create a PRS have been

developed,3–13 many of which result in a large number of

selected variants. The purpose of this report is to propose

a strategy to evaluate a PRS for clinical risk predictions by

determining whether the relative risk for a PRS depends

on age and whether age-dependent relative risks have prac-

tical implications. Our empirical evaluations are based on a

PRS for prostate cancer that was developed on a large num-

ber of men of diverse ancestry and has been replicated.

Hence, our starting point is based on a chosen PRS and

not development of a new PRS.

Conti et al.14 developed a PRS for prostate cancer based

on a multi-ancestry meta-analysis of genome-wide associa-
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tion summary statistics from a total of 107,247 cases and

127,006 controls with European, African, East Asian, and

Hispanic ancestries. They discovered a total of 269 variants

associated with prostate cancer risk and constructed a PRS

by using multi-ancestry weights. Although 269 variants

might seem like a small number for a PRS, these variants

were selected on the basis of stepwise selection to deter-

mine independent associations within each genomic re-

gion as well as fine-mapping with joint analysis of

marginal summary statistics (JAM)15 to determine popula-

tion-specific variants that were independently associated

with prostate cancer. This PRS was validated in an indepen-

dent study of 13,628 US men.16

Conti et al.14 found that men with prostate cancer in the

top 10% of the PRS distribution were diagnosed 2.84 years

younger than men in the bottom 10% of the distribution.

Others have also reported that larger values of PRS based

on 110 genetic variants were associated with younger age

of prostate cancer diagnosis forwhitemen.17 These observa-

tions raise concerns regarding whether statistical models to

predict prostate cancer should allow for PRS relative risks to

dependonage.Acomplication is that even if the relative risk

for a PRS is constant over all ages, the menwith highest risk

will succumb to disease at earlier ages, resulting in observa-

tions thatmenwith larger valuesofPRS tend tobediagnosed

at younger ages. See supplemental information for theoret-

ical derivations and Figure S1 for numerical illustration.

Hence, because odds ratios and relative risks are used to pre-

dict future risk of disease, it is important to evaluatewhether

these risk parameters change with age. Nonetheless, Conti

et al.14 found that among men of European ancestry, those

with PRSs in the top decile of the PRS distribution had an
SA
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odds ratio of 6.71 (95% CI, 5.99–7.52), compared with PRSs

in the 40th–60th percentile, for men aged %55 years in

contrast to a smaller odds ratio of 4.39 (95% CI, 4.19–4.60)

for men older than 55 years.

The observation of weakening association of PRS with

disease risk as age increases has been observed for breast

cancer18 and for cardiovascular disease, particularly when

many non-genetic risk factors are known to have effects

at older ages.19 Furthermore, by a study of genetic relative

risk for 24 common diseases within the British ancestry

subset of the UK Biobank, Jiang20 found evidence for age-

varying relative risk for hypertension, skin cancer, athero-

sclerotic heart disease, hypothyroidism, and calculus of

gallbladder. The predominant pattern was genetic risk

largest at younger ages, and relative risk decreased as age

increased. Because risk due to a PRS can change with age,

it is important to understand the full impact of age on

risk predictions, including future absolute risk of disease,

conditional on current age and PRS.

In addition to the influence of age, it is critical to consider

the influence of ancestry. Large genome-wide association

studies (GWASs) are needed to determine themost relevant

genetic variants and their weights, and many GWASs have

focused on European ancestry.21 The work by Conti

et al.14 attempted to overcome this limitation by gathering

as much GWAS summary statistics as possible across

different ancestries. They found that the distribution of

PRSs varied across different ancestral populations, even

for controls. This is expected when allele frequencies of

the variants in the PRSs differ across different populations.

It can be shown that the distribution of the PRSs in controls

is a normal distribution with mean m and variance s2 that

both depend on the allele frequencies and the PRS

weights.18 Furthermore, if the risk of disease is due to a large

number of alleles of small effect, combining multiplica-

tively, the distribution among cases is also a normal distri-

bution with the same variance as for controls, but with a

mean among cases that is approximately mþ s2, illustrating

that the distribution among cases is shifted to larger values.

