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ARTICLE

Leveraging LD eigenvalue regression
to improve the estimation of SNP heritability
and confounding inflation

Shuang Song,1,4 Wei Jiang,2,4 Yiliang Zhang,2 Lin Hou,1,3 and Hongyu Zhao2,*
Summary
Heritability is a fundamental concept in genetic studies, measuring the genetic contribution to complex traits and bringing insights

about diseasemechanisms. The advance of high-throughput technologies has providedmany resources for heritability estimation. Link-

age disequilibrium (LD) score regression (LDSC) estimates both heritability and confounding biases, such as cryptic relatedness and pop-

ulation stratification, among single-nucleotide polymorphisms (SNPs) by using only summary statistics released from genome-wide as-

sociation studies. However, only partial information in the LD matrix is utilized in LDSC, leading to loss in precision. In this study, we

propose LD eigenvalue regression (LDER), an extension of LDSC, by making full use of the LD information. Compared to state-of-the-art

heritability estimatingmethods, LDER provides more accurate estimates of SNP heritability and better distinguishes the inflation caused

by polygenicity and confounding effects. We demonstrate the advantages of LDER both theoretically and with extensive simulations.

We applied LDER to 814 complex traits from UK Biobank, and LDER identified 363 significantly heritable phenotypes, among which 97

were not identified by LDSC.
Introduction

In genetic studies, heritability is a fundamental quantity

measuring the phenotypic variance explained by genetic

components.1,2 Heritability provides an upper bound of

genetic risk-prediction performance3 and acts as a summa-

rizing metric indicating the genetic architecture of com-

plex traits.4 Accurate estimates of heritabilities help us bet-

ter understand the degree to which the phenotype is

influenced by measured genetic variants and thus provide

insights about the genetic mechanisms of complex dis-

eases.5 We can distinguish the heritability concept into

the broad-sense heritability (H2) and the narrow-sense her-

itability (h2). The former accounts for the genetic variance

explained by all genetic factors, including additive effects,

dominance effects, and epistatic effects, whereas the latter

chip-based heritability evaluates only the additive genetic

effects and is our main focus in this study.

In the pre-genomic era, heritability estimationwasmainly

based on family/pedigree data with the linear mixed model

(LMM).6 With the advance of high-throughput technolo-

gies, such asmicroarray/sequencing, we can accuratelymea-

sure genotypes on millions of single-nucleotide polymor-

phisms (SNPs) for individuals with moderate cost. The

advances have enabled thousands of genome-wide associa-

tion studies (GWASs) exploring the genetic basis of various

diseases, providingmany resources for estimating heritabili-

ty captured among SNPs. In recent years, a number of

methods have been proposed to estimate heritability based

on GWAS data, such as GCTA (genome-wide complex trait
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analysis),7,8 BOLT-LMM (efficient large cohorts genome-

wide Bayesian mixed-model association testing),9 FaST-

LMM (factored spectrally transformed linear mixed

models),10 and LDAK (LD-adjusted kinships).11,12 These

methods are based on individual-level genotype data and

provide accurate estimates of heritability captured among

SNPs, namely SNP heritability. However, the sample sizes

of GWASs continue to grow, and individual-level-data-based

methods are not as scalable to biobank projects that

assay hundreds of thousands of individuals (e.g., UK Bio-

bank, UKBB13) compared with summary-statistics-based

methods.14 Due to computational and privacy issues, the

summary-statistics-based methods become more attractive,

as theyrequireonlypubliclyavailableGWASsummary statis-

tics and the computational efficiency will not be influenced

by the increasing sample sizes. Themost widely used tool to

estimate heritability based on summary statistics is linkage

disequilibrium (LD) score regression (LDSC),15 which lever-

ages LDbetween SNPs to estimateheritability.16–18 Extended

from LDSC, SumHer relaxes the polygenic assumption and

allows users to specify the heritability model.19 Despite the

benefits of summary-statistics-based methods, such as

decent data availability and increasing sample sizes, individ-

ual-level-data-based methods have more accurate estimates,

as they are providedwithmore information from individual

data. In this study, we focus on the summary-statistics-based

methods and use the estimates of individual-level-data-

based methods as the gold standard for the evaluation of

different summary-statistics-based methods in real data

analysis.
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One challenge in analyzing GWAS summary statistics is

to address the inflation attributed to confounding effects,

such as cryptic relatedness and population stratification.

