
ARTICLE

Enrichment analyses identify shared associations for 25 quantitative
traits in over 600,000 individuals from seven diverse ancestries
Graphical abstract
Smith et al., 2022, The American Journal of Human Genetics 10
May 5, 2022 � 2022 The Author(s).
https://doi.org/10.1016/j.ajhg.2022.03.005
Authors

Samuel Pattillo Smith,

Sahar Shahamatdar, Wei Cheng, ...,

Genevieve Wojcik, Lorin Crawford,

Sohini Ramachandran

Correspondence
sramachandran@brown.edu
9, 871–884

ll

mailto:sramachandran@brown.�edu
https://doi.org/10.1016/j.ajhg.2022.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.03.005&domain=pdf


ARTICLE

Enrichment analyses identify shared associations
for 25 quantitative traits in over 600,000
individuals from seven diverse ancestries

Samuel Pattillo Smith,1,2 Sahar Shahamatdar,1,2 Wei Cheng,1,2 Selena Zhang,1 Joseph Paik,1 Misa Graff,3

Christopher Haiman,4 T.C. Matise,5 Kari E. North,3 Ulrike Peters,6 Eimear Kenny,7,8,9,10

Chris Gignoux,11 Genevieve Wojcik,12 Lorin Crawford,1,13,14,16 and Sohini Ramachandran1,2,15,16,*
Summary
Since 2005, genome-wide association (GWA) datasets have been largely biased toward sampling European ancestry individuals, and

recent studies have shown that GWA results estimated from self-identified European individuals are not transferable to non-European

individuals because of various confounding challenges. Here, we demonstrate that enrichment analyses that aggregate SNP-level asso-

ciation statistics at multiple genomic scales—from genes to genomic regions and pathways—have been underutilized in the GWA era

and can generate biologically interpretable hypotheses regarding the genetic basis of complex trait architecture. We illustrate examples

of the robust associations generated by enrichment analyses while studying 25 continuous traits assayed in 566,786 individuals from

seven diverse self-identified human ancestries in the UK Biobank and the Biobank Japan as well as 44,348 admixed individuals from

the PAGE consortium including cohorts of African American, Hispanic and Latin American, Native Hawaiian, and American Indian/

Alaska Native individuals. We identify 1,000 gene-level associations that are genome-wide significant in at least two ancestry cohorts

across these 25 traits as well as highly conserved pathway associations with triglyceride levels in European, East Asian, and Native Ha-

waiian cohorts.
Introduction

Over the past two decades, funding agencies and biobanks

around the world have made enormous investments to

generate large-scale datasets of genotypes, exomes, and

whole-genome sequences from diverse human ancestries

that are merged withmedical records and quantitative trait

measurements.1–8 However, analyses of such datasets are

usually limited to the application of standard genome-

wide association (GWA) SNP-level association analyses in

which SNPs are tested one-by-one for significant associa-

tion with a phenotype9–11 (Table 1). Yet, even in the largest

available multi-ancestry biobanks, GWA analyses fail to

offer a comprehensive view of genetic trait architecture

among human ancestries.

SNP-level GWA results are difficult to interpret across

multiple human ancestries because of a litany of con-

founding variables, including (1) ascertainment bias in

genotyping,2,5 (2) varying linkage disequilibrium (LD) pat-

terns,18,19 (3) variation in allele frequencies due to

different selective pressures and unique population his-
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tories,19–23 and (4) the effect of environmental factors on

phenotypic variation.24–27 These confounders and the

observed low transferability of GWA results across ances-

tries2,28,29 have generated an important call for increasing

GWA efforts focused on populations of diverse, non-Euro-

pean ancestry individuals.

We also note, as other studies have,6,30 that the GWA

SNP-level test of association is rarely applied to non-Euro-

pean ancestry individuals.31 There are two likely explana-

tions for leaving non-European ancestry individuals out

of analyses: (1) researchers are electing to not analyze

diverse cohorts because of a lack of statistical power and

concerns over other confounding variables (recently

covered in Ben-Eghan et al.30) or (2) the analyses of non-

European cohorts yield no genome-wide significant SNP-

level associations. In either case, valuable information is

being ignored in GWA studies or going unreported in re-

sulting publications.30–32 Even when diverse ancestries

are analyzed, GWA studies usually condition on GWA re-

sults identified with European ancestry cohorts to detect

and give validity to other SNP-level associations.6 While
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Table 1. The three genomic scales and corresponding association tests used in this study

Genomic scale Association test Model of genetic trait architecture Relevant example

SNPs standard univariate genome-wide
association (GWA) test

the true mutation-level trait architecture is
the same for all individuals

many inflammatory bowel disease
mutations replicate across ancestries12

SNP-sets/genes gene-level association tests (e.g., gene-ε,13

SKAT14)
core genes are the same across all
ancestries, with potentially varying causal
SNPs

late-onset Alzheimer disease risk from
ApoE4 allele is lower in African ancestry
individuals15

Pathways/
networks

pathway enrichment and network
propagation (e.g., Hierarchical HotNet,16

RSS17)

core genes differ across ancestries but are
all in the same annotated pathway

skin pigmentation architecture in the same
pathway differs between African and
European ancestry individuals2

The models of genetic trait architecture corresponding to each genomic scale and statistical method that have been previously invoked in the literature (including
relevant examples cited in the last column). These nested genomic scales should routinely be leveraged in multi-ancestry GWA studies to generate biologically
interpretable hypotheses of trait architecture across ancestries.
this study design can also identify shared SNP-level associ-

ations in non-European ancestry cohorts that are under-

powered for applications of the standard GWA framework,

it will not identify ancestry-specific associations in non-Eu-

ropean ancestry cohorts. In our own analysis of abstracts of

publications between 2012 and 2020 with UK Biobank

data, we found that only 33 out of 166 studies (19.87%)

reported genome-wide significant associations in any

non-European ancestry cohort (Figures S1 and S2).

Focusing energy and resources on increasing GWA sample

sizes without intentional focus on sampling of non-Euro-

pean populations will thus likely perpetuate an already

troubling history of leaving non-European ancestry sam-

ples out of GWA analyses of large-scale biobanks such as

the UK Biobank.30 However, we note that non-European

ancestry GWA studies have—and will continue to have—

smaller sample sizes than existing and emerging Euro-

pean-ancestry GWA cohorts, limiting the precision of

effect size estimates in these studies. What has received

less attention than the need to improve GWA study design

is the potential of enrichment analyses to characterize ge-

netic trait architecture in multi-ancestry datasets while ac-

counting for variable statistical power to detect, estimate,

and replicate genetic associations among cohorts.