Because of these theoretical expectations and empirical

data that support these expectations, it is critical to account

for not only the association of PRSs with prostate cancer in

different populations but also the difference in distribution

of PRSs across different populations.

In summary, multiple factors complicate the modeling

of the effect of PRSs on prostate cancer risk: the population

distribution of PRSs, which depends on ancestry; the influ-

ence of PRSs on prostate cancer risk, which depends on

age; and family history of prostate cancer, which can be

confounded with age of diagnosis. Men with a family his-

tory of prostate cancer tend to have a younger age of diag-

nosis,17 and a younger age of diagnosis has been reported

when a close relative had prostate cancer.22,23 In this

report, we refined the analyses reported by Conti et al. by

a more extensive evaluation of age, beyond the dichotomy

of% 55 years versus>55 years, and adjusting for the differ-

ences in distribution of PRSs across different ancestries.
The Ame
Furthermore, we evaluated the role of family history in

addition to effects of age. Finally, following the recommen-

dation to convey absolute risks to lay people in order to

simplify interpretation of personal risks,24,25 we evaluated

the impact of a PRS relative risk changing over ages on pre-

dicting the future absolute risk of prostate cancer.
Material and methods

Studies
Prostate cancer case-control GWASs were obtained from dbGaP af-

ter approval of project request # 25202 ‘‘Development and Testing

of Polygenic Risk Scores for Prostate Cancer.’’ All data were de-

identified, and by dbGaP policy, no review by an institutional

review board was necessary. The seven case-controls studies are

illustrated in Table S1 and described detail in the supplemental in-

formation. Advantages of these studies are their large size and

diverse ancestry. Note that some of the studies were used to

develop the PRS by Conti et al.,14 so our results should not be

viewed as an independent validation of the original PRS.

Genotype quality control and imputation
Genotype quality control (QC) prior to imputation was conducted

separately for each study and each genotyping platform. We

removed SNPs with a call rate < 98%, indels, duplicate SNPs,

or monomorphic SNPs and men with a call rate < 95%. SNPs

were also excluded if they failed Hardy-Weinberg equilibration

(HWE) test p value < 10�6. Because admixture of different

ancestries can influence tests of HWE, we applied the software

ADMIXTURE26 to the genetic data to classifymen intomajor ances-

tral groups (European, African, Amerindian, East Asian, South

Asian) and then tested HWE within major ancestral groups. Ge-

netic sex was verified by PLINK with markers on the X and Y chro-

mosomes, and subjects that were not consistent with male were

excluded. Samples were removed if they displayed a call

rate < 80% on any given chromosome or if they had unusually

low heterozygosity ratio< 0.4 (observed/expected heterozygosity)

on any chromosome, presuming poor quality genotype data that

would unduly influence imputation. The relatedness between

each pair of menwas evaluated by estimation of the kinship coeffi-

cient viaKing robust27 that is implemented in theRpackage SNPRe-

late. We randomly removed one subject from each strongly related

pair (i.e., duplicates, parent-offspring, full siblings, and third-de-

gree relatives, with an estimated kinship coefficient at least

0.0442). This approach allowed us to identify men whose samples

were included in more than one study and remove duplicates.

After the above QC processing, samples were uploaded to the

TOPMed imputation server,28,29 where additional QC steps were

completed including removal of multi-allelic SNPs, removal of in-

dels, removal of monomorphic SNPs, and removal of SNPs with

large allele frequency differences compared with the TOPMed

Imputation Reference panel. Imputed variants with an imputation

R2 R 0.3 were retained.

Data harmonization
The Breast and Prostate Cancer Cohort Consortium (BPC3) data

included both men and women; women were excluded from our

analyses. The set of variables that were common across all dbGaP

studieswere case-control status, ancestry, family history of prostate

cancer, and age (age of disease diagnosis for cases and age of study
rican Journal of Human Genetics 109, 900–908, May 5, 2022 901



Table 1. Characteristics of men by case-control status

Case (No. ¼
64,274)

Control (No. ¼
46,432)

Total (No. ¼
110,706)

Ancestry group

African American 5,505 (8.6%) 5,370 (11.6%) 10,875 (9.8%)