The unadjusted confounding biases can generate spurious

signals and lead to false positives in association mapping

and upward bias of heritability.20,21 In practice, genomic

control is the most widely used method to address the

inflation.22–25 The intuition behind this method is that

other than a small number of SNPs associated with the trait

or disease, the test statistics for SNPs should follow the dis-

tribution under the null hypothesis. More specifically, the

median c2 value over all SNPs should be around 0.455 un-

der the null hypothesis. Inflation due to artificial con-

founding biases can be detected and corrected by

comparing the median of test statistics with 0.455. Despite

the simplicity of this approach, the rationale of genomic

inflation factors relies on the assumption of sparsity, which

is very likely violated due to the polygenic property of

many diseases/traits.26,27 In fact, polygenicity from under-

lying genetic architectures can also yield inflation in test

statistics. Therefore, we need to distinguish the inflation

attributed to polygenicity and confounding effects from

the corrected inflation caused by the latter.

To date, LDSC is the most commonly used method to

address the estimation of both heritability and confound-

ing inflation. LDSC builds the model on the relationship

between LD scores and the variance of the test statistics.

The basic idea is that the SNPs in higher LD with other

SNPs tend to have larger test statistics on average for a poly-

genic trait, because of more causal variants being tagged.

Though LDSC is widely used, compared to individual-

level-data-based methods, substantially larger standard er-

rors (SEs), which influence accuracy and precision in the

estimation of both heritability and confounding inflation

factors, are observed.28 One reason for the loss of precision

is that LDSC utilizes the information of only a small part of

the LD matrix.28,29 To be more precise, only the diagonal

elements of the squared LD matrix are utilized in LDSC.

Some recent methods based on summary statistics utilize

more complete LD information, such as HESS (heritability

estimation from summary statistics), which estimates local

SNP heritability,14,26 and HDL (high-definition likelihood),

which focuses on genetic correlation.28

In this paper, we introduce LD eigenvalue regression

(LDER), which extends the LDSC method and provides

more accurate estimates of heritability and confounding

inflation. The key difference between LDER and LDSC is

that LDER makes full use of the information from the LD

matrix. The regression equation of LDER is similar to

LDSC, while LDER uses eigen-decomposition to diagonalize

the LD matrix and aggregates the information onto the di-

agonal of the transformed LD matrix. Our method needs

only GWAS summary statistics and consequently can be

applied to large-scale datasets with high computational effi-

ciency. Through simulations, we compared LDER with

state-of-the-art estimation methods including LDSC, HESS,

and HDL and found that LDER could providemore accurate
The Ame
estimates than all other methods, especially under small-

sample-size scenarios. In addition, LDER achieves higher

precision than LDSC. Real data applications on 10 common

traits fromUKBB also showed that the estimates of LDER are

closer to the estimates of the individual-level-data-based

method BOLT-LMM than other methods. We also applied

LDER to 814 phenotypes fromUKBB, including 221 contin-

uous and 593 dichotomous traits,13 among which LDER

identified 97 heritable phenotypes that were not signifi-

cantly heritable in LDSC estimation.
Material and methods

LDER modeling
For a GWASwith n individuals andm SNPs, we first derive themar-

ginal test statistics for each SNP based on linear regression for the

quantitative traits and logistic regression for the dichotomous

traits. We name the test statistic a Z score if its distribution is stan-

dard normal distribution under the null hypothesis. If the null dis-

tribution does not follow the standard normal distribution, the in-

verse cumulative distribution method (CDF) may be used for p

values to obtain Z scores. We denote the underlying risk effects

for all SNPs as b. The distribution of z conditioning on b follows

Nð ffiffiffi
n

p
Rb;lRÞ, where R is the LD matrix and l is the inflation fac-

tor due to uncontrolled confounding effects.30 Let h2
g denote the

SNP heritability, under the polygenic model,7 b � Nð0; h2
g =mÞ.