In this analysis, we illustrate that focusing solely on p

values from the standard GWA framework is insufficient

to capture the genetic architecture of complex traits. Spe-

cifically, we propose that expansion of association analyses

to the genomic scale of genes and pathways generates

robust and interpretable hypotheses about trait architec-

ture in multi-ancestry cohorts. We define enrichment ana-

lyses as testing whether a user-specified set of SNPs, such as

SNPs in a given gene or pathway, is enriched for trait asso-

ciations beyond what is expected by chance based on the

number of SNPs in the set and the LD structure among

SNPs in the set.13,17,33 These enrichment analyses can

2increase the power to detect associated genes through

the aggregation of SNPs of small effect (which explain

the majority of the heritability of most traits34,35). Mathie-

son36 recently highlighted the pattern of homogeneity of

direction of effect in multi-ancestry studies even when in-

dividual SNPs are not categorized as genome-wide signifi-

cant in multiple ancestries. Gene-level and pathway-level
872 The American Journal of Human Genetics 109, 871–884, May 5,
enrichment analyses can prioritize biological regions

where there is homogeneity in the direction of SNP-level

signals of association, generating biologically interpretable

hypotheses for the genetic architecture of complex traits in

multiple ancestry cohorts. Gene and pathway enrichment

analyses expand the existing opportunity for the charac-

terization of conserved genetic architecture across multiple

ancestries, or other partitions of samples in biobank data-

sets (e.g., by biological sex or age), through the identifica-

tion of biologically interpretable associations.

In this study of 25 quantitative traits and more than

600,000 diverse individuals from the UK Biobank (UKB),

BioBank Japan (BBJ), and the PAGE study data (Tables

S1–S10), we detail biological insights gained from the

application of gene and pathway level enrichment ana-

lyses to seven diverse ancestry cohorts. We perform genetic

association tests for SNPs, genes, and pathways across mul-

tiple ancestry groups with a trait of interest. We test for

significantly mutated subnetworks of genes by using

known protein-protein interaction networks and the Hier-

archical HotNet software.16 Enrichment analyses do not

require generating additional information beyond stan-

dard GWA inputs (or outputs for methods that take in

GWA summary statistics). We demonstrate that moving

beyond SNP-level associations allows for a biologically

comprehensive prioritization of shared and ancestry-spe-

cific mechanisms underlying genetic trait architecture.
Material and methods

Data overview
We performed statistical tests of association at the SNP, gene, and

pathway level for 25 quantitative traits. These analyses were per-

formed on data from seven ancestry cohorts drawn from the UK

Biobank, BioBank Japan (BBJ), and PAGE consortia (Table S3).

The number of samples included in each ancestry cohort ranged

from 574 (American Indian/Alaska Native in the PAGE study

data) to 349,411 (European in UK Biobank). The number of

SNPs tested in each ancestry ranged from 578,320 (African in

the UK Biobank) to more than 12 million (African American in

the PAGE dataset). Full enumeration of the samples studied,

including sample size, and number of SNPs for each ancestry

cohort are given in Tables S1 and S5–S10. For an extensive
2022



description of each cohort from the three biobanks that we

analyze in this study, see the supplemental information.
SNP-level GWA analyses
In the European, African, and South Asian ancestry cohorts from

the UK Biobank, we performedGWA studies for each ancestry-trait

pair in order to test whether the same SNP or SNPs are associated

with a given quantitative trait in different ancestries. SNP-level

GWA effect sizes were calculated with plink and the –glm flag.37

Age, sex, and the first twenty principal components were included

as covariates for all traits analyzed.7 Principal-component analysis

was performed with flashpca 2.038 on a set of independent

markers derived separately for each ancestry cohort with the plink

command –indep-pairwise 100 10 0.1. Using these parameters,

–indep-pairwise removes all SNPs that have a pairwise correlation

above 0.1 within a 100 SNP window and then slides forward in in-

crements of ten SNPs genome wide. In the implementation of

gene-ε, we assume pruning highly correlated SNPs still accurately

captures the association signals identified in the standard GWA

framework.14,39 Summary statistics for the 25 quantitative traits

in the Biobank Japan, as well as available ancestry-trait pairs in

the PAGE study data, were then compared with the results from

the association analyses in the UK Biobank cohorts (same traits

as listed in Table S5). In each analysis of an ancestry-trait pair, a

separate Bonferroni-corrected significance threshold was calcu-

lated with the number of SNPs tested in that particular ancestry-

trait pair. We elected to use a Bonferroni-corrected significance

threshold to be conservative (compared to, say, an often-used

GWA significance threshold of 53 10�8; see Figure 1). We label a

given SNP association as replicating among cohorts if the esti-

mated effect size of that SNP surpasses the Bonferroni-corrected

significance threshold inmore than two ancestry cohorts analyzed

here (Figure 1 and Table S11). We believe that the use of a conser-

vative significance threshold, such as the Bonferroni correction,

helps to illustrate the statistical challenges faced bymulti-ancestry

GWA studies due to very imbalanced sample sizes.

To further analyze our ability to accurately estimate GWA SNP-

level effect sizes in each ancestry cohort given the imbalanced

sample sizes of the datasets we studied, we performed theoretical

power calculations across a range of values for both effect sizes

and minor allele frequencies as described in Sham and Purcell.9

In this framework, we selected absolute value of effect sizes to be

equal to 0.1, 0.5, and 1. We then performed power calculations

for each of these when paired with a minor allele frequency of

0.01, 0.1, 0.25, and 0.5. In Figure S3, we plot the power of the stan-

dard GWA framework to detect SNP-level associations between a

genotype and a quantitative trait of interest for sample sizes for

up to 30,000 individuals by using a standard GWA significance

threshold of 53 10�8.