Asian 1,574 (2.4%) 1,483 (3.2%) 3,057 (2.8%)

European 54,564 (84.9%) 37,059 (79.8%) 91,623 (82.8%)

Ghanaian 461 (0.7%) 452 (1.0%) 913 (0.8%)

Latino 2,170 (3.4%) 2,068 (4.5%) 4,238 (3.8%)

Family history of prostate cancer

Unknown 25,094 16,016 41,110

No 29,206 (74.5%) 27,189 (89.4%) 56,395 (81.0%)

Yes 9,974 (25.5%) 3,227 (10.6%) 13,201 (19.0%)

Age group, years

[30,45) 330 (0.5%) 991 (2.1%) 1,321 (1.2%)

[45,50) 1,290 (2.0%) 1,707 (3.7%) 2,997 (2.7%)

[50,55) 4,288 (6.7%) 4,945 (10.6%) 9,233 (8.3%)

[55,60) 10,122 (15.7%) 8,740 (18.8%) 18,862 (17.0%)

[60,65) 12,586 (19.6%) 10,840 (23.3%) 23,426 (21.2%)

[65,70) 15,769 (24.5%) 9,635 (20.8%) 25,404 (22.9%)

[70,75) 11,335 (17.6%) 5,631 (12.1%) 16,966 (15.3%)

[75,88) 8,554 (13.3%) 3,943 (8.5%) 12,497 (11.3%)

Age, year: median
(range)

66 (30–87) 62 (30–87) 64 (30–87)

Excludes men with missing age, age < 30 years, or missing ancestry.
enrollment for controls). Age was recorded differently across

studies. Some studies recorded exact age, others recorded in

5-year intervals, and others recorded in 10-year intervals. To deter-

mine a common set of intervals, 10-year intervals were recoded as

the last 5 years of an interval. For example, 50–59 was recoded to

55–59. For analyses that used yearly ages, we used the mid-point

of an age interval when exact age was missing.
Polygenic risk score
Conti et al.14 developed a trans-ethnic PRS based on 269 SNPs and

their associations with prostate cancer across four ancestries: Euro-

pean, African, East Asian, and Hispanic. The variants and weights

used to create the PRS are available from their Table S4 and also at

https://www.pgscatalog.org/publication/PGP000122/. After QC

and imputation inourdata, therewere 220 variants that overlapped

with our imputed data. Because the distribution of PRSs differs

across different ancestries, we evaluated different approaches to cor-

rect for ancestry (see supplemental information) and chose to center

and scale the PRSwithin eachancestry groupbyusing themeanand

standard deviation for controls within each ancestry group.
Age-specific incidence rates for prostate cancer and for

death
We used age-specific prostate cancer incidence (hazard) rates to

create weights for Cox proportional hazards models as well as
902 The American Journal of Human Genetics 109, 900–908, May 5,
combine with death hazard rates to compute absolute risks.

Prostate cancer incidence rates were downloaded from the CDC

US Cancer Statistics (https://www.cdc.gov/cancer/uscs/dataviz/

download_data.htm). The cancer rates were reported for 5-year in-

tervals, and we used linear interpolation to determine the rate at

each year of age from age 30 to 87 years. CDC rates were available

for ancestries of US White, Latino, African American, and Asian.

We used the incidence rates of US African American men for

men fromGhana. Figure S3 in the supplemental information illus-

trates how the incidence rates and cumulative risk for prostate

cancer vary over ages for different ancestries.

Death incidence rates were obtained from CDCHealth Statistics

(https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/

NVSR/61_03/) with documentation from https://www.cdc.gov/

nchs/products/life_tables.htm. The life tables for 2008 were for

each sex and race (White, non-Hispanic White, Black, non-His-

panic Black, and Hispanic). Based on life analytic methods, the

death hazard rate at age t, ht was calculated according to ht ¼
qt=ð1 � qt =2Þ, where qt is the life table probability of dying be-

tween ages t and t þ 1. The division by 2 assumes deaths on

average occur mid-way during each year.30 We used non-Hispanic

White death rates for Asian ancestry.
Statistical methods
Statistical analyses were conducted with R version 4.0.3. The asso-

