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ARTICLE

Analyzing and reconciling colocalization
and transcriptome-wide association studies
from the perspective of inferential reproducibility

Abhay Hukku,1,* Matthew G. Sampson,2,3,4 Francesca Luca,5 Roger Pique-Regi,5 and Xiaoquan Wen1,*
Summary
Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic-asso-

ciation data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic-association evidence

and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the

same molecular and complex-trait data, the inference results can be markedly different. This paper systematically investigates the infer-

ential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of four complex

trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent

results (i.e., genes with strong colocalization but weak transcriptome-wide association study [TWAS] signals)might suggest an interesting

biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second

class (i.e., genes with weak colocalization but strong TWAS signals) can be understood and effectively reconciled. To this end, we propose

a computational approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization

analysis improves specificity and sensitivity for implicating biologically relevant genes.
Introduction

With the rapid advancements of sequencing technologies,

genetic association analyses have been routinely performed

and havemade significant contributions to insights into the

roles of genetic variants in complex diseases. As a result of

recent expansions in the large-scale joint genotyping and

phenotyping ofmolecular traits, integrative genetic analysis

has emerged as a tool for studying the biological basis of

complex diseases. Integrative analyses have the unique abil-

ity to allow interpretation of genetic associations beyond in-

dividual mutations and link complex diseases to functional

genomic units, e.g., genes, metabolites, and proteins.1–3 Dis-

coveries from integrative genetic analyses have enabled the

discovery of novel drug targets,4 and hence improved treat-

ments for diseases.

In this paper, our discussions focus on two prevailing

types of integrative genetic analyses: transcriptome-wide

association studies (TWASs) and colocalization analysis.

Both approaches are widely applied to integrating results

from expression quantitative-trait loci (eQTL) mapping

and complex-traits genome-wide association studies

(GWASs). They have shown promise in nominating poten-

tial causal genes for complex diseases.5,6 The analytical

goal of a TWAS is to test associations between a complex

trait of interest and genetically predicted gene expression

levels (that are constructed from eQTL information).7–10

More broadly, it connects to the causal inference frame-

work of instrumental variable analysis: given an estab-
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lished TWAS association, the causal effect from a target

gene to the complex trait can be estimated.10–12 Neverthe-

less, our discussions focus on the testing stage, which we

refer to as TWAS scanning henceforth. Colocalization anal-

ysis aims to identify overlapping causal genetic variants for

both molecular (e.g., gene expression) and complex

traits.13–16 A colocalized genetic variant in a particular

cis-gene region implies that a single mutation is respon-

sible for variations in both molecular and complex traits,

thus establishing an intuitive link between the traits. A

more detailed review of both approaches is provided in

the material and methods section.

Our primary motivation was to investigate the consis-

tency and inconsistency patterns between the inference re-

sults from a TWAS scan and those from a colocalization

analysis in practical settings. Such patterns are examples

of inferential reproducibility—one of the three modes

defined in the lexicon of reproducibility by Goodman

et al..17 Narrowly speaking, inferential reproducibility re-

fers to the consistency of inference results when different

analytical approaches are applied to the same data. In prac-

tice, both a TWAS scan and a colocalization analysis are

often applied to the same eQTL and GWAS data combina-

tions. However, the implicated genes and the number of

discoveries from the two analyses are often markedly

different, making biological interpretation and the design

of follow-up studies challenging. Thus, a systematic inves-

tigation is warranted to help us dissect and understand

these practical differences.
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Under the settings of inferential reproducibility, the over-

lapping findings from all approaches are often considered

conceptual replications for individual methods and have

enhanced validity. The emphasis of the inferential repro-

ducibility analysis is typically placed on the difference

sets. We focus on examining the implicated genes reported

only by either colocalization or TWAS analysis in our spe-

cific application context. Unlike its method reproducibility

and results reproducibility counterparts, inferential repro-

ducibility does not expect or even encourage all methods

to yield identical results. On the contrary, the differences

driven by different analytical and operational assumptions

are largely anticipated.17,18 The goal of the inferential repro-

ducibility analysis is to quantify, understand, and interpret

these differences properly. The aim of our study is to provide

insights into how different analytical and operating as-

sumptions of the computational procedures, combined

with specific data characteristics, lead to different gene

nominations. Specifically, we show that the inconsistent re-

sults in these integrative genetic analyses have distinct char-

acteristics: in one scenario (i.e., for strong TWAS but weak

colocalization signals), they can be reconciled; in the other

(i.e., for weak TWAS but strong colocalization signals), they

are truly complementary.

On the basis of our analysis of inferential reproducibility

and to better facilitate connecting the reconcilable set of

genes implicated by the two integrative analysis ap-

proaches, we propose a novel locus-levelmethod of colocal-

ization analysis derived from the same probabilistic

modeling framework of fastENLOC. In contrast to the ex-

isting locus-level colocalization methods in the literature,

e.g., RTC,19 JLIM,20 our method carefully constructs the

candidate loci selected for analysis from the state-of-the-

art Bayesian multi-SNP fine-mapping algorithms, and the

inference results show much-improved resolution and

specificity. Thus, as an approach complementary to

variant-level colocalization, it can overcome some of the

latter’s intrinsic power limitations stemming from the

currently available data.16 This method is implemented

in the software package fastENLOC v2.0 (web resources).
Material and methods

Overview of TWAS scanning and variant-level

colocalization analysis
This section provides an overview of TWAS scanning and variant-

level colocalization analyses. There are multiple implementations

for each integrative approach. Here, we emphasize the commonal-

ity among different implementations and refer the readers to the

cited publications for their differences.

TWAS scanning

TWAS scanning aims to identify genes whose genetically predicted

expression levels are associated with a complex trait studied in a

GWAS. Most available approaches assume a linear prediction

model for gene expression levels; this model is trained with the

available eQTL datasets. Different TWAS scanning approaches

apply different supervised learning algorithms to train the predic-
826 The American Journal of Human Genetics 109, 825–837, May 5,
tion model. For example, PrediXcan7 utilizes the shrinkage

method, elastic net; TWAS-Fusion8 and PTWAS10 adopt Bayesian

prediction and model-averaging approaches, respectively. The

fully trained prediction model can be applied to GWAS datasets

and impute the gene expressions on the basis of only the corre-

sponding genotype information. Finally, association testing is per-

formed between the observed complex-trait phenotype and the

imputed expression phenotypes in a separate GWAS dataset.