Then we have

E
�
zzT

�¼E
�
E
�
zzT

��b��¼ E
h
CovðzjbÞþEðzjbÞEðzjbÞT

i

¼ E
�
lRþnRbbTR

�¼ lRþnh2
g

m
R2:

(Equation 1)

We denote the LD score for the i-th SNP as li, which is defined as

li ¼
Pm

j¼1R
2
ij. By considering the diagonal elements of Equation 1,

we have Eðz2i Þ ¼ lþ nh2
g li=m, which is exactly the main equation

used in the LDSC framework.15 However, this construction con-

siders only the diagonal elements and leads to information

loss. Therefore, we extend this model by leveraging the full

information in Equation 1. We consider the eigen-decomposition

R ¼UDUT , whereU andD are orthogonal and diagonal matrices,

respectively. By defining ~z ¼ D�0:5UTz, we obtain:

E
�
~z~zT

�¼ E
�
E
�
~z~zT

��b�� ¼ lIþ nh2
g

m
D: (Equation 2)

We note that the right-hand side of Equation 2 becomes a diag-

onal matrix, and thus for the i-th variant we have:

E
�
~z2i
�¼ lþ nh2

g

m
Dii: (Equation 3)

The formulation above has the same format to the regression

equation of LDSC. Instead of regressing the square of Z scores on

LD scores in LDSC, we regress the square of projected Z scores on

LD eigenvalues. All information of the LD matrix inEquation 1

has been aggregated onto diagonal elements of Equation 2, and

then used for the regression. We obtain the estimates of h2
g and l

by regressing ~z2i on the eigenvaluesDii.We further adopt a two-stage

procedure in the estimation of heritability to reduce the variance

(supplemental method 3.1). For both LDER and LDSC, we use a

delete-block-jackknife procedure for estimating SEs.
rican Journal of Human Genetics 109, 802–811, May 5, 2022 803



For the dichotomous traits, we transform the observed-scale

heritability to the liability-scale heritability, with h2
liability ¼

h2
observed

K2ð1�KÞ2
4ðF�1ðKÞÞ2Pð1�PÞ, where K is the frequency of the dichotomous

trait in the population and P is the frequency of the dichotomous

trait in the observed sample.31 The first denominator component

4ðF�1ðKÞÞ2 is the squared probability density function evaluated

at the K-percentile of the inverse CDF of the standard normal

distribution.

Regression weights
Similar to LDSC, we account for heteroskedasticity in the regres-

sion weight. We weight by

1

�	
1þ nh2

gDii

.
m

2

; (Equation 4)

the reciprocal of which is proportional to the variance of ~z2i (sup-

plemental method 3.2). To further ensure the robustness of the

estimation, we impose a shrinkage weight, minðDii; 1Þ, to equa-

tions with small eigenvalues resulting from the rank-deficient

LD matrix. Combining with Equation 4, the weights wi are con-

structed by:

wi ¼ minðDii;1Þ	
1þ nh2

gDii

.
m

2

f
minðDii;1Þ
Var

�
~z2i
��b� : (Equation 5)

Simulation settings
We first conducted simulations based on generated GWAS sum-

mary statistics under varying genetic architectures. We fixed the

number of genetic variants to 100;000. The simulated genetic

architectures varied in three aspects: the sparsity of the causal

SNPs, the heritability, and the confounding inflation. The

effect sizes were simulated with a spike-and-slab distribution:

bj � ð1 � aÞd0 þ aN
	
0; h

2

am



. The proportion of causal SNPs a varied

between 0.005, 0.01, 0.05, and 0.1, and the heritability h2
g varied

between 0.05, 0.1, 0.2, and 0.5. The inflation factor l was set to

1 (with no confounding inflation) or 1.1 (with confounding infla-

tion). Conditioning on the effect size b, the Z scores were simu-

lated from z
��b � Nð ffiffiffi

n
p

Rb; lRÞ. We generated LD matrices R

with block-wise autoregressive LD structures using the R package

CorBin,32 where the correlation matrix Rl of the l-th LD block is

Rl ¼

0
BBBBBB@

1 rl / r
ml�1
l

rl 1 / r
ml�2
l

« « 1 «

r
ml�1
l r

ml�2
l / 1

1
CCCCCCA
; (Equation 6)

where ml is the number of SNPs in the l-th LD block, and rl �
Unif½0:1; 0:9�. The correlations are higher for adjacent variants

and decrease with the increase of the distance between the vari-

ants in each LD block, which mimic the real LD structures.33 We

equally divided simulated genomes into 1;000 LD blocks, which

is in the same scale with the block number of the human genome

partitioned by LDetect,34 and the SNP number in each block was

100.