ciations between PRS and age of disease diagnosis were estimated

by weighted Cox regressionmodels. Although logistic regression is

typically used to analyze case-control studies, the resulting odds

ratios are an approximation of the relative risk estimated in studies

when disease is rare, yet odds ratios over-estimate the relative

risk,31 which impacts models to estimate absolute risk. Further-

more, additional information about the risk of disease at different

ages is potentially available from the age of diagnosis, and the age

at which controls are free of disease. Studies have shown that

applying Cox regression models to case-control data, using age in-

formation, can lead to greater power than logistic regression,32

although a naive analysis that fails to account for over-sampling

of cases in case-control studies can lead to biased estimates of

the relative risks.33 For these reasons, we estimated relative risks

by use of the Cox model with sampling weights based on popula-

tion incidence rates to account for how cases and controls were

sampled.34–36 We assigned weights of 1 to cases and weights of

1=inct to controls, where inct is the age-specific incidence rate of

prostate cancer in a defined ancestry group. In addition, we used

the survSplit function in the survival package to fit piece-wise pro-

portional hazards models to allow the relative risks to differ across

different age categories, as well as the time-transform functions of

coxph to model continuous time-dependent coefficients. Methods

to compute the future absolute risk of disease, conditional on a

man alive and free of disease at a specified age and with a stan-

dardize PRS, are described in Appendix A.
Results

The cases and controls included in analyses are character-

ized in Table 1. Details about how samples were evaluated

for quality of genetic results, how genetically related men

were removed, and selection criteria to exclude men with

missing age (N ¼ 2,800), missing ancestry (N ¼ 27), or

young age < 30 years (N ¼ 39) and characteristics of men
2022
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Figure 1. Distribution of PRSs by ancestry
and disease status before and after adjust-
ment for ancestry by centering and scaling
according to mean and standard deviation
within controls of each ancestry
according to study are provided in the supplemental infor-

mation (see Tables S2, S3,and S4). There were 64,274 pros-

tate cancer cases and 46,432 controls included in analyses.

The ancestry groups in Table 1 are based on self-report,

with 82.8% European, 9.8% African American, 3.8%

Latino, 2.8% Asian, and 0.8% Ghanaian. Overall, 19% re-

ported a family history of prostate cancer. However, family

history varied across the studies with the International

Consortium for Prostate Cancer Genetics (ICPCG) report-

ing the largest fraction with family history (69.6%) because

the ICPCG group focused on ascertaining cases with a fam-

ily history; some studies failed to collect family history in-

formation (see Table S4). For this reason, analyses that

focused on family history were considered secondary.

The median age of diagnosis of prostate cancer for cases

was 66 years and the median age of blood collection for

controls was 62 years.

The distribution of the PRSs is illustrated in Figure 1 for

cases and controls of different ancestries, both the raw PRS

and the PRS standardized by the mean and standard

deviation within controls of each ancestry group. This

figure illustrates that the distribution of the PRS is shifted

to larger values for men of African American and Ghanaian

ancestry, shifted to smaller values for men of Asian

ancestry, and similar distributions for men of European

and Latino ancestries. These shifted distributions occurred

for both controls and cases, emphasizing the impact of the

allele frequency differences across different ancestries. In

contrast, when the PRS was centered and scaled according

to the controls of each ancestry group, the distributions of

the PRS overlap for the different ancestral groups. Note
The American Journal of Huma
that the distributions were centered at

zero for controls, as expected, while

the distributions for the cases were

shifted to greater values.

The association of the standardized

PRS with age of onset of prostate cancer

in the pool of all data, assessed by a

weighted Cox proportional hazards

model assuming a constant hazard ra-

tio, estimated a relative risk of 2.14

per standard deviation (SD) of the PRS

(95% confidence interval, CI, 2.09–

2.19), allowing for adjusting covariates

ancestry group and dbGaP study. Sensi-

tivity analyses of the weights showed

that a 10-fold decrease or increase in

the weights had little impact on results

(relative risks of 1.93 and 2.17, respec-

tively). More refined weights that at-
tempted to account for potential preferential sampling of

cases at different ages (see supplemental information)