Particularly, under the assumption of a linear-prediction model,

the association testing procedure can be effectively carried out

with only summary-level GWAS statistics.

Existing literature has explicitly connected TWAS scanning to

the testing procedure in instrumental-variable analysis and Men-

delian randomization.8,10,12 Particularly, a multi-SNP prediction

of gene expressions is viewed as a composite instrumental variable

(i.e., a weighted sum of genotypes from potential eQTL SNPs). A

prediction model involving a single genetic variant can be

straightforwardly derived according to the principles of either su-

pervised learning or instrumental variable analysis (see section 1

of the supplemental methods), which is similar to, but more

powerful than, the existing SMR9 method.

Variant-level colocalization analysis

Variant-level colocalization analysis aims to identify the overlap-

ping of causal eQTL and GWAS SNPs. Most existing variant-level

colocalization methods take the Bayesian probabilistic modeling

approach to effectively account for the inevitable uncertainty in

determining causal genetic variants.13–16 They also take advantage

of fine-mapping results obtained from individual analysis of each

trait to achieve improved accuracy. The colocalization probabili-

ties for individual SNPs (i.e., SNP-level colocalization probabilities,

or SCPs) can be unimpressive, especially when a few SNPs are in

high linkage disequilibrium (LD). The aforementioned methods

all report a regional-level colocalization probability (RCP) to repre-

sent the probability that a genomic region harbors a single colocal-

ized variant.

Variant-level colcoalization analysis is known to have limited

power given the available GWAS and molecular QTL data. Two

classes of false-negative (FN) errors are commonly encountered

in practice.16 Specifically, the class I FNs refer to the cases where

the genetic-association analyses for individual traits fail to identify

at least one genuine association at a colocalized site. The class II

FNs are caused by inaccurate quantification of association evi-

dence at the individual variant level: even if both associations

are identified for a locus, the probabilistic characterization of the

assumed causal variants might lead to weak evidence for variant-

level colocalization. The extensive class II FNs in the analysis of

real data motivate us to propose a locus-level approach to colocal-

ization analysis in this paper.
Evaluating inferential reproducibility between TWAS

scanning and colocalization analysis
TWAS scanning and colocalization analysis can be applied to the

same molecular QTL and GWAS datasets, which form the basis

for evaluating the inferential reproducibility of these methods.

For this evaluation, we select four complex traits, including stand-

ing heights from the UK Biobank, coronary artery disease (CAD)

status from the CARDioGRAM Consortium, and high-density li-

poprotein (HDL) and low-density lipoprotein (LDL) measure-

ments from the Global Lipids Genetic Consortium (GLGC). These

four traits are representative of a range of quantitative and discrete

complex traits measured at organismal and molecular levels.
2022



We performed TWAS scanning and variant-level colocalization

analyses for the selected GWAS traits by using the multi-tissue

eQTL data from the GTEx project (v8). To enable direct compari-

sons, we applied the integrative approaches, PTWAS for TWAS

scanning and fastENLOC for colocalization analysis, by using

the same set of cis-eQTL annotations derived from the multi-SNP

fine-mapping analysis method, DAP-G.15 Our main motivation

for these selections was to minimize the procedural differences

in eQTL and GWAS data pre-processing. Thus, we could focus on

the important analytical factors that lead to differences in inferen-

tial results. Our main results also extend to other TWAS-scanning

and colocalization-analysis methods.

Our comparison focuses on the gene-level quantification for each

trait-tissue-gene combination. The PTWASscanning reports a corre-

lation testing p value for each target trait-tissue-gene combination.

In the colocalization analysis, fastENLOC computes a regional co-

localization probability (RCP) for an independent GWAS hit and

an independent eQTL signal of a target gene in a specific tissue.

We subsequently computed a gene-level variant colocalization

probability (GRCP) by considering all available independent eQTL

signals for the target gene in the corresponding tissue, i.e.,

GRCPGt ¼ 1 �
Y
r ˛Gt

ð1 � RCPrÞ; (Equation 1)

where the set Gt represents the set of independent eQTL signals

within the cis-region of the target gene-tissue pair. The GRCP rep-

resents the probability that the target gene harbors at least one co-

localized causal variant for a trait-tissue-gene combination.

Processing of GTEx eQTL and complex-trait GWAS data

We used themulti-tissue eQTL data generated from the GTEx proj-

ect (v8) in our real-data analysis. The data were processed and

analyzed by the GTEx consortium. The pre-processing and anal-

ysis protocols are documented by the GTEx Consortium.1 For eval-

uating inferential reproducibility, we particularly focus on the cis-

eQTL fine-mapping results generated by the software package

DAP-G;21 these results are publicly available at the GTEx portal

and were re-formatted for PTWAS scanning and fastENLOC

without further processing.

The summary statistics from the four selected complex-trait

GWASs (HDL and LDL from the GLGC consortium; standing

height from the UK Biobank; and coronary artery disease from

the CARDioGRAM consortium) are also publicly available. We

used the single-SNP-association Z scores for the four traits harmo-

nized by the GTEx project.1 The main purpose of the harmoniza-

tion procedure is to match common SNPs between the SNPs inter-

rogated in the GWAS and those from the GTEx project. More

specifically, if a GTEx SNP is missing from the corresponding

GWAS, its GWAS Z score is imputed with the software package

impG.22 The harmonized Z scores are subsequently used in

PTWAS scanning and fastENLOC analyses.

Probabilistic colocalization analysis at the locus level
We propose a locus-level colocalization analysis method to (1)

remedy the weakness that exists in variant-level colocalization

analysis as a result of the extensive class II false negatives; and

(2) provide an effective analytical tool for reconciling TWAS and

colocalization analysis. The motivation will be elucidated in the

results section .

The overall goal of the proposed computational method is to

quantify the probability of a genomic locus harboring both a

causal molecular QTL and a causal GWAS variant. We define

such a probability as the locus-level colocalization probability
The Ame
(LCP). LCP differs from RCP: RCP quantifies the probability of a

genomic region containing a single colocalized variant, whereas

LCP accounts for additional possible events that distinct causal var-

iants for different traits coexist in the same locus. Thus, it follows

that LCP R RCP for any given loci.

The key to the proposed approach is the specification of candi-

date colocalization loci. The computation is based on the same

probabilistic generative model used in the variant-level colocaliza-

tion analysis.