For the simulations based on real genotypes, we used genotypes

from 276,050 independent UKBB European samples and extracted

the HapMap 3 SNPs. We simulated effect sizes from the spike-and-
804 The American Journal of Human Genetics 109, 802–811, May 5,
slab distribution and fixed the heritability at 0.5. The sparsity of

causal SNPs varied between 0.005 and 0.01. Then we generated

continuous phenotypes with the additive model y ¼ Xbþ ε,

whereX is the standardized genotype and the error term ε satisfies

the i.i.d. normal distribution, i.e., VarðεÞ ¼
	
1� h2

g



In. The sum-

mary statistics were computed using PLINK software.35

Reference LD matrix construction
The in-sample LD matrix was estimated from 276,050 indepen-

dent UKBB European samples. The external LD matrix was esti-

mated from European samples of the 1000 Genomes Project

(1000G) reference panel. There are 489 individuals and

9,997,231 SNPs in the 1000G after quality control. The SNPs

from the 1000G dataset overlapped with the SNPs in the

HapMap 3 dataset, and the GWAS summary data were included

in the reference panel. In both cases, we employed a linear

shrinkage method for the LD matrix estimation.36,37 We parti-

tioned the genome into 1;703 independent genomic blocks using

LDetect,34 based on the 1000G reference panel with European

ancestry. The LD estimation, shrinkage, and eigen-decomposition

were performed within each LD block.

UKBB GWAS summary statistics
The UKBB GWAS summary statistics were from the second round

of results released in August 2018 by Neale’s group. They per-

formed association studies on 361,194 individuals ofWhite British

ancestry and included with covariates including 20 principal com-

ponents, and age, the square of age (age2), sex, the product of age

and sex (age*sex), and age2*sex.

Quality control of the UKBB genotype data
We used phase 3 genotype data released by UKBB wherein the

participants underwent genotyping with one of two closely

related Affymetrix microarrays (UK BiLEVE Axiom Array or

UKBB Axiom Array) for 820,000 variants. Additional genotypes

were imputed centrally using the 1000G and Haplotype Refer-

ence Consortium (HRC) reference panels, yielding 93 million var-

iants for each individual. We restricted the analysis to 404,892

autosomal variants also presented in the HapMap 3 dataset

with a genotype-missing rate per marker < 0:01, imputation qual-

ity score > 0:3, Hardy-Weinberg p value > 1e� 05, and minor

allele frequency > 0:05.

Compared methods
We compared LDER with three state-of-the-art, summary-statis-

tics-based heritability estimation methods, including LDSC,38

HESS,26 and HDL.28 For LDER, LDSC, and HESS, we computed

LD information from both UKBB genotypes and the 1000G refer-

ence panel. For HDL, we directly downloaded the pre-computed

UKBB LD information of 336,000 British individuals in their web-

site. By default, we let HDL automatically select the number of ei-

genvalues and eigenvectors used in the estimation.

Computational time
We compared the CPU time of LDER, LDSC, HESS, andHDL on the

analysis of UKBB dataset. The LD preparation time was based on a

subset of 10;000 individuals and 404;892 autosomal variants. The

computation was performed with an Intel Xeon processor with

2.50 GHz and 48 cores. Among the four methods, LDER and

HESS were performed with all 48 cores run in parallel. LDSC and

HDL did not provide parallel computing capacity; thus we split
2022
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Figure 1. Comparisons between LDER, LDSC, HESS, and HDL on the estimation of heritability and confounding inflation based on
simulated GWAS summary statistics with varying sample sizes
The number of SNPs was fixed at 100,000. The proportion of causal SNPs was 5%. The effect sizes were sampled from a spike-and-slab
distribution with heritability 0.5 and no confounding effects. The simulations were repeated 50 times. Dashed lines represent the true
value. Diamonds indicate means in boxplots. The colors of the boxes differentiate the estimation methods.
the data into 22 chromosomes and ran the software on each chro-