gave results identical to the initial proposed weights. Rela-

tive risks for each ancestry are presented in Figure 2 for rela-

tive risks per PRS SD as well as for PRS dichotomized accord-

ing to the upper 90th percentile. These results show that

relative risks per PRS SD were similar for European, African

American, and Asian ancestries, slightly less for Latino, and

much less for Ghanaian men (heterogeneity p value ¼
0.008). The relative risks for the upper 90th percentile

were much larger than the relative risk per SD, as expected,

and less heterogeneity of relative risks (p value ¼ 0.308),

although the larger standard errors of the estimates for

the upper 90th percentile relative risks decreased power to

detect heterogeneity. See Table S7 for the log-relative risk es-

timates and their standard errors.

Because thepooledanalysis of allmenshoweda strongde-

parture from a constant relative risk (p < 2e�16), we per-

formed piece-wise proportional hazards analyses by parti-

tioning age into five age groups and found significant

differences in the relative risks across the age groups

(p < 1e�30). Piece-wise proportional hazards were fit

separately for each ancestry group and results in Figure 3

illustrate that relative risks per SD were greatest for the

youngest age group (30–55 years) and least for the oldest

age group (70–88 years). For European ancestry, there was

a clear trend of decreasing risk with age, from a relative risk

of 2.56 for 30–55 years old (95% CI 2.47–2.65) to a relative

risk of 1.86 for 70–88 years old (95% CI 1.76–1.98),

with no overlapping confidence intervals throughout

the different age groups. The relative risks for European
n Genetics 109, 900–908, May 5, 2022 903



Figure 2. Relative risk per PRS SD (left
panel) and for upper 90th percentile cutoff
of PRS (right panel) according to ancestry
The bars represent 95% confidence
intervals.
ancestry differed statistically across the age groups

(p < 0.001). The other ancestries in Figure 3 showed that

the youngest and oldest age groups had different relative

risks, but the patterns of risk in the intermediate age

groupswerenot asdistinctas forEuropeanancestry, presum-

ably because of the much smaller sample sizes of the other

ancestry groups. For these non-European ancestries, the

relative risks were not statistically significantly different

across the age groups (see Tables S8 and S9 for details).

We performed a similar analysis with the PRS dichoto-

mized according to the upper 90th percentile and similar

patterns of relative risk decreasing with age were found,

as illustrated in Figure 3. The relative risks implied by the

upper 90th percentile ranged 3–5 for most ancestries and

age groups, except the lesser relative risks for Ghanaian

men. The wide confidence intervals for this group reflect

the small sample size. These relative risks differed signifi-

cantly across the age groups (p < 0.001) for European

ancestry but not for the non-European ancestries (see

Tables S8 and S9 for details).Because of the large number

of men with European ancestry, we were able to refine an-

alyses of the age dependence of relative risk.We created the

age group 30–45-year olds, then groups in 5-year intervals

(45–50, to 70–75, then 75–88) and fit-piece-wise hazard

ratios for each age group. We also fit a model with the

log-relative risk depending linear on age: b0PRSþ b1ða �
30ÞPRS, where age a ranged 30–87 and we offset by the

minimum age of 30 years in our dataset. The estimated ef-

fect of PRS was b0 ¼ 1:2504 (SE ¼ 0.049) and the estimated

gradient of age was b1 ¼ �0:0138 (SE ¼ 0.0015). The esti-

mated relative risks and their 95% confidence intervals

for the piecewise and linear models are presented in

Figure 4, showing that the log-relative risk decreased

approximately linearly from age 50 to age 75. We devel-

opedmethods to account for preferential inclusion of cases

at different ages, to evaluate the sensitivity of the Cox

model weights (see supplemental information), and found
904 The American Journal of Human Genetics 109, 900–908, May 5, 2022
results identical to the proposed

weights. These results were also consis-

tent with fitting logistic regression

models to the case-control data (see

supplemental information). To

compare this linear decrease across

different diseases and populations,

one can estimate for the relative risk

per adjusted standard error (OPERA)37

per year of age, which is

exp(�0.0138/.00155) ¼ 0.00014.