Specification of candidate colocalization loci

Our implementation defines a candidate colocalization locus by the

intersected signal clusters (or credible sets) from the target molecu-

lar and complex traits. Signal clusters are generated from Bayesian

multi-SNP fine-mapping analysis of genetic-association data. A

signal cluster is constructed from an identified set of LD SNPs repre-

senting the same underlying association signal for a given trait.

Member SNPs in a signal cluster satisfy both the redundancy condi-

tion and the LD condition (also known as the purity condition in

some implementations). The redundancy condition indicates that

members of the same signal cluster can be used to represent the

same underlying association signal almost interchangeably, with

only slight quantitative differences (in model likelihood/posterior

probabilities).23 The LD condition requires that all member SNPs

are in high LD. The construction of signal clusters is similar to the

widely used conditional analysis in genetic-association studies. By

these two conditions and under certain statistical assumptions of

statistical fine-mapping analysis, it follows that at most one variant

within a signal cluster represents the true association signal. Avail-

able fine-mapping algorithms that can produce necessary signal

clusters or credible sets include SuSIE,23 FINEMAP,24 and DAP-G.15

The candidate loci constructed from signal clusters are also prac-

tically small and typically include only a few SNPs in LD. For

example, the fine-mapping of the GTEx whole-blood eQTLs by

DAP-G yields 113,318 signal clusters with coverage probability

R0.95 (i.e., the 95% Bayesian credible sets). On average, each signal

cluster contains only 16 SNPs (median¼ 8)with theminimumpair-

wise R2 > 0.5.

Computation of locus-level colocalization probability

Let Ye and Yg denote the genotype and phenotype data combina-

tions for the molecular and the complex traits of interest, respec-

tively. Consider p overlapping SNPs in a candidate colocalization

locus. Let bi and ai denote the genetic effects of SNP i for the com-

plex and molecular traits, respectively. The latent binary associa-

tion status of all member SNPs in the locus for the complex trait

is represented by a p-binary vector, g, where gi ¼ 1(bi s 0). Simi-

larly, we use p-vector d to denote the latent association status for

the molecular trait, where di ¼ 1(ai s 0).

Let Gk andDk denote the sets of configurations of g and d values

with exactly k independent association signals for the correspond-

ing traits, respectively. By the construction of the candidate locus,

it follows that

Pr
�
g ˛ Gk

��Y g

� ¼ 0 and Prðd ˛ DkjY eÞ ¼ 0;c kR2:

(Equation 2)

Thus, the problem of locus-level colocalization then can be framed

as evaluating the posterior probability, Prðg ˛G1; d ˛D1

�� Y g ;Y eÞ.
If we assume the molecular and complex trait data are collected

from two non-overlapping sets of samples, it follows that

Pr
�
g ˛ G1; d ˛ D1

�� Y g ;Y e

�
¼ Pr

�
g ˛ G1

�� d ˛ D1;Y g

�
Prðd ˛ D1jY eÞ

(Equation 3)
rican Journal of Human Genetics 109, 825–837, May 5, 2022 827



Next, we show that both required probabilities can be deduced

from the variant-level colocalization model detailed in Wen

et al. and Hukku et al.15,16

It follows from Equation 2 that

Prðd ˛ D1jY eÞ ¼
Xp

i¼1

Prðdi ¼ 1jY eÞ; (Equation 4)

where Prðdi ¼ 1jY eÞ denotes the posterior inclusion probability

(PIP) for member SNP i computed from the fine-mapping analysis

of the molecular QTLs.

The computation of Prðg ˛G1

�� d ˛D1;Y gÞ can be formulated

as a problem of fine-mapping GWAS hits with informative

molecular QTL priors.21 More specifically, the variant-level

priors,

pne :¼ Prðgi ¼ 1jdi ¼ 0Þ
pe :¼ Prðgi ¼ 1jdi ¼ 1Þ (Equation 5)

can be estimated by a multiple imputation (MI) procedure

described in Hukku et al.15 Thus, one can compute the prior

required for the locus-level colocalization analysis by consid-

ering all compatible configurations of g and d values, i.e.,

Prðg˛G1jd˛D1Þ
¼

�
p
1

�
ð1 � pneÞp�1

pe þ 2

�
p
2

�
ð1 � pneÞp�2 ð1 � peÞ pne

¼ p ð1 � pneÞp�2 ½ peð1 � pneÞ þ ðp � 1Þ pne ð1 � peÞ �:
(Equation 6)

Similarly,

Prðg ¼ 0jd ˛ D1Þ ¼ p ð1 � pneÞp�1 ð1 � peÞ: (Equation 7)

As in the variant-level colocalization analysis, the PIPs of

GWAS SNPs are assumed to be available from Bayesian fine-

mapping methods based on an exchangeable and eQTL non-

informative prior, Prðgi ¼ 1Þ : ¼ p, which can also be estimated

by the average of all GWAS PIPs.15 For this eQTL non-informa-

tive prior, the induced prior probabilities for the locus of inter-

est are given by

Prðg˛G1Þ ¼ p p ð1 � pÞp�1

Prðg ¼ 0Þ ¼ ð1 � pÞp�1 (Equation 8)

It again follows from Equation 2 that

Pr
�
g ˛ G1

��Y g

� ¼
Xp

i¼1

Pr
�
gi ¼ 1

��Y g

�
: (Equation 9)

The marginal likelihood defined by the Bayes factor, BF ¼
PðYg jg˛G1Þ
PðY g jg¼0Þ , can be obtained from

BF ¼ Pr
�
g˛G1

��Y g

�
1 � Pr

�
g˛G1

��Y g

� ð1 � pÞ
p p

: (Equation 10)

Put together, by Equations 2, 6, (7), and (10), and the Bayes

theorem,
Pr
�
g ˛ G1

�� d ˛ D1;Y g

� ¼ Prðg
Prðg ¼ 0jd˛D

828 The American Journal of Human Genetics 109, 825–837, May 5,
Thus, the desired locus-level colocalization probability,

Prðg ˛G1; d ˛D1

�� Y g ;Y eÞ, can be computed by Equation 3.

Finally, for each gene, we define a gene-level colocalization

probability (GLCP) by

GLCPGt
¼ 1 �

Y
l˛Gt

ð1 � LCPlÞ: (Equation 12)

Results

Comparing findings from TWAS scanning and

colocalization analysis

Weperformed TWAS scanning and variant-level colocaliza-

tion for the four selected GWAS traits and the eQTL data

from 49 GTEx tissues. A correlation testing p value from

PTWAS and a GRCP from fastENLOC are computed for

each trait-tissue-gene combination.