mosome in parallel.
Results

Method overview

Suppose there are n individuals and m SNPs in the GWAS

data. For each SNP, we derive the marginal test statistics

with linear regression for the quantitative traits and logistic

regression for the dichotomous traits. The test statistic is

referred to as a Z score if its distribution is standard normal

distribution under the null hypothesis. Otherwise, we

use the inverse function of CDF of standard normal distribu-

tion to getZ scores fromp values.We assume the underlying

risk effect for the m SNPs is b. In GWAS, we have z
��b �

Nð ffiffiffi
n

p
Rb;lRÞ, whereR is the LDmatrix and l is the inflation

factor due to uncontrolled confounding effects.30 A larger l

indicates a greater inflation, whereas l ¼ 1 indicates infla-

tion free. We denote the SNP heritability as h2
g . Based on

the polygenic model,7 we have b � Nð0; h2
g =mÞ and

E
�
zzT

�¼ E
�
E
�
zzT

��b�� ¼ lRþ nh2
g

m
R2: (Equation 7)

Equation 7 reduces to LDSC if we only consider the

diagonal elements of the matrices on both sides of the
The Ame
equation. However, utilizing only diagonal elements leads

to information loss. Therefore, we first performed eigen-

decomposition on the LD matrix, i.e., R ¼ UDUT , where

U is an orthogonal matrix of eigenvectors and D is the di-

agonal eigenvalue matrix. By rotating the GWAS Z scores

with ~z ¼ D�0:5UTz, we obtain

E
�
~z~zT

�¼ E
�
E
�
~z~zT

��b�� ¼ lIþ nh2
g

m
D: (Equation 8)

This transformation aggregates all the information

related to h2
g to the diagonal elements of Equation 8. For

the i-th element in vector ~z, we have

E
�
~z2i
�¼ lþ nh2

g

m
Dii; (Equation 9)

where Dii is the i-th diagonal element of D. Despite the

similar formulation with LDSC, this expression uses full in-

formation of h2
g from the LDmatrixR. Similar to LDSC, we

use the iterative reweighted least square to increase estima-

tion efficiency (material and methods), which increases

precision when the sample sizes are large (Figure S1). As

the dimension of genotype matrices is usually high, we

partition the genome into independent genomic blocks

with LDetect34 and perform eigen-decomposition in each

block. We also employ a linear shrinkage method to the
rican Journal of Human Genetics 109, 802–811, May 5, 2022 805



Table 1. Precision and accuracy of the heritability estimates with LDER, LDSC, HESS, and HDL

Precision (1/SD) RMSE

LDER LDSC HESS HDL LDER LDSC HESS HDL

n Performance with in-sample LD estimated by UKBB European samples

5,000 17.82 12.51 20.72a N/A 0.073a 0.095 0.082 0.461

10,000 23.53a 17.82 21.71 N/A 0.034a 0.053 0.076 0.500

20,000 40.18a 31.14 33.14 N/A 0.030a 0.041 0.035 0.499

50,000 73.79 53.77 54.87 154.68a 0.016a 0.022 0.169 0.461

n Performance with external LD estimated by 1000 Genomes Project European samples

5,000 14.07 12.28 21.21a – 0.077a 0.102 0.152 –

10,000 20.05 17.32 20.60a – 0.047a 0.056 0.060 –

20,000 33.60a 30.84 27.99 – 0.032a 0.045 0.060 –

50,000 64.16a 53.84 56.47 – 0.017a 0.025 0.114 –

Simulations were based on UKBB genotypes and repeated 50 times. Heritability was fixed at 0.5, and the proportion of causal SNPs was 1%. N/A indicates the
estimates are too close to zero, yielding infinite 1/SD.
aHighest precision and smallest RMSEs
estimation of the LD matrix R to ensure the robustness of

our algorithm accommodating different reference panels

(material and methods).
Simulation based on generated summary statistics

We first simulated GWAS summary statistics of 100,000

genetic variants to investigate the performance of LDER

and other comparable methods including LDSC, HESS,

and HDL under different genetic architectures. The simu-

lated genetic architectures varied in three aspects: the

sparsity of the causal SNPs, the heritability, and the con-

founding inflation factor (material and methods). We

used true LD information as the input to all the methods.