Because men with a family history of

prostate cancer have been reported to
have a younger age of diagnosis,17 we performed second-

ary analyses to attempt to sort out the role of family his-

tory. Secondary analyses were necessary because of the

relatively large number of men without family history in-

formation. For this focus, we subset to men with European

ancestry to obtain sufficient sample size. The results in

Figure 5 illustrate that men with a family history of pros-

tate cancer had greater relative risks associated with PRS

at all ages compared with men with a negative family his-

tory (p value¼ 0.007) and that relative risks decreased with

increasing age for both men with a family history of pros-

tate cancer (heterogeneity of relative risks over ages, p

value ¼ 0.015) and men without a family history of pros-

tate cancer (p value < 0.001). See Table S10 for more de-

tails. The gradient of the log-relative risk with increasing

age was �0.0108 (SE ¼ 0.0045) for men with a family his-

tory and �0.0122 (SE ¼ 0.0019) for men with a negative

family history, and these gradients were not statistically

significantly different (p value ¼ 0.78). The greater relative

risk among men with a family history of prostate cancer

across all ages emphasizes the importance of obtaining

family history information when attempting to predict

future risk of prostate cancer with PRSs.

Given the decreasing relative risk of PRS with increasing

age, it is important to evaluate how much the decreasing

relative risk impacts prediction of future risk when at-

tempting to use PRS for personalized medical recommen-

dations. To view this, we computed the future prostate

cancer absolute risk, conditional on men’s current age

and value of a standardized PRS. These future risks are

based on the relative risks estimated from our data, popu-

lation disease incidence rates, as well as death rates to ac-

count for competing risks. We present in Figure 6 the

future absolute risk for men of European and of African

American ancestry, assuming current ages of 50, 60, and

70 years, for future remaining years at 1-year increments

until age 80 years. These results illustrate that even though



Figure 3. Relative risk per PRS SD (left
panel) and for upper 90th percentile cutoff
of PRS (right panel) for age groups accord-
ing to ancestry
The bars represent 95% confidence
intervals.
our results show strong evidence of relative risks due to PRS

decreasing with increasing age, predicting future absolute

risk while allowing for decreasing relative risk differed little

from predictions that assumed a constant relative risk over

ages. The largest difference was 2.7% for future predictions

for a 70-year-old man of European ancestry.
Discussion

Based on a large number of men of diverse ancestry with

publicly available genome-wide genetic variants, we

demonstrated decreasing PRS relative risks for prostate can-

cer as age increased. Our results were most accurate for men

of European ancestry because of the large number ofmen in
Figure 4. Piece-wise relative risk models and log-relative risk
modeled as linear with age for European ancestry
The solid line is the model assuming log-relative risk depends lin-
early on age and dashed lines are the 95% confidence interval over
ages. The estimated dependence on age was 1.2504-0.0138*(age-
30). The piece-wise relative risks are represented as ‘‘*’’ and their
95% confidence intervals represented as whiskers. The piece-wise
results are positioned on the x axis at the median value of age
within each age group.

The American Journal of Huma
this group. By applying a novel

weighted proportional hazards model

to case-control data, we were able

to fully utilize age information (diag-

nosis among cases; enrollment age

among controls) to refine how the ge-

netic relative risk decreased with age.

For men of European ancestry, we

observed a linear decrease of the log-

relative risk from age 50 to 75, the ages

at which most men are diagnosed with

prostate cancer. Thomas et al. also
observed a linear decrease of the log-relative risk for colo-