We compute the Spearman’s rank correlation between

the -log10 PTWAS p values and the corresponding GRCPs

among all examined genes in each trait-tissue pair. Across

the 196 trait-tissue pairs, the two measures are only

modestly correlated (mean ¼ 0.223 and median ¼ 0.085).

Despite their correlations’ being significantly different

from 0 in all trait-tissue pairs, TWAS scanning and colocal-

ization analyses show a high degree of discordance in

ranking important genes (Figure S1).

Next, we inspected the overlapping between noteworthy

genes implicated by the two approaches (i.e., the set of

conceptually replicated genes). Following previous investi-

gations,1,5,6,25 we consider that a gene is noteworthy in the

colocalization analysis if its GRCP exceeds the probability

threshold of 0.50 for a given trait-tissue pair. In the

TWAS analysis, a gene is deemed noteworthy if it is rejected

at the FDR 5% level in a trait-tissue pair (FDR controls are

performed via the qvalue method based on the PTWAS p

values). The full results of this analysis are summarized in

Table 1. Marginally, the TWAS analysis implicates many

more noteworthy genes than the colocalization analysis

does (128,130 vs. 2,337) across 49 3 4 ¼ 196 trait-tissue

pairs. Among the two sets, there is an overlap of 2,054

genes, corresponding to 88% of the noteworthy colocaliza-

tion genes and 1.6% of the noteworthy TWAS genes,

respectively. This finding suggests that most colocalization

genes also show strong evidence of TWAS associations,

whereas the vast majority of TWAS genes generally lack

strong evidence for variant-level colocalizations.

To better understand the discrepancy between the TWAS

and colocalization analysis, we subsequently investigated

the two difference sets of the noteworthy genes in greater

detail.
˛G1jd˛D1Þ BF
1Þ þ Prðg˛G1jd˛D1Þ BF (Equation 11)
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Table 1. Noteworthy findings in joint analysis of GTEx eQTL and four GWAS traits by different analysis approaches

Complex trait

Analysis approach

TWAS VCa LCb TWAS þ VC TWAS þ LC

Height 116,396 1,674 5,387 1,524 4,701

CAD 2,500 612 1,013 486 762

HDL 4,996 35 652 30 448

LDL 4,238 16 464 14 344

Total 128,130 2,337 7,516 2,054 6,255

For TWAS scanning, the noteworthy genes are identified at a 5% FDR level in each trait-tissue pair; for VC and LC analysis, the noteworthy genes are those with
GRCP and GLCP values R 0.50, respectively.
aVariant-level colocalization analysis.
bLocus-level colocalization analysis.
Strong colocalization and weak TWAS signals

There are 283 trait-tissue-gene combinations that show

strong variant-level colocalization but weak TWAS associa-

tion evidence. A small subset of these findings can be

attributed to the threshold effect of TWAS analysis. That

is, if we re-define noteworthy TWAS genes by (slightly) re-

laxing the FDR control level, these combinations will be re-

classified in the overlapping set. However, the majority of

the combinations in this set show compatibility with the

null hypothesis of the TWAS scan, suggesting that geneti-

cally predicted gene expression levels are uncorrelated

with complex traits of interest. Upon further inspection,

we find that most of these instances can be explained by

the phenomenon known as ‘‘horizontal pleiotropy.’’

To illustrate, we take one of the extreme examples in the

CADGWAS. Two independent eQTLs are confidently iden-

tified (with posterior probabilities >0.92) in TDRKH (MIM:

609501) (Ensembl: ENSG00000182134) from the GTEx ar-

tery tibial tissue samples. One of the eQTL signals, repre-

sented by 10 tightly linked SNPs, also shows strong coloc-

alization evidence, with GRCP ¼ 0.92. In contrast, the

predicted gene expression, constructed primarily from

these two independent eQTL signals, shows little correla-

tion with GWAS CAD status; the resulting p value is ¼
0.98. A detailed instrumental variable (IV) analysis, imple-

mented in the PTWAS estimation procedure, reveals that

the two independent eQTLs indicate opposite gene-to-trait

effects on the GWAS trait (Figure 1): one implies that

increased gene expression levels increase CAD risk,

whereas the other suggests that increased expression levels

decrease the risk. When the two eQTLs are combined to

predict gene expressions, the overall gene effect on the dis-

ease implicated by the predicted expression levels is

‘‘canceled out.’’ The extreme level of heterogeneity esti-

mated for gene-to-trait effects by independent instruments

indicates that the vertical pleiotropy represented by

variant / gene / trait is highly unlikely in this case.

Among the 283 identified combinations, the over-

whelmingmajority of the genes containmultiple indepen-

dent eQTLs. We quantify the heterogeneity of the inferred

gene-to-trait effects by using all available independent

eQTLs for each combination and computing an I2 value.10
The Ame
(An I2 value ranges from 0 to 1, where values close to 1 indi-

cate extreme heterogeneity.) For example, the I2 value for

TDRKH illustrated above is 0.95. The distribution of I2

values from this set is shown in Figure 2. Themean I2 value

is 0.73 (median ¼ 0.88), clearly indicating that the major-

ity of cases in this category suggest horizontal, instead of

vertical, pleiotropy. In comparison, the set of genes impli-

cated by both TWAS scanning and colocalization analyses

have much lower I2 values on average (mean ¼ 0.28;

median ¼ 0.00).

In summary, we find that most instances in this differ-

ence set of implicated genes represent a scenario where

the two integrative-analysis approaches can be comple-

mentary. Additionally, most implicated genes in this set

are unlikely to be direct causal genes for the complex traits,

and their relevance to the complex traits could potentially

be explained by the phenomenon of horizontal pleiotropy.

Strong TWAS and weak colocalization signals

Strong TWAS and weak colocalization signals account for

most discrepancies between colocalization and TWAS ana-

lyses. This phenomenon is largely anticipated by different

hypotheses employed by the two approaches. A straight-

forward analytical derivation shows that discovering a

TWAS signal does not imply the existence of variant-level

colocalization. Instead, the necessary conditions that drive

TWAS signals are much relaxed and can be precisely sum-

marized in the following proposition.