Because multiple cohorts we analyzed (in particular the Amer-

ican Indian/Alaska Native and Native Hawaiian ancestry cohorts)

lack power to estimate effect sizes accurately under the theoretical

model described in Sham and Purcell,9 we also implemented two-

stage GWA studies with a less stringent test of replication for SNP-

level association signals. We used the European ancestry cohort as

a discovery cohort for genome-wide significant SNP-level associa-

tions for each trait, and we used each non-European ancestry

cohort as a validation cohort.We then calculated a nominal signif-

icance threshold for each trait as 0.05 divided by the number of

significant variants for each trait in the European cohort that

were tested in at least one other cohort. The corresponding nom-
The Ame
inal significance thresholds, number of SNPs that were significant

in the European ancestry cohort, and the number of SNPs that sur-

passed the nominal significance threshold in at least one other

ancestry cohort are given in Table S12. Replication counts and pro-

portions are illustrated in Figure S4 and the ranges of significant

effect sizes for each ancestry trait-pair are shown in Table S13.

Finally, for each variant that was significant with the two-stage

nominal threshold, we performed a variant-specific power calcula-

tion by using the marginal European-ancestry effect size and each

non-European ancestry cohort’s minor allele frequency and sam-

ple size with the method outlined in Sham and Purcell.9 The

maximumpower achieved by a variant in each cohort-trait pairing

is given in Table S14 and the number of variants with greater than

90% detection power are given in Table S15.
Gene-level association tests
In order to test aggregated sets of SNP-level GWA effect sizes for

enrichment of associated mutations with a given quantitative

trait, we applied gene-ε29 to each ancestry cohort we studied for

each trait of interest, resulting in 125 sets of gene-level association

statistics (Table S3). The gene-ε method takes two summary statis-

tics as input: (1) SNP-level GWA marginal effect size estimates bb

derived with ordinary least-squares and (2) an LD matrix S empir-

ically estimated from external data (e.g., directly from GWA study

genotype data, a matrix estimated from a population with similar

genomic ancestry to that of the samples analyzed in the GWA

study). It is well-known that SNP-level effect size estimates can

be inflated as a result of various correlation structures among

genome-wide genotypes. gene-ε uses its input bb to derive regular-

ized effect size estimates through elastic net penalized regression.

gene-ε uses the LD matrix S to test each gene for enrichment of

SNP-level associations beyond what is expected by chance (given

the number of SNPs in the gene and the LD among them), thereby

identifying genes that are enriched formutations associatedwith a

trait of interest.13,14,17,33,40,41

In practice, gene-ε and other enrichment analyses14,41,42 can be

applied to any user-specified set of genomic regions, such as regu-

latory elements, intergenic regions, or gene sets. These gene-level

enrichment analyses enable identification of traits in which ge-

netic architecture may be heterogeneous among individuals at

the SNP level across individuals by increasing sensitivity to iden-

tify interacting mutations of moderate effect on a given trait.

Applying gene-ε in multiple ancestry cohorts allows researchers

to further test whether genes associated (i.e., enriched for SNP-

level associations signals given the LDmatrix) with a trait of inter-

est are the same, or vary, across ancestries. gene-ε takes as input a

list of boundaries for all regions to be tested for enrichment of as-

sociations. In our study, we applied gene-ε to all genes and tran-

scriptional elements defined in Gusev et al.43 for human genome

build 19.

In our gene-level analysis, SNP arrays included both genotyped

and high-confidence imputed SNPs (information score R 0.8) for

each ancestry-trait pair. To compute the LDmatrix, we first pruned

highly linked SNPs so that the number of SNPs included for any

chromosome was less than 35,000 SNPs—the computational limit

of gene-ε due to the size of the LDmatrix—by using the plink com-

mand –indep-pairwise 100 10 0.5. For the UK Biobank European,

South Asian, and African ancestry cohorts, we then derived empir-

ical LD estimates between each pair of SNPs for each chromosome

in each cohort by using plink flag –r square applied to the empir-

ical genotype and high-confidence imputed data. We then used
rican Journal of Human Genetics 109, 871–884, May 5, 2022 873



A

C

B

D

Figure 1. Less stringent significance
thresholds lead to a decrease in the pro-
portion of replicated SNP-level associa-
tions and an increase in the proportion
of gene-level associations among ances-
tries for each of the 25 traits analyzed
(A) Proportion of all SNP-level Bonferroni-
corrected genome-wide significant associa-
tions in any ancestry that replicate in at
least one other ancestry is shown on the
x axis (see Table S11 for ancestry-trait-spe-
cific Bonferroni-corrected p value thresh-
olds). On the y axis, we show the propor-
tion of significant gene-level associations
that were replicated for a given phenotype
in at least two ancestries (see Table S16 for
Bonferroni-corrected significance thresh-
olds for each ancestry-trait pair). The black
stars on the x- and y-axes represent the
mean proportion of replicates in SNP and
gene analyses, respectively. C-reactive pro-
tein (CRP) contains the greatest propor-
tion of replicated SNP-level associations
of any of the phenotypes.
(B) The x axis indicates the proportion of
SNP-level associations that surpass a nom-
inal threshold of p value < 10�5 in at least
one ancestry cohort that replicate in at
least one other ancestry cohort. The y
axis indicates the proportion of gene-level
associations that surpass a nominal
threshold of p value < 10�3 in at least
one ancestry cohort and replicate in at
least one other ancestry cohort. Nominal
p value thresholds tend to decrease the

proportion of replicated SNP-level associations and tend to increase the proportion of replicated gene-level associations. The number
of unique SNPs and genes that replicated in each cohort is given in Figure S18.
(C) The x axis indicates the proportion of SNP-level associations that surpass a nominal threshold of p value < 10�3 in at least one
ancestry cohort that replicate in at least one other ancestry cohort. The y axis indicates the proportion of gene-level associations that
surpass a nominal threshold of p value < 10�2 in at least one ancestry cohort and replicate in at least one other ancestry cohort. The
number of unique SNPs and genes that replicated in each cohort is given in Figure S19.
(D) The x axis represents the proportion of variants that were significant in the European and at least one non-European ancestry cohort
with an alternative significant threshold defined as 0.05 divided by the number of significant European variant associations. The y axis is
the corresponding proportion of genes that were significant in at least one non-European ancestry cohort with the same threshold calcu-
lation for genes. Note that the axes in (D) are different from one another and the axes of the other panels. As shown in panels (B), (C),
and (D) nominal p value thresholds tend to decrease the proportion of replicated SNP-level associations and tend to increase the pro-
portion of replicated gene-level associations. Expansion of three letter trait codes are given in Table S2 and a version of this plot with
all trait names displayed as text is shown in Figure S17. Figure S17 shows the same set of plots with all traits represented as text.
the ancestry-specific SNP arrays to calculate 23,603 gene-level as-

sociation statistics for the European ancestry cohort, 23,671

gene-level association statistics for the South Asian ancestry

cohort, and 23,575 gene-level association statistics for the African

ancestry cohort.