rectal cancer with age, for age > 50 years with 72,791 sub-

jects of European ancestry and with 1,311 colorectal cancer

cases.38,39 This reduced risk could result from non-genetic

risk factors accumulatingover a lifetime such that genetic ef-

fects that influence developmental pathways at younger

ages have relatively less influence as non-genetic risk factors

accumulate. Although a reduction in genetic relative risk

with increasing age is expected when the highest risk indi-

viduals succumb to disease at younger ages, and hence are

preferentially removed from the at-risk population at older

ages,40 it is important to evaluate the implications of age-

varying risk. In contrast toprostate andcolon cancers, breast

cancer has not shown a declining risk with age for ER-nega-

tive disease, and only a weak decline has been observed for

ER-positive disease.41

Despite the accumulating environmental risk with age,

we observed that men of European ancestry had increased

genetic relative risks at all ages if they had a family history

of prostate cancer compared with a negative family history,

suggesting that additional unmeasured genetic risk factors

could be causing this difference, or perhaps clustering of

environmental risk factors within families. This also em-

phasizes the importance of obtaining accurate pedigree

disease information to combine with a PRS to improve

age-dependent risk predictions.42

As with most GWASs conducted to date, our data had a

limited number of subjects with non-European ancestry,

making it difficult to accurately refine how genetic relative

risk decreased with age in other ancestries. Nonetheless,

ancestries of Ghanaian, African American, Asian, and

Latino all showed the PRS relative risk to be greatest for

the youngest age group (30–55 years) and least for the old-

est age group (70–88 years). These pattens were observed

for both the relative risk per SD of the PRSs and binary clas-

sification based on the upper 90th percentile of the PRS

distribution.
n Genetics 109, 900–908, May 5, 2022 905



Figure 5. Relative risk per PRS SD according to age groups and
family history for European ancestry
The bars represent 95% confidence intervals.

Appendix A

The future absolute risk of disease up to age ah, conditional

on a man alive and free of disease at age al and with a stan-

dardized PRS of z, depends on the baseline population age-

specific incidence of disease, loðtÞ, the population age-spe-

cific death rate, doðtÞ, and the log hazard ratio estimated by

Cox regression, bt . For our purposes, we use the subscript t

to account for piece-wise proportional hazards (e.g., bt con-

stant over an interval), or bt could be constant over all

time. From this information, we calculate the future risk

that a man will have disease by age ah, given he is free of

disease at al, as

Riskðahjal; zÞ¼ FðahjzÞ � FðaljzÞ
SdiseaseðalÞSdeathðalÞ;

where FðajzÞ ¼ Pa
t¼0e

bt zloðtÞSdiseaseðtjzÞSdeathðtÞ is the cumu-

lative probability of disease up to age a accounting for

competing risk of death, SdiseaseðajzÞ ¼ exp½�Pa
t¼0e

bt zloðtÞ�
is the probability of being free of disease at age a, and

SdeathðaÞ ¼ exp½�Pa
t¼0doðtÞ� is the probability of being alive

at age a. Absolute risk calculations were achieved by esti-

mates of bt determined in our data.
The influence of a decreasing genetic relative risk with

age on personalized medical decisions should consider

how the risk will be used. Categorizing into highest

risk, such as above the 90th percentile of the PRS distribu-

tion, is a common approach, yet the amount of risk also

depends on a man’s current age, as our results show.

Because absolute risks are important for interpretation

of personal risks,24,25 we evaluated the impact of

decreasing genetic relative risk with age on predicting

future absolute risk. Despite strong evidence of age-

dependent genetic relative risk, our results suggest that

absolute risk predictions differed little between predic-

tions that assumed a constant relative risk and those

that allowed relatives risks to decrease with age. These

findings covered a broad range, from short-term (e.g., 1

year) to long-term (e.g., to age 80). This may be due to

the calculation of absolute risk depending on both the

relative risk and the baseline incidence rates; large rela-
906 The American Journal of Human Genetics 109, 900–908, May 5,
tive risks at younger ages have less impact on absolute

risk because the incidence of prostate cancer is much

smaller at young ages. Assuming a constant relative risk

over age simplifies the approach to calculate and present

risk predictions to lay persons as well as simplifies imple-

mentation of risk discussions into clinical practice. Our

strategy to evaluate how genetic relative risks vary with

age and the impact of changing relative risks with age

on absolute risk predictions is worth considering for

other common diseases.
Figure 6. Future absolute risk of prostate
cancer for European ancestry (left three
panels) and African American ancestry
(right three panels) conditional on current
age and quantile of PRS
The solid lines assume a relative risk con-
stant over ages, and the broken lines assume
piece-wise relative risks to account for rela-
tive risks changing over ages. The quantiles
(10, 80, 90) are for a standard normal distri-
bution as expected for a standardized PRS in
a population. The baseline represents the
absolute risk assuming the PRS is unknown.
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