Assuming linear prediction and association models and pro-

vided that a target gene’s genotype-predicted gene-expression

level is correlated with a complex trait of interest, there is at least

one inferred eQTL of the target gene in linkage disequilibrium

with a causal GWAS variant. (Proposition 1)

Proof: Let sets E and G denote the collections of inferred

eQTLs (of the target gene) and the causal GWAS hits, respec-

tively. According to the linear-model assumption, the geno-

type-predicted gene expression (bye) can be written as

bye ¼ bme þ
X
i˛E

bbigi; (Equation 13)

where gi represents the genotype of SNP i and bbi is the esti-

mated eQTL effect for prediction. Without loss of general-

ity, assume the complex trait of interest (yc) is quantitative
rican Journal of Human Genetics 109, 825–837, May 5, 2022 829



Figure 1. Estimated gene-to-trait effects
on CAD by two independent eQTL SNPs
of TDRKH explain its strong colocalization
but weak TWAS signals
The eQTL fine-mapping analysis of TDRKH
with GTEx tibial artery tissue samples
identifies two independent strong eQTLs
(SPIPs > 0:9) represented by the lead SNPs
rs6667279 and rs1521185, respectively.
The second eQTL signal, represented by
rs1521185 (highlighted in red), also shows
strong variant-level colocalization, with
RCP ¼ 0.92. The figure shows estimated
gene-to-trait effects when the two lead inde-
pendent eQTL SNPs are used as instruments.
Specifically, the first instrument shows that
increased gene expression is associated

with increased CAD risk, whereas the colocalized instrument predicts the opposite. As a result, the gene expression predicted on the basis
of combining the two SNPs shows no evidence of association with CAD risk (PTWAS-scan p value ¼ 0.98).
and its genetic association can be described by the

following linear model, i.e.,

yc ¼ mc þ
X
j˛G

ajgj þ e; e � N
�
0; s2

�
;

where e and s2 represent the residual error and its variance,

respectively, and aj denotes the genetic effect of SNP j to

the complex trait.

A TWAS scan procedure examines the correlation be-

tween bye and yc and tests the null hypothesis,

H0 : Corrðbye;ycÞ ¼ 0. It follows that

Corr
�bye; yc

�
f

X
i˛E; j˛G

aj
bbi Cov

�
gi; gj

�
(Equation 14)

Therefore,

Corr
�bye; yc

�
s00d a pair of ði; jÞ;

such that aj
bbi Cov

�
gi; gj

�
s0:

Note that this simple proposition states a necessary but

not sufficient condition for the existence of TWAS signals.

Specifically, the TWAS signal is driven by the sum of all

non-zero aj
bbi Covðgi; gjÞ pairs. As illustrated in the previ-

ous section, it is statistically possible that multiple terms

with different signs can cancel each other out. Addition-

ally, the linearity of the prediction-model assumption

covers almost all popular TWAS approaches, but it can be

relaxed to allow non-linear prediction functions. In the

expanded prediction function family, Equation 13 be-

comes a first-order approximation.

The proposition also implies a direct connection be-

tween the TWAS scan and variant-level colocalization anal-

ysis. By definition, a variant-level colocalization signal sat-

isfies the condition aj
bbi Covðgi; gjÞs0 for some i ¼ j. A

colocalized genetic variant of both molecular and complex

traits should also drive a TWAS signal in the absence of the

cancellation phenomenon. This corollary explains our

observation that most genes implicated by the colocaliza-

tion analysis are also implicated by the TWAS scan.
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Next, by assuming the absence of allelic heterogeneity for

the target gene, we consider the scenario whereby only a

single term in Equation 14 drives a TWAS signal. It becomes

apparent that the strengthof aTWASsignal reflects the joint

effect of aj;bbi, and the LD between the two variants (i and j).

It further implies that even when the LD between a causal

eQTL and a GWAS hit is weak, relatively strong genetic ef-

fects, aj and/or bi, can compensate for the strength of the re-

sulting TWAS signal. This result seemingly explains a com-

mon pattern in practical TWAS scan results: noteworthy

signals tend to cluster around some of the strongest

GWAShits.Mancuso et al.11 also discussed a similar pattern

of clustered TWAS signals due to LD. However, our deriva-

tion does not need to assume any true causal relationship

between genes and the complex trait of interest (i.e., the

phenomenon can exist without any causal genes).

Figure 3 shows a particular instance from the TWAS scan

of a height GWAS (UK Biobank) and GTEx skeletal-muscle

genes, where a cluster of TWAS signals are centered around

one of the most significant GWAS hits on chromosome 3

(rs2871960) identified in the UK Biobank data. The eQTL

analysis of the GTEx data suggests that the putative causal

GWAS SNP is probably not a causal eQTL.

We conducted simulations to demonstrate that this sin-

gle GWAS signal (p value ¼ 2.4 3 10�256) drives the entire

cluster of TWAS signals at this locus. We utilized the real

eQTL genotype and phenotype data from GTEx for 39

neighboring genes at this locus and independently simu-

lated the phenotype data of a complex trait; we assumed

that rs2871960 was the only causal SNP. (The details of

the simulation setting are provided in section 2.1 of the

supplemental methods.) The PTWAS scan of the simulated

data replicates the pattern observed in the real data; a third

of neighboring genes show significant TWAS associations.

To confirm that the sole GWAS association induces all

TWAS signals, we repeated the analysis with the residuals

of simulated complex trait phenotype by regressing out

the genotypes of SNP rs2871960 (Figure 3). The results of

the alternative TWAS scanning approach, SMR, display

an identical pattern (Table S3).
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Figure 2. Histogram of I2 statistics for
genes with strong variant-level colocali-
zation but weak TWAS signals
The I2 statistic represents the level of het-
erogeneity in estimated gene-to-trait ef-
fects from independent eQTLs. Large I2

values (i.e., I2/1) indicate that vertical
pleiotropy is unlikely. The figure shows
that genes with strong variant-level coloc-
alization but weak TWAS signals are more
likely to have high I2 values than those
with strong TWAS signals. That is, the
phenomenon illustrated in Figure 1 can
be common in this set of genes. The
peak at I2 ¼ 0 for this set mostly represent
the genes whose TWAS-scan p value
approach but do not exceed the pre-
defined FDR significance level.
Although the LD-hitchhiking TWAS signals are not false

positives from the perspective of statistical associations,

the abundance of signals of these sorts should caution

the biological interpretations. For example, it would be a

mistake to regard all LD-hitchhiking TWAS signals as inde-

pendent candidates of causal genes for the trait of interest.

On this point, we are in full agreement with Mancuso

et al.11 that TWAS results need to be further processed, bet-

ter understood, and carefully reported.