To calculate gene-level association statistics with Biobank Japan

summary statistics, we first found the intersection between SNPs

included in the analysis of each trait and SNPs included in the

1000 Genomes Project phase 3 data for the sample of 93 individ-

uals from the Japanese in Tokyo (JPT) population. Note, this inter-

section was different among some traits, as the genotype data in

the Biobank Japan were from different studies, which in turn

used different genotyping arrays. We then pruned highly linked

markers for each trait separately by using the plink flag –indep-

pairwise 100 10 X where X was determined by finding the highest

possible value that led to the inclusion of less than 35,000 SNPs on

each chromosome for the trait. Because of the increased density of

SNPs with effect size estimates for height, X was set to prune more

conservatively at X¼ 0.15. For all other traits, X was set to 0.5. The
874 The American Journal of Human Genetics 109, 871–884, May 5,
number of regions for which a gene-ε gene-level association statis-

tic was calculated for each trait is given in Table S5.

GWA summary statistics for the five cohorts in the PAGE study

data were used as input to gene-ε for each available ancestry-trait

combination. The array of markers for each ancestry cohort in

the PAGE study data was pruned with plink flag –indep-pairwise

100 10 X. X was set to the maximum value in each ancestry that

ensured no chromosome contained more than 35,000 markers:

X was set to 0.05 for the African American cohort, 0.08 for the His-

panic and Latin American and American Indian and Alaska Native

(AIAN) cohorts, and 0.25 for the Native Hawaiian cohorts. Finally,

for each ancestry-trait combination, genes that passed the Bonfer-

roni-corrected p value (p ¼ 0.05/number of genes tested) were

labeled as ‘‘significant’’ throughout this study (see Table S16 for

specific thresholds).

We used LD estimates from reference panels for the ancestry co-

horts where genotype data was unavailable (BioBank Japan and

PAGE datasets). As discussed in other papers proposing enrich-

ment analyses,17,44 the discordance between GWA summary
2022
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Figure 2. C-reactive protein is an exceptional trait where standard GWA analyses may be sufficient to identify shared genetic archi-
tecture among ancestry cohorts
(A) Manhattan plot for SNP-level associations with C-reactive protein levels. Ancestry-specific Bonferroni-corrected significance thresh-
olds are shown with dashed horizontal gray lines and listed in Table S11. Note that the scale of the� log10-transformed p values on the y
axis is different for each ancestry for clarity.

(legend continued on next page)
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statistics estimated from a large cohort and LD estimates from a

small reference panel may lead to increased false discovery rate

and power in the application of gene-ε. Finally, we additionally

show that gene-ε detects a large proportion of the same significant

genes in the European ancestry cohort with a more stringent r2

threshold of 0.1 (see Table S17).

Pathway analysis and network propagation using

Hierarchical HotNet
We tested for significantly mutated subnetworks of genes in each

ancestry-trait pair by using the method Hierarchical HotNet.16

Briefly, Hierarchical HotNet uses hierarchical clustering of scores

(such as gene-level association statistics41 or mutations in cancer ge-

nomes16,45) propagated on a protein-protein interaction network

that are enriched for trait associations beyond what is expected by

chance. The method enables identification of strongly connected

components in the network, which are interpretable as subnet-

works of interacting genes enriched for mutations associated with

a trait of interest. Unlike using annotated gene lists,46 network prop-

agation of association statistics enables identifying novel gene sets

underwriting complex traits as well as crosstalk between annotated

pathways. We identified subnetworks of interacting genes enriched

for associations with each trait of interest by using network propa-

gation of gene-ε gene-level association statistics as input to

Hierarchical HotNet.16 In this study, these gene scores were set

to � log10-transformed p values of gene-ε gene-level association

test statistics (see also Nakka et al.41,47). For each ancestry-trait com-

bination, we assigned p values of 1 to genes with p values greater

than 0.1 tomake the resulting networks both sparse andmore inter-

pretable (again see Nakka et al.41,47). In addition, ancestry-trait pairs

in which less than 25 genes produced gene-ε p values less than 0.1

were discarded as there were an insufficient number of gene-level

statistics to populate the protein-protein interaction networks.

We used three protein-protein interaction networks: Reacto-

meFI 2016,48 iRefIndex 15.0,49 and HINTþHI.50,51 For the Reacto-

meFI 2016 interaction network, interactions with confidence

scores less than 0.75 were discarded. The HINTþHI interaction

network consists of the combination of all interactions in HINT bi-

nary, HINT co-complex, and HuRI HI interaction networks.

We ran Hierarchical HotNet (103 permutations) on the thresh-

olded � log10-transformed gene-level p values for each ancestry-

trait combination. We restricted our further investigation to the

largest subnetwork identified in each significant ancestry-trait-

interaction network combination (p < 0.05).
Results

Multiple recent studies have interrogated the extent to

which SNP-level associations for a given trait replicate
(B) Manhattan plot of SNP-level associations around the CRP gene
Boundaries of the CRP gene are shown with vertical dashed black
the region. Black stars in the European, South Asian, and East Asian
dated as contributing to serum levels of C-reactive protein.55,56

(C) Heatmap of Bonferroni-corrected significant genotyped SNPs repl
SNPs in the 1 MB region surrounding the CRP gene. Entries along th
the 1 MB region surrounding the CRP gene for each ancestry. The co
ciations replicated out of all possible replications in each ancestry pair
considered). For example, the maximum number of genome-wide sig
East Asian is 25, and 20 replicate, resulting in the cell color denotin
SNPs, is shown in Figure S20.
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across ancestries, both empirically and under a variety of

models (see Wojcik et al.,6 Durvasula and Lohmueller,28

Shi et al.,44 Carlson et al.,52 Liu et al.,12 Eyre-Walker,53

Shi et al.54). To extensively compare variant-level associa-

tions among the seven ancestry cohorts that we analyzed,

we first examined the number of genome-wide significant

SNP-level associations that replicated exactly on the basis

of chromosomal position and reference SNP cluster ID

(rsID) in multiple ancestries (see Figure S5A and

Figure S5C, with Bonferroni-corrected thresholds provided

in Table S11). Exact replication of at least one SNP-level as-

sociation across two or more ancestries occurs in all 25

traits that were studied. The C-reactive protein (CRP) trait

had the highest proportion of replicated SNP associations

in multiple ancestries, with 18.95% replicating with the

standard GWA framework in at least two ancestries, but

has a relatively low number of unique GWA significant

SNPs (2,734) when compared to other traits (Figure 1).