Simulation experiments were repeated 50 times. Figure 1

and Figure S2 show the heritability and inflation factor

estimated by LDER and the three other methods. The ac-

curacies of estimated heritabilities for all methods

increased with increased sample sizes. LDER achieved

higher accuracy with smaller standard deviations (SDs)

in estimating heritability compared with LDSC and

HESS. When the sample size was small (i.e., n ¼ 5,000

and 10,000), the superiority of LDER was more signifi-

cant, while the heritability estimator of HESS had down-

ward bias. Despite the comparable estimates of heritabili-

ty between LDER and HDL, HDL had severe upward bias

in estimating inflation factors. Although the SDs of the

inflation factor estimation increased with the sample sizes

(see supplemental method 3.3), LDER retained high esti-

mation accuracy. We note that the two-stage estimation

procedure led to an underestimate of inflation factor by

LDSC, as SNPs with test statistics larger than a certain

threshold (z2i > 30 in LDSC as default) were not included

in the first step estimating the inflation factor.15 We

further provide a comparison between LDER and LDSC

without the two-stage procedure, and LDER still achieved
806 The American Journal of Human Genetics 109, 802–811, May 5,
more accurate and precise estimates than LDSC

(Figure S3).
Simulations based on real genotypes

We then analyzed simulated GWAS data with real geno-

types from 276,050 independent UKBB European samples

(material and methods). We simulated effect sizes from

the spike-and-slab distribution mentioned above. The

simulated phenotypes were generated by the sum of all

genetic markers weighted by the simulated effect sizes

and added by a normally distributed error term fixing

the heritability at 0.5. The sparsity of causal SNPs varied

from 0.005 to 0.01. We evaluated the estimation accuracy

by the root-mean-square error (RMSE) and the precision,

which was measured by the inverse of the SDs. Table 1

and Table S1 show that LDER still achieved higher accu-

racy with smaller RMSE and higher precision than LDSC

under scenarios with different sample sizes. Among the

four methods, HESS achieved the highest precision

when the sample size was 5,000, but its RMSE was larger

than LDER. We also notice that HDL severely underesti-

mated the heritability. This may be because the UKBB

LD reference panel provided by HDL (either 1,029,876

QCed UKBB imputed HapMap 3 SNPs or 307,519 QCed

UKBB Axiom Array SNPs) contains SNPs that were not

in the data we analyzed (�50%), and significant deteriora-

tion of performance when there are different numbers of

SNPs in GWAS and in the reference panel was re-

ported.28,39 Results in Table 1 and Table S1 demonstrate

the robustness of LDER to the external LD by estimating

the LD matrix with the 1000G reference panel. Despite

that the accuracy and precision for all methods were influ-

enced by external LD reference, LDER still showed the

smallest or comparable RMSE among all methods. We

also compared the one- and two-stage procedures for
2022



Figure 2. Comparisons between the estimated heritability by BOLT-LMMand that by LDER, LDSC, HESS, and HDL on six quantitative
phenotypes and four dichotomous phenotypes in the UKBB
Error bars indicate SEs of the estimates, which were derived from a delete-block-jackknife procedure for LDER.
LDER and LDSC. The two-stage estimates yielded smaller

RMSE and higher or comparable precision compared

with the one-stage estimates for LDER and for LDSC

with large sample sizes (Table S2).