In summary, our statistical analysis reveals some main

characteristics of TWAS signals, which do not require

variant-level colocalization and tend to be correlated. These

characteristics help explain the difference set of strong

TWAS but weak colocalization signals. Regarding this differ-

ence set of implicated genes, we find that the two ap-

proaches can be reconciled by (1) re-defining the standard

for colocalization (i.e., adjusting colocalization analysis);

and (2) removing non-independent findings from TWAS-

scan reporting (i.e., adjusting TWAS scanning).

Locus-level colocalization: A reconciliation

The proposed approach to locus-level colocalization anal-

ysis has some desired properties that can reconcile the re-

sults of the TWAS scan and colocalization analysis, espe-

cially for the set of genes showing strong TWAS but weak

variant-level colocalization signals.

From the perspective of variant-level colocalization anal-

ysis, the lack of statistical power is a primary limiting factor

in the analysis of current molecular and complex-trait

data. Many authors26,27 have shown that it is often diffi-

cult, if not impossible, to pinpoint the causal genetic asso-

ciations in current molecular QTL mapping studies.

Furthermore, with a limited sample size, the lead SNPs,

whether quantified by Bayesian or frequentist approaches,

are often not the true causal SNPs. In many cases, we are

relatively certain of a genuine association signal among a

group of tightly linked variants (e.g., variants within a

signal cluster) but uncertain about the exact variants.

Hukku et al.16 show that such uncertainty causes a large

class of false-negative findings (i.e., class II FNs) in

variant-level colocalization analysis. Their simulation
The Ame
studies based on realistic settings show more class II FNs

than the identified true findings. To address this funda-

mental limitation, the proposed locus-level colocalization

analysis identifies the co-existence of casual eQTLs and

GWAS hits at a slightly coarser resolution. The key ratio-

nale is that even when locus-level colocalizations do not

show strong evidence of variant-level colocalizations in

the current data, they might very well prove to be class II

FNs in future experiments with improved statistical power.

From the perspective of the TWAS scan, the critical issue

for reconciliation is to filter out redundant representations

due to LD and report only independent and biologically

relevant signals. One possible solution is to require causal

SNPs for molecular and complex traits colocalized

at a small enough genomic region, such that not only is

Cov(gi,gj) in Equation 14 automatically constrained, but

the interpretation of the TWAS signal also becomes natu-

ral. This idea is not new. Many authors16,25,28 have pro-

posed using variant-level colocalizations as a prerequisite

for following up on TWAS scan results. These proposals

are also supported by a class of probabilistic generative

models that connect TWAS scanning and colocalization

analysis (Section 2.2 of the supplemental methods). Here,

we relax the colocalization standard and consider the

limited practical power in identifying variant-level

colocalizations.

To interpret significant results of TWAS scanning by us-

ing the locus-level colocalization analysis, we require that

the GLCPs (defined in the Equation 12) of candidate causal

genes exceed a threshold (pre-defined or by FDR control).

Simulation study

We designed and conducted simulation experiments to

benchmark the proposed locus-level colocalization anal-

ysis by comparing it to variant-level colocalization and

TWAS-scan analyses. We took the real individual-level ge-

notype data from 838 individuals in the GTEx covering

22 distinct LD regions. Specifically, we selected random

segments of 50 consecutive common SNPs (with minor-

allele frequency > 0.1) from each of the 22 autosomes.

Treating the 1,100 selected SNPs as a single cis region of a
rican Journal of Human Genetics 109, 825–837, May 5, 2022 831
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Figure 3. Simulation illustrating LD-hitchhiking effects in TWAS scan
(A) Panel A shows an observed cluster of significant TWAS-scan genes from UK Biobank standing-height data. The signals are centered
around ZBTB38 (MIM: 612218) (Ensembl ID: ENSG00000177311), whose position is labeled by the dotted vertical line. Each point on
the figure represents a TWAS-scan p value of a neighboring gene.
(B) A similar cluster pattern can be replicated from a simulated dataset, which is generated under the assumption of a single causal variant
within ZBTB38.
(C) The significant TWAS-scan cluster disappears once the genotypes of the sole causal SNP are regressed out from the simulated pheno-
type data. The horizontal red line indicates the nominal 0.05 significance level in all three panels. The simulation experiment illustrates
that the significant TWAS-scan findings can be attributed to the LD-hitchhiking effects.
target gene, we randomly selected two SNPs to simulate the

gene expression levels and two SNPs to simulate a quanti-

tative trait by using a set of linear models (see details in the

material and methods section). This design ensured

modest to strong realistic LD patterns within each LD re-

gion but weak LD between different regions (Figures S2

and S3). We generated 5,000 datasets where all four causal

SNPs were located in distinct LD regions (i.e., no variant or

locus-level colocalizations). Additionally, we simulated

2,500 datasets with one causal eQTL and one causal

GWAS hit colocalized at a single variant, and the remain-

ing causal eQTL and the remaining causal GWAS SNP
832 The American Journal of Human Genetics 109, 825–837, May 5,
reside in two different LD regions. This particular simula-

tion scheme can be re-formulated by a structural equation

model (SEM) commonly assumed by TWAS scanning and

Mendelian randomization (Section 2.2 of the supple-

mental methods). Thus, the simulated datasets are also

suitable for TWAS scanning . By this design, we intended

to avoid LD-hitchhiking effects, such that the TWAS results

would be more concordant with the locus-level colocaliza-

tion findings.

We analyzed the simulated datasets by using TWAS scan-

ning and variant- and locus-level colocalization methods.

We applied three approaches to TWAS scans: PTWAS,
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Table 2. Comparison of power and realized FDR in simulation study

Method Power FDR

Locus-level colocalization 0.70 (1739/2500) 0.01 (14/1753)

SNP-level colocalization 0.43 (1067/2500) 0.00 (0/1067)

PTWAS 0.67 (1684/2500) 0.20a (418/2012)

PrediXcan 0.55 (1384/2500) 0.16a (260/1644)

SMR 0.45 (1119/2500) 0.21a (299/1418)

aRealized FDR exceeds the control level (5%).
PrediXcan,7 and the improved SMR approach (a single-SNP

TWAS method described in section 1 of the supplemental

methods). For the variant- and locus-level colocalization

analyses, we used the algorithms implemented in the soft-

ware package fastENLOC.