This is most likely because the genetic architecture of

CRP is sparse and highly conserved across ancestries, as is

shown in Figure 2. We note that the concordance of

genome-wide significant SNP-level association statistics

for CRP among five ancestry cohorts is exceptional. In

the other 24 traits we analyzed, we did not observe any

SNP-level replication among five cohorts. C-reactive pro-

tein, which is encoded by the gene of the same name

located on chromosome 1, is synthesized in the liver and

released into the bloodstream in response to inflamma-

tion. In our standard GWA analysis of SNP-level associa-

tion signal in each ancestry cohort with CRP, rs3091244

is genome-wide significant in a single ancestry cohort.

rs3091244 has been functionally validated as influencing

CRP levels55,56 and is linked to genome-wide significant

SNPs in the other two ancestries for which genotype data

are available. Interestingly, all GWA significant SNP-level

associations for CRP in the Native Hawaiian ancestry

cohort replicate in both the African American (PAGE)

and the Hispanic and Latin American cohorts (these three

cohorts were all genotyped on the same array).

In the other 24 traits, the proportion of genome-wide

SNP-level replications was below 10% (Figure 1A). For poly-

genic traits, replication of SNP-level GWA results is chal-

lenging to interpret considering the large number of

GWA significant associations for the trait overall. For

example, height contains the largest number of replicated

SNP-level associations in our multi-ancestry analysis—but
located on chromosome 1 for each ancestry (zoomed in from A).
lines. All six ancestries contain genome-wide significant SNPs in
plots represent rs3091244, a SNP that has been functionally vali-

icated between each pair of ancestries analyzed. Here, we focus on
e diagonal represent the total number of SNP-level associations in
lor of each cell is proportional to the percentage of SNP-level asso-
(i.e., theminimumof the diagonal entries between the pairs being
nificant SNPs that can possibly replicate between the Hispanic and
g 80% replication. A similar matrix, computed including imputed
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these only represent 8.90% of all unique SNP-level associ-

ations with height discovered in any ancestry cohort. A

more comprehensive discussion of previously associated

SNPs is available for both height and CRP in the supple-

mental information. The number of SNPs that replicate

among cohorts vary by trait and, as a proportion of the to-

tal number of significant SNP-level association signals, is

typically less than 10% (Figure S5).

We also explored how varying the SNP-level significance

threshold for each ancestry cohort influences the replica-

tion of SNP-level associations by using the standard GWA

framework (Figures 1B and 1C). We performed power cal-

culations for a range of set effect sizes and minor allele fre-

quencies (according to the design and discussion in Sham

and Purcell9) to identify cohorts where GWA studies lack

power to identify associations with a nominal significance

threshold of 53 10�8. The two largest cohorts we studied

here, the European ancestry cohort and East Asian ancestry

cohort, are sufficiently large to identify true SNP associa-

tions regardless of choice of effect size or minor allele fre-

quency (Figure S3). Conversely, in the two smallest cohorts

we studied, the AIAN and Native Hawaiian cohorts, GWA

studies would lack power to detect true SNP associations

with either small effect ðb%0:1Þ sizes or low minor allele

frequencies (MAF < 0.05) (Figure S3).

We then applied a two-stage GWA study design with a

less stringent nominal significance threshold for replica-

tion in the non-European ancestry cohorts; the resulting

thresholds are shown in Table S12. The nominal signifi-

cance threshold was calculated as 0.05 divided by the num-

ber of Bonferroni-corrected significant SNPs in the Euro-

pean ancestry cohort that were tested in at least one

other ancestry cohort. Using the European ancestry cohort

for discovery of associations, we calculated the proportion

of associated SNPs that were nominally significant in at

least one non-European ancestry cohort (Figure 1D). As ex-

pected, the proportion of SNP-level replication increased

across all 25 traits that were studied (maximum percentage

of replication was 94.23% for Basophil count, 49 of 52

SNPs; minimum percentage of replication was 40.39% for

hemoglobin, 580 of 1,436 SNPs). Number and proportion

of replicated SNP-level associations with this framework

are shown in Figure S4. These results are in agreement

with our results from the application of two fine-mapping

methods, SuSiE17 and PESCA,44 to the SNP-level summary

statistics of the European and East Asian ancestry cohorts;

this analysis also indicated widespread homogeneity in di-

rection of effect among significant SNPs (described in the

supplemental information, Tables S18–S22).

Enrichment analyses aggregate SNP-level association sta-

tistics with predefined SNP sets, genes, and pathways to

identify regions of the genome enriched for trait associa-

tions beyond what is expected by chance. Published

enrichment analyses have demonstrated the ability to

identify trait associations that go unidentified with stan-

dard SNP-level GWA analysis.13,14,17,57–60 The standard

GWA method is known to have a high false discovery
The Ame
rate (FDR),61,62 which enrichment analyses can mitigate.

Our analyses in Figure S6 and Figure S7 illustrate that

two methods—regression with summary statistics

(RSS),17 a fully Bayesian method, and gene-ε29—control

FDR particularly well both in the presence and absence

of population structure. However, Figure S8 and Table

S23 illustrate that both GWA study and gene-ε are limited

by the sample size of the cohort of interest. Specifically,

when the sample size is set to 2,000 individuals, power is

low and FDRs are high for both the standard GWA frame-

work and gene-ε. Enrichment methods increase power

for identifying biologically interpretable trait associations

in studies with smaller sample sizes and with heterogenous

genetic architecture than do present-day GWA studies and

therefore can be particularly useful when analyzing multi-

ancestry genetic datasets with merged phenotype data. For

example, Nakka et al.41 identified an association between

ST3GAL3 and attention-deficit/hyperactivity disorder

(ADHD) by using methods that aggregated SNP-level sig-

nals across genes and networks. ADHD is a trait with heri-

tability estimates as high as 75% that had no known

genome-wide significant SNP-level associations at the

time; Nakka et al.41 studied genotype data from just

3,319 individuals with cases, 2,455 controls and 2,064

trios.63 A study by Demontis et al.64 later found a SNP-level

association in the ST3GAL3 gene but was only able to do so

with a cohort an order of magnitude larger (20,183 individ-

uals diagnosed with ADHD and 35,191 controls, totaling

55,374 individuals).