We also simulated a more realistic scenario with both

polygenicity and confounding inflation. We used the

UKBB genotype data and simulated polygenic phenotypes

by drawing causal SNPs only from the chromosomes of

odd numbers. All SNPs on chromosomes of even numbers

were not causal. This strategy also avoids the influence of

LD. We further included the environmental stratification

component aligned with the first principal component of

the genotype data. The mean c2 statistics in even chromo-

somes (with no causal SNPs) was regarded as the contribu-

tion of population stratification. In all simulation settings

with sample sizes varying from 5,000 to 50,000, both LDER

and LDSC accurately estimate the confounding inflation

factors (Table S3).
Real data applications on UKBB phenotypes

For better calibration and demonstration of the superiority

of LDER, we performed analysis on 10 common UKBB

traits with BOLT-LMM, which is an individual-level-data-

based method known to provide more accurate estimates

than LDSC39 (Figure 2). Among the 10 common traits,

low-density lipoprotein (L-DL), high-density lipoprotein

(H-DL), triglyceride (TG), total cholesterol (TC), height

(HGT), and bodymass index (BMI) are quantitative pheno-

types; asthma (ATH), coronary artery disease (CAD),

schizophrenia (SCZ), and type 2 diabetes (T2D) are dichot-

omous phenotypes. We treated estimates from BOLT-LMM

as the true values of the heritability and calculated the

RMSE of LDER, LDSC, HESS, and HDL. The precision was

measured by the reciprocal of the SEs reported by each

method. In particular, the SE of LDER was estimated

through block-jackknife (material and methods). In gen-

eral, LDER and LDSC provided estimates lower than
The Ame
BOLT-LMM, while HESS derived estimates higher than

BOLT-LMM. HDL had estimates of heritability close to

zero, which was similar to the results in simulations with

real genotypes. LDER still showed the most accurate esti-

mation compared with the other methods, with the small-

est RMSE (Figure 2 and Table S4). HESS provided estimates

with the highest precision.

We applied LDER and LDSC to summary statistics of 814

complex traits, including 221 quantitative phenotypes and

593 dichotomous phenotypes (material and methods). On

average, LDER yielded smaller SE than LDSC on both quan-

titative and dichotomous traits (Figure 3). After Bonferroni

correction, LDER identified 363 significantly heritable phe-

notypes, among which 97 were not identified by LDSC

(Table S5), such as ventral hernia (LDER p value ¼
6.1e�06) and non-insulin-dependent diabetes mellitus

(LDER p value ¼ 3.4e�05). We found the estimates of her-

itability by LDER and LDSC were significantly different for

20 phenotypes (p value < 0.05 after Bonferroni correction;

see Table 2). A numerical comparison between the esti-

mates of LDER and LDSC on the UKBB traits is provided

in Tables S6 and S7.
Computational efficiency

Table S8 shows the computation time of LDER, LDSC,

HESS, and HDL. We divided the total computational time

into LD preparation and heritability estimation. HESS

and LDER are more efficient in LD preparation compared

with the other two methods. As for the estimation proced-

ure, LDER and HDL take more time in estimating SEs using

a jackknife procedure. We also note that although HESS is

most efficient in the estimation step compared with other

methods, it is necessary for HESS software to recalculate LD

information when it is applied to a new trait. In contrast,

LDER, LDSC, and HDL can be applied to the pre-computed

LD information and can be efficient when estimation on

multiple traits is required.
rican Journal of Human Genetics 109, 802–811, May 5, 2022 807
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Figure 3. Heritability estimates with LDER and LDSC among 221 quantitative phenotypes and 593 dichotomous phenotypes in the
UKBB
The color of the blue points indicates the significance level (p value) testing the difference of the estimates using two methods. The or-
ange points highlight phenotypes with significantly different heritability estimates between LDER and LDSC (the upper panels). The red
points highlight significantly heritable phenotypes (with Bonferroni correction) estimated by LDER but not identified by LDSC (the
lower panels). For clearer visualization, the six smallest p values for heritability estimation are shown with labels for both quantitative
and dichotomous phenotypes. The red dashed line indicates conditions where the heritability estimated by LDER and LDSC is equal.
The estimated heritability for dichotomous phenotypes has been transformed to liability scale.
Discussion

In this article, we propose LDER, a summary-statistics-based

method improving the accuracy and precision of estimation

of SNP heritability and confounding inflation. As an exten-

sion of LDSC, LDER provides more accurate and precise es-

timates in both simulations and real data applications. The

superiority of LDER can be attributed to the fact that it cap-

turesmore information on the relationship between LDma-

trix and test statistics, whereas LDSC uses only partial infor-

mation from the LDmatrix. To be more precise, LDSC only

utilizes the diagonal elements of the squared LD matrix.