We considered a finding to be a true positive one if a

simulated gene harboring a colocalized signal was identi-

fied at 5% FDR level, and we considered a finding to be a

false positive one if a gene where causal variants reside in

distinct LD segments passed the same significance

threshold for FDR control. The results by the three

different integrative-analysis approaches are summarized

in Table 2 and Figure 4.

The variant-level colocalization analysis forms a conser-

vative baseline for comparison. It reports no false-positive

findings but the lowest power. Following the methods of

Hukku et al.,16 we further assigned all the false-negative

findings to one of two distinct classes. For a colocalized

signal, a class I false negative (FN) refers to a failure to

identify the association signal for at least one trait within

a genomic segment; a class II FN refers to a failure to

quantify the variant-level colocalization probability

despite both association signals’ being localized within

the same segment. We estimate that 47.4% of FNs (or

679 instances) in variant-level colocalization analysis fall

into the category of class II. Our results indicate that the

proposed locus-level colocalization analysis effectively res-

cues those class II FNs without greatly increasing false-

positive findings: 95.2% of the original class II FNs are

now identified by the locus-level colocalization analysis.

There is no loss of true variant-level colocalization find-

ings because LCP is always no less than the corresponding

RCP (Figure 4).

The multivariate PTWAS-scan approach reports the most

findings (2,102) across all examined methods by a large

margin. However, despite our best efforts in assembling

the artificial genomic region, a significant proportion of

the TWAS-scan findings (19.9%) are results of weak LDs be-

tween distinct eQTL and GWAS variants located in different

segments. Specifically, we found that the maximum R2

values between a causal eQTL and a causal GWAShit a range

from 6 3 10�4 to 0.148 (mean ¼ 0.027) within this set. A

detailed inspection confirms that the true expectations of

gene expression levels (computed by the true genetic associ-

ation model of gene expressions) are indeed significantly
The Ame
correlated with the simulated phenotypes. We emphasize

that these findings are only considered false positives by

the standard of colocalization analysis or the intended struc-

tural equation model. In summary, the extremely low level

of LD required to drive a TWAS signal can be surprising, but

this phenomenon is well explained and anticipated by

Proposition 1 (i.e., the strong genetic effects of eQTLs

and/or GWAS hits can compensate weak LDs). Interpreting

the (biological) relevance of this set of genes can be difficult

because such associations should only be characterized as

accidental. The joint analysis based on filtering TWAS

scan results with locus-level colocalization analysis results

is proven to be effective at removing these accidental asso-

ciation signals. The filtered TWAS discovery set maintains

reasonably good power (61%) and is much easier to

interpret.

Re-analysis of GTEx and GWAS data via locus-level

colocalizations

Finally, we re-analyzed the four complex-traits GWAS and

the GTEx eQTL data by using the proposed locus-level co-

localization approach. We again ensured that all examined

methods utilized identical input information. Detailed

comparisons between PTWAS, variant-, and locus-level co-

localization analyses are provided in Table 1. Across 196

trait-tissue pairs, the locus-level colocalization identifies

7,516 genes with GLCP >0.50, representing a 2.2-fold in-

crease of discoveries than the variant-level colocalization

analysis. A remarkable 83% of the high-GLCP genes overlap

with the significant PTWAS genes. We considered this set of

6,255 PTWAS genes filtered by locus-level colocalization

analysis to be high-priority genes for further validation.

We first inspected the set of 1,261 genes that showed

high GLCP but did not pass FDR control at 5% level in a

PTWAS scan analysis. Similar to the weak TWAS and strong

colocalization signals implicated by variant-level colocali-

zation analysis, this set of genes also shows excessive het-

erogeneity in estimated gene-to-trait effects across multi-

ple independent eQTL signals (Figure 5), suggesting

potential horizontal pleiotropy. Figure 5 also indicates an

increase of genes whose PTWAS signals are close but do

not pass the FDR control threshold.

In the set of 6,255 PTWAS significant genes filtered by

the locus-level colocalization analysis, we find many dis-

coveries have documented biological relevance to the
rican Journal of Human Genetics 109, 825–837, May 5, 2022 833



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

Variant−level Colocalization

GWAS effect (absolute value)

eQ
TL

 e
ffe

ct
 (a

bs
ol

ut
e 

va
lu

e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

Locus−level Colocalization

GWAS effect (absolute value)

eQ
TL

 e
ffe

ct
 (a

bs
ol

ut
e 

va
lu

e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

TWAS Scan

GWAS effect (absolute value)

eQ
TL

 e
ffe

ct
 (a

bs
ol

ut
e 

va
lu

e)

Figure 4. Comparing sensitivity of different integrative-analysis approaches in simulations
The bi-plots represent the eQTL and GWAS effects of the colocalized variant in 2,500 simulated datasets. The highlighted points in each
plot indicate the true positive discoveries by the corresponding methods at the 5% FDR level. The power increment of the locus-level
colocalization method over the variant-level colocalization method is visually clear.
corresponding complex traits in the literature. We first

investigate the Online Mendelian Inheritance in Man

(OMIM)29 database to find associated genes. For this inves-

tigation, we select phenotype OMIM IDs mapped to any of

our four traits and subsequently identify all confirmed gene

associations with those phenotypes. In total, we extract 12

validated genes from the OMIM across the 4 analyzed com-

plex traits, with 6 in our result by the joint PTWAS and lo-

cus-level colocalization analysis (Table S1). It is worth

noting that the joint SNP-level colocalization and PTWAS

analysis only identifies one out of 12 genes.

An illustrative example is LPL (MIM:609708) (Ensembl

id: ENSG00000175445) with HDL.Within the adipose sub-

cutaneous tissue, there is a very strong TWAS signal (p

value ¼ 9.7 3 10�135) and substantial evidence for locus-

level colocalization (GLCP ¼ 0.97). Meanwhile, the

GRCP for this gene is only 0.07, reinforcing the added util-

ity of locus-level colocalization.