Because non-European GWA ancestry cohorts usually

have much smaller sample sizes compared to studies

with individuals of European ancestry, enrichment ana-

lyses offer a unique opportunity to boost statistical power

and identify biologically relevant genetic associations

with traits of interest by using multi-ancestry datasets. In

a simulation study with synthetic phenotypes generated

from the European and African ancestry cohorts in the

UK Biobank, we show that gene-ε is able to identify signif-

icantly associated genes even in smaller cohorts

(N ¼ 10;000 and N ¼ 4;967 in the European and African

ancestry cohorts, respectively) without the inflated FDR

that is often exhibited by the standard GWA framework

(Figures S9 and S10). Additionally, in these simulations,

gene-ε correctly identifies ‘‘causal’’ genes that are

commonly associated in both cohorts (Figures S11 and

S12). These simulations illustrate the utility of modeling

LD (and in the case of gene-ε, additionally shrinking in-

flated effect sizes) information to identify enrichment of

SNP-level associations in predefined SNP sets.

In an analysis performed by Ben-Eghan et al.30 on 45

studies analyzing UK Biobank data, the second most

commonly stated reason for omitting non-European co-

horts in applied GWA analyses was the lack of power for

identifying SNP-level GWA signals. We tested for gene-

level associations in each of the 25 complex traits in each

ancestry cohort for which we had data (Tables S1–Table

S10) and identified associations in genes and
rican Journal of Human Genetics 109, 871–884, May 5, 2022 877



transcriptional elements shared across ancestries for every

trait. All of our analyses discussed here used gene-ε (see per-

formance comparison with other enrichment analyses in

Cheng et al.13 and Figures S9–S12), an empirical Bayesian

approach that aggregates SNP-level GWA summary statis-

tics, where p values for each gene are derived by construct-

ing an empirical null distribution based on the eigenvalues

of a gene-specific partitioning of the LD matrix (for more

details, see Cheng et al.13). Our analyses show that several

hematological traits have a higher rate of significant gene-

level associations that replicate across multiple ancestry

cohorts than SNP-level associations that replicate across

ancestry cohorts (Figure 1B). These include platelet count

(PLC), mean corpuscular hemoglobin (MCH), mean

corpuscular hemoglobin concentration (MCHC), hemato-

crit, hemoglobin, mean corpuscular volume (MCV), red

blood cell count (RBC), and neutrophil count

(Figure S5F). Focusing on platelet count as an example,

we identify 65 genes that are significantly enriched for as-

sociations in multiple ancestries when tested with gene-ε

(see Table S16 for details on Bonferroni thresholds we

used to correct for the number of genes tested; Table S24

displays gene-ε for the shared significant genes in non-Eu-

ropean ancestry cohorts).13 Fifty-five of these genes are

significantly associated in both the European and East

Asian ancestry cohorts, and the remaining ten all replicate

in other pairs of ancestry cohorts. Overall, each of the six

ancestry cohorts in our analysis share at least one signifi-

cant gene with another ancestry cohort, as shown in

Figure S13. Our analysis of platelet count illustrates how

the implementation of gene-level enrichment analyses

can lead to the identification of shared elements of genetic

trait architecture among ancestry cohorts that would have

not been identified with the standard SNP-level GWA

framework alone. Additionally, gene-level enrichment an-

alyses yield statistically significant results that are biologi-

cally interpretable across ancestry cohorts even when sam-

ple sizes were highly variable.

Results from gene-level enrichment analyses can be

further propagated on protein-protein interaction net-

works to identify interacting genes enriched for association

signals.45 Often, studies use network propagation as a way

to incorporate information from multiple ‘‘omics’’ data-

bases in order to identify significantly mutated gene sub-

networks or modules contributing to a particular dis-

ease.65 An unexplored extension of network propagation

is how it can be used with multi-ancestry GWA datasets

to identify significantly mutated subnetworks that are

shared or ancestry specific.47

To conduct network propagation of gene-level associa-

tion results in our analyses, we applied the Hierarchical

HotNet method16 to gene-ε gene-level association statistics

for each trait-ancestry dataset. In Figure 3, we display the

significant (p value < 0:01) network results for triglyceride

levels in three ancestry cohorts: European, East Asian, and

Native Hawaiian (networks separated by ancestry are avail-

able in Figure S14). In both the European and East Asian
878 The American Journal of Human Genetics 109, 871–884, May 5,
cohorts, we identify enrichment of mutations in a highly

connected subnetwork of genes in the apolipoprotein fam-

ily. In addition, we identify a gene subnetwork enriched for

mutations in the East Asian and Native Hawaiian cohorts

that interacts with the significantly mutated subnetwork

identified in both the European and East Asian cohorts.

For instance, beta-secretase 1 (BACE1) is a genome-wide

significant gene-level association in the East Asian cohort

but does not contain SNPs previously associated with tri-

glycerides in any ancestry cohort in the GWAS Catalog.

BACE1 has gene-ε significant p values in both the East

Asian ancestry cohort (p ¼ 3.57 3 10�13) and European

ancestry cohort (p ¼ 5.55 3 10�17). BACE1 was significant

at the gene level but contained no previously associated

SNPs in any cohort in the GWAS Catalog. BACE1 plays a

role in the metabolism of amyloid beta precursor protein

and is known to play a role in amyloid precursor protein

(APP) metabolism.66 Additionally, both APOL1 and HBA1

were identified as significantly associated with triglycerides

via gene-ε in our analysis of the Native Hawaiian ancestry

cohort, and both genes were part of significant subnet-

works identified by Hierarchical HotNet in the European

and Native Hawaiian ancestry cohorts. It is important to

underscore that the results from the Native Hawaiian

ancestry cohort are based on a relatively small sample

size (N ¼ 1,915). While small sample size can increase

the FDR in the gene-ε (Figure S8), we highlight the net-

works identified as enriched for associations with triglycer-

ides in the Native Hawaiian ancestry cohort due to their

proximity and biological connection to the networks iden-

tified in the well-powered European and East Asian

ancestry cohorts. Furthermore, there were no variant-level

associations for triglyceride levels that were significant in

both the European and Native Hawaiian cohorts (Tables

S14 and S15). If analysis had stopped at the variant level,

the shared signal of association would have gone unidenti-

fied. Details on replicated SNP-level and gene-level associ-

ations among ancestries for triglyceride levels are shown

in Figure S15 and Figure S16, respectively. While the iden-

tification of these subnetworks is predicated on the use of

LD panels derived from 1000 Genomes populations as ref-

erences, we find widespread validation of SNP-level associ-

ations with triglyceride levels in many of the genes

included in the significant subnetworks (see GWAS Cata-

log results in Table S25 and gene-ε p values for each gene

included in the subnetwork in Table S26).