Toensure the robustnessofour algorithmaccommodating

reference panels from different sources, we employ a linear

shrinkage method to the estimation of the LD matrices,

which is computationally efficient andbuilt inwithour soft-

ware. In addition, as the dimension of genotype matrices is
808 The American Journal of Human Genetics 109, 802–811, May 5,
usually high, estimating and shrinking the LD matrix and

performing the eigen-decomposition can be time

consuming. In practice, we partition the genome into inde-

pendent genomicblockswith respect to ethnicityusingLDe-

tect34 and perform eigen-decomposition for each LD block.

We provide the pre-computed eigen-decomposition in-

formation for 276,050 independent samples of European

ancestry fromUKBB and 489 samples of European ancestry

from 1000G. Although the limited sample size and the po-

tential mismatch between the target population and the

LD reference panel may threaten the superiority of LDER,

LDER remains robust with respect to the external LD refer-

ence and superior to LDSC.

For future directions, it would be advantageous to jointly

model multiple complex traits to better estimate their ge-

netic correlation,whichquantifies the genetic similaritybe-

tween complex traits. Summary-statistics-based methods
2022



Table 2. Estimates of SNP heritability on UKBB traits that are significantly different using LDER and LDSC

UKBB ID Phenotype Variable type h2
LDER h2

LDSC p value (different)

1210 snoring binary 0.086 (0.003) 0.058 (0.004) 2.8e�09

1920 mood swings binary 0.097 (0.003) 0.067 (0.004) 1.6e�09

1930 miserableness binary 0.087 (0.003) 0.062 (0.004) 3.1e�07

1950 sensitivity/hurt feelings binary 0.083 (0.003) 0.057 (0.004) 5.7e�09

1970 nervous feelings binary 0.108 (0.003) 0.077 (0.005) 6.2e�08

1980 worrier binary 0.104 (0.003) 0.075 (0.004) 3.8e�08

2000 worry too long after embarrassment binary 0.088 (0.003) 0.061 (0.004) 5.7e�10

2010 suffer from ‘‘nerves’’ binary 0.071 (0.003) 0.052 (0.004) 3.2e�05

2020 loneliness, isolation binary 0.070 (0.003) 0.044 (0.004) 2.9e�08

2030 guilty feelings binary 0.076 (0.003) 0.054 (0.004) 6.8e�07

2040 risk taking binary 0.085 (0.003) 0.064 (0.004) 6.6e�06

2188 long-standing illness, disability, or infirmity binary 0.080 (0.003) 0.058 (0.004) 5.7e�07

2443 diabetes diagnosed by doctor binary 0.207 (0.012) 0.136 (0.011) 8.4e�06

20160 ever smoked binary 0.106 (0.003) 0.077 (0.004) 1.3e�08

6149 100 mouth/teeth dental problems: none of the
above

binary 0.053 (0.002) 0.038 (0.003) 1.0e�05

6149 6 mouth/teeth dental problems: dentures binary 0.110 (0.004) 0.080 (0.005) 7.3e�07

6150 2 vascular/heart problems diagnosed by
doctor: angina

binary 0.131 (0.008) 0.083 (0.010) 5.1e�05

30510 irnt creatinine (enzymatic) in urine continuous irnt 0.057 (0.002) 0.041 (0.002) 3.2e�08

1160 sleep duration ordinal 0.063 (0.002) 0.046 (0.002) 6.9e�09

1200 sleeplessness/insomnia ordinal 0.054 (0.002) 0.040 (0.002) 3.3e�07

The estimates of heritability of binary traits have been transformed to liability scale.
for genetic correlation analysis enable study of a wide spec-

trum of complex human diseases, as the studied pheno-

types donotneed to be collected from the same individuals.

It has also been revealed that SNPs in different functional

categories (such as promoters, enhancers, etc.) provide

disproportionate contributions to the disease heritability.

Therefore, it is also of interest to derive the partitioned her-

itability within our framework to analyze multiple cell-

type-specific functional categories.

Data and code availability

LDER software (R package) and analysis scripts are avail-

able at https://github.com/shuangsong0110/LDER.
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