SNP-level and gene-level association results are further

discussed for both platelet count and triglyceride levels

in the supplemental information. Our results indicate

that network propagation methods, such as Hierarchical

HotNet, can identify subnetworks of genes on known pro-

tein-protein interaction networks that are enriched for sig-

nificant gene-level associations beyond what is expected

by chance. As is the case with triglyceride levels in the Eu-

ropean, East Asian, and Native Hawaiian cohorts analyzed

in this study, application of pathway enrichment analyses

offers the potential to identify subnetworks of interacting
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Figure 3. A subnetwork of apolipoprotein genes is significantly enriched for mutations in European, East Asian, and Native Hawaiian
ancestries associated with triglyceride levels
The largest significantly altered subnetwork (p value< 0.05) for triglyceride levels contains overlapping gene subnetworks for each of the
European, East Asian, and Native Hawaiian ancestries when analyzed independently with Hierarchical HotNet.16 Each node in the
network represents a gene. The shading of each node indicates the statistical significance of the association of that gene with triglyceride
levels in a particular cohort. Two genes are connected if their protein products interact based on the ReactomeFI 201648 (European, East
Asian) or iRefIndex 15.049 (Native Hawaiian) protein-protein interaction networks. Several genes from the apolipoprotein gene family
are significantly associated with triglyceride levels in both the European and East Asian cohorts (see data and code availability). Addi-
tionally, the interactions between them form a highly connected subnetwork. Smaller subnetworks identified in the Native Hawaiian
cohort are distal modules that are connected to the subnetwork detected in the European cohort. Not all genes in the largest significantly
altered subnetwork for the Native Hawaiian ancestry group are shown for visualization purposes (127 not pictured here). Genes that
contain SNPs previously associated to triglyceride levels in a European cohort in the GWAS Catalog are indicated with y. Similarly, genes
that contain SNPs previously associated with triglyceride levels in a non-European cohort in the GWAS Catalog are indicated with z. The
studies identifying these associations are given in Table S25.
genes that are enriched for gene-level association signals in

multiple ancestry cohorts.
Discussion

Many recent studies have proposed changes to multi-

ancestry GWA study design2,5,6,28,30–32,67–69. In this anal-

ysis, we have focused on the potential of methods to in-

crease the insight gained into complex trait architecture

from multi-ancestry GWA datasets via the generation of

biologically interpretable hypotheses. We demonstrate

the potential gains of moving beyond standard SNP-level

GWA analysis by using 25 quantitative complex traits

among seven human ancestry cohorts in three large bio-

banks: BioBank Japan, the UK Biobank, and the PAGE con-

sortium database (Tables S1–S10). Ultimately, we believe

that studying complex traits demands analysis across mul-

tiple genomic scales and ancestries in order to gain biolog-

ical insight into complex trait architecture and ultimately

achieve personalized medicine.

As has been previously noted,5,31 non-European

ancestry cohorts are often excluded from GWA analyses

of multi-ancestry biobanks; complementing the analyses

of Ben-Eghan et al.,30 we find that 80.13% of UK Biobank

studies over the last 9 years only report significant SNP-

level associations in the white British cohort (Figures S1

and S2), despite the tens of thousands of individuals of

non-European ancestry sampled in that dataset. Unless

this practice is curbed by the biomedical research commu-

nity, it will exacerbate already existing disparities in
The Ame
healthcare across diverse communities. There are un-

doubted benefits from increased sampling in a given

ancestry for association mapping with the standard GWA

framework, but it is still unknown the extent to which re-

sults from larger GWA and fine-mapping studies using Eu-

ropean-ancestry genomes will generalize to the entire hu-

man population.2,26

As long as sample sizes of non-European ancestry co-

horts in GWA studies remain relatively small, researchers

tend to not analyze these data fully, making it imperative

to consider alternative tests to the standard GWA frame-

work in order to fully leverage the data available for study-

ing the genetic basis of human complex traits. Two-stage

GWA studies with nominal significance thresholds in repli-

cation cohorts offer one approach for identifying repli-

cated associations. In addition, application of multi-

ancestry fine-mapping methods such as PESCA44 support

the results of recent analyses from Mathieson36 that even

when SNP-level significance is not observed in multiple

ancestry cohorts, the direction of effect is generally the

same. These methods continue to rely on the statistical

detection of association from individual SNPs. Given that

multi-ancestry biobank datasets have variable power to

detect SNP-level associations given differences in sample

size and minor allele frequencies across cohorts

(Figure S3), many researchers simply ignore non-European

ancestry samples in GWA studies,(2,5,6,30) potentially

perpetuating health disparities and limiting our under-

standing of the genetic basis of complex traits and any

heterogeneity in genetic trait architecture.44,47 For these

reasons, we strongly recommend drawing on enrichment
rican Journal of Human Genetics 109, 871–884, May 5, 2022 879



analyses to study genetic associations with a trait of inter-

est, as enrichment analyses offer the opportunity for

generating interpretable hypotheses regarding the shared

biological mechanisms underwriting complex traits by us-

ing large-scale multi-ancestry datasets with variable sample

sizes. Enrichment analyses offer a biologically interpret-

able way of boosting power to detect genetic architecture

without alterations to the original design of a study.

There are multiple other technical considerations for con-

ducting multi-ancestry association analyses that we do not

consider here, which future studies may explore further in

the context of SNP-level association studies and enrichment

analyses. First, because we are analyzing some datasets for

which we did not have access to genotype data (BioBank

Japan and PAGE study data), we relied on reference panels

to estimate LD, which is not ideal for enrichment analyses

(as has been explored by Zhu and Stephens,17 Shi et al.44).

While we draw on the published literature to validate our

findings of shared genetic architecture underlying the com-

plex traits studied here (Table S25), our pipelines highlight

the importance of managed access to individual-level geno-

type data for gaining insight into the genetic basis of com-

plex traits. Second, we have not addressed the downstream

consequences of using self-identified ancestry to define co-

horts in large-scale GWA studies (but see Willer et al.,70 Lin

et al.,71 Yang et al.,72 Urbut et al.73). Third, each sample we

analyzed has also experienced environmental exposures

thatmay influence the statistical detection of genetic associ-

ations, and some of those environmental exposures may be

correlated with genomic ancestry.19,74–76 Interrogation of

the influence of gene by environment interactions on com-

plex traitsmustbedonewithhighly controlled experiments,

which can in turn help prioritize traits in which association

studieswill be interpretable anduseful. Lastly,weunderscore

that increasing sample size in GWA studies alone will not

resolve these fundamental biological questions: the propor-

tion of phenotypic variance explained by associations

discovered as sample sizes increase in GWA studies has

largely reacheddiminishing returns,42 andgene-by-environ-

ment interactions are increasingly influential, and esti-

mable, in large biobanks with cryptic relatedness.77,78

Many recentmethodological advances that leverageGWA

summary statistics have focused on testing the co-localiza-

tion of causal SNPs (e.g., fine mapping79–82), the non-addi-

tive effects of SNP-level interactions (i.e., epistasis83,84), and

multivariate GWA tests.73,84–86 While these methods can

be extended and applied to multi-ancestry GWA analyses,

they still focus on SNP-level signals of genetic trait architec-

ture (see also Brown et al.,87 Galinsky et al.88). Unlike the

traditional GWAmethod, enrichment analyses increase sta-

tistical power by aggregating SNP-level signals of genetic as-

sociations and allowing for genetic heterogeneity in SNP-

level trait architecture across samples as well as offering the

opportunity for immediate insights into trait architecture

with existing datasets. These methods have been compara-

tivelyunderused inmulti-ancestryGWAstudies.Application

of enrichmentmethods to small cohorts is prone to the same
880 The American Journal of Human Genetics 109, 871–884, May 5,
statistical limitations as the standard GWA framework,

namely, less power to detect true associations and elevated

false positive rates when applied to small sample sizes

(Figure S8, Table S23). However, enrichment of associations

can be assessed at multiple biological scales—genes, gene

sets, and networks—thereby allowing for biologically

informed insight into trait architecture when small sample

sizes are studied inconjunctionwithbetter powered cohorts,

generating targeted hypotheses for biological validation.

Thus, comparison of results from enrichment analyses offer

the opportunity to identify therapeutic targets in ancestries

where sample sizes are limited.

While many studies note that differences in LD

across ancestries affect transferability of effect size esti-

mates,6,52,89–91 recent studies in population genetics have

additionally debated how various selection pressures and

genetic drift may hamper transferability of GWA

results across ancestries (see for example, Edge and Rosen-

berg,21,22 Novembre and Barton,24 Harpak and Przewor-

ski,26 Durvasula and Lohmueller,28 Mostafavi et al.29).

Future GWA studies should be coupled with approaches

from studies of how evolutionary processes shape the ge-

netic architecture of complex traits.26,34,53,92

Two open questionsmust be tackled when studying com-

plex trait architecture in the multi-ancestry biobank era: (1)

to what extent is the true genetic trait architecture (causal

SNPs and/or their effects on a trait of interest) heteroge-

neous across cohorts6,93 and (2) which components of

GWA results (e.g., p values, estimated effect size, direction

of effect sizes) are transferable across ancestries at any

genomic scale? Continued application of the standard

SNP-level GWA approach will not answer these questions.

However, enrichment methods that aggregate SNP-level ef-

fects, test for effect size heterogeneity, and leverage genomic

annotations and gene interaction networks offer opportu-

nities to directly test these fundamental questions. Methods

can and should play an important role as biomedical

research shifts current paradigms to extend the benefits of

personalizedmedicine beyond people of European ancestry.

Additionally, biomedical researchers should continue to

pressure both funding agencies and institutions to diversify

their sampling efforts in the name of inclusion and address-

ing—instead of exacerbating—genomic health disparities.

In addition to those efforts, we believe existing and new

methods can increase the return on investment in multi-

ancestry biobanks, ensure that every bit of information

from these datasets is studied, and prioritize biological

mechanism above SNP-level statistical association signals

by identifying associations that are robust across ancestries.
Data and code availability

All scripts and publicly available data from GWA, gene,

and pathway association tests are available at https://github.

com/ramachandran-lab/multiancestry_enrichment. Results from

PESCA analyses were provided through personal correspondence

by Huwenbo Shi.
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M.R. (2016). G¼ e: What gwas can tell us about the environ-

ment. PLoS Genet. 12, e1005765.

76. Borrell, L.N., Elhawary, J.R., Fuentes-Afflick, E., Witonsky, J.,

Bhakta, N., Wu, A.H.B., Bibbins-Domingo, K., Rodrı́guez-San-

tana, J.R., Lenoir, M.A., Gavin, J.R., 3rd., et al. (2021). Race and

genetic ancestry in medicine - a time for reckoning with

racism. N. Engl. J. Med. 384, 474–480.

77. Young, A.I., Frigge, M.L., Gudbjartsson, D.F., Thorleifsson, G.,

Bjornsdottir, G., Sulem, P., Masson, G., Thorsteinsdottir, U.,

Stefansson, K., and Kong, A. (2018). Relatedness disequilib-

rium regression estimates heritability without environmental

bias. Nat. Genet. 50, 1304–1310.

78. Young, A.I., Benonisdottir, S., Przeworski, M., and Kong, A.

(2019). Deconstructing the sources of genotype-phenotype as-

sociations in humans. Science 365, 1396–1400.

79. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B., and Es-

kin, E. (2014). Identifying causal variants at loci with multiple

signals of association. Genetics 198, 497–508.

80. Hormozdiari, F., van de Bunt, M., Segrè, A.V., Li, X., Joo, J.W.J.,
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