Additionally, we utilized one of the largest gene-disease

association repositories, DisGeNET,30 to inspect the biolog-

ical relevance of CAD-associated genes implicated by the

proposed joint analysis. DisGeNET comprehensively inte-

grates and ranks multiple types of reliable gene-disease as-

sociation evidence from a catalog of source databases. We

pulled out a list of 65 high-confidence CAD-relevant genes

whose DisGenNET scores are greater than the built-in

default selection threshold of 0.3. The PTWAS scanning

identified 510 unique genes across 49 tissues in our inte-

grative analyses. A subset of 172 unique genes passed the

additional filtering of the locus-level colocalization anal-

ysis. We found that 23 of the 172 genes appear in the

DisGenNET CAD gene list (Table S2). In comparison, the

remaining 338 genes that lack locus-level colocalization

evidence only contribute seven additional hits on the

DisGenNET CAD list. A Fisher exact test indicates that

the enrichment of CAD-relevant genes implicated by the

proposed joint analysis is statistically highly significant

in contrast to the stand-alone TWASscanning (p value ¼
8.8 3 10�7). Compared to the joint analysis of TWAS and

variant-level colocalization analysis (which flags 17

DisGenNET genes from 117 implicated unique genes),
834 The American Journal of Human Genetics 109, 825–837, May 5,
the proposed method represents a 35% increase in

confirmed discoveries, while having a similar level of

signal enrichment.
Discussion

This paper systematically investigates two prevailing

methods of integrative genetic analysis, TWAS scanning

and colocalization analysis, and focuses on understanding

and reconciling their inferential differences in practical

settings. From the perspective of inferential reproduc-

ibility, we identifymultiple statistical and biological factors

that yield different sets of implicated genes. In one sce-

nario (i.e., strong colocalization but weak TWAS signals),

we find that most genes in the specific difference set

show interesting characteristics requiring further biolog-

ical investigations, indicating that the two approaches

are complementary. In the other scenario (i.e., strong

TWAS but weak colocalization signals), we find that the dif-

ferences can be effectively reconciled. Subsequently, we

propose and implement a new locus-level colocalization

analysis method to bridge the two types of analyses. We

illustrate that the proposed joint-analysis approach can

produce a rich list of biologically relevant ‘‘conceptual rep-

lications’’ for downstream investigations and validations.

Variant-level colocalization analysis utilizes a conceptu-

ally rigorous and superior standard for examining the over-

lapping of causal association signals at the finest resolu-

tion. It exhibits the highest specificity among the

existing integrative-analysis approaches. The most notice-

able drawback is its limited sensitivity given currently

available data.16 The issue is originated from the difficulty

in quantifying variant-level association evidence and un-

certainty in the presence of LD.26,27 Although future data

withmore precise phenotyping (e.g., single-cell expression

data) and/or a larger sample size will certainly improve the

power of variant-level colocalization analysis, the intrinsic

difficulty due to complex LD patterns might not be fully

resolved. We trade off the rigid conceptual standard of

variant-level colocalizations for improved sensitivity in
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Figure 5. Histogram of I2 statistics for
genes with strong locus-level colocalization
but weak TWAS signals
The figure indicates that genes with strong
locus-level colocalization but weak TWAS
signals are more likely to have high I2 values
than those with strong TWAS signals. This
phenomenon is similar to findings for genes
with strong variant-level colocalization but
weak TWAS signals, indicating that both
sets of genes are most likely enriched with
cases of horizontal pleiotropy.
the proposed locus-level colocalization analysis. This is

mostly motivated by a series of realistic simulation studies

presented in Hukku et al.16 and this paper, where the ratios

of class II false negatives versus reported findings (which

contain few false-positive errors) are often strikingly high

(i.e., �1:1).

We acknowledge that locus-level colocalization analyses

are conceptually not new. For example, RTC19 and JLIM20

are two representatives of general-sense locus-level colocal-

ization methods in the literature. However, we observe at

least three distinct advantages of the proposed approach

over the existing methods. First, we define target loci

through the fine-mapping output of signal clusters, which

harbor very limited but highly relevant candidate genetic

variants. In comparison, existing approaches often analyze

genomic regions at 100kb scales.9,19,20 (We have attempted

to apply these existing methods to our simulated data but

failed to obtain results, mostly because of conflicts in the lo-

cus definition.) As expected, the precise locus definition

provided by the proposed approach results in high speci-

ficity, which is comparable to variant-level colocalization

analysis, as shown in our real-data analysis. It is worth

emphasizing that the high-resolution feature of the pro-

posed method makes it feasible to reconcile its results

with the TWAS results. Second, the proposed approach takes

full advantage of (Bayesian) multi-SNP fine-mapping anal-

ysis of molecular and GWAS data and yield more precise

colocalization results with appropriate uncertainty quantifi-

cation. In comparison, most existing methods rely on sin-

gle-SNP-association testing results and often fail to account

for widespread allelic heterogeneity in molecular traits.

Third, the proposed method performs explicit enrichment

estimation, which utilizes the prior information thatmolec-

ular QTLs are most likely enriched in GWAS hits. The

enrichment estimate is subsequently incorporated to allow

computation of locus-level colocalization probabilities

through an empirical Bayes framework and improve statisti-

cal power. This feature, inherited from the variant-level co-

localization analysis,16,31 is not presented in any existing lo-

cus-level colocalization methods.

The empirical comparison of TWAS scanning and coloc-

alization analyses helps us identify statistical factors that

differentiate the two sets of results. One of this work’s

most important take-away messages is that the results of

TWAS scans are unlikely to be independent and probably
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need further processing. At a certain level, PTWAS scan-

ning is analogous to single-variant testing in the common

practice of genetic-association analysis, where the commu-

nity standard is not stopping at reporting significant indi-

vidual variants but summarizing the testing results and

grouping linked variants to flag independent causal

variant-harboring loci.

Our proposal to apply locus-level colocalization to

screen and filter the results of TWAS scanning follows the

similar strategy established in PhenomeXcan,25 which is

proven to be effective at identifying biologically relevant

potential causal genes. Given the increased sensitivity of

locus-level versus variant-level colocalization analysis,

the improvement in the performance of such a strategy is

logically expected. We note that the software FOCUS uti-

lizes an alternative and statistically elegant strategy (analo-

gous to the multi-variant fine-mapping in genetic-associa-

tion analysis) to parse correlated findings from TWAS scans

and identify potential causal genes. This strategy can be

highly effective if the assumption of a causal gene in the

genomic region of interest is met. In comparison, our pro-

posed strategy does not require such an assumption but re-

lies on the biological implication from colocalizations and

hence offers some added robustness in inference. We illus-

trate the differences between the proposed method and

the FOCUS by using the LD-hitchhiking simulation data

(Section 3 of the supplemental methods). In practice, the

two strategies can be complementary and applied simulta-

neously. Additionally, we note that many authors8–10,12

have connected TWAS analysis to Mendelian randomiza-

tion (MR) and instrumental variable (IV) analyses and

point out that the scan procedure is equivalent to the

testing procedure in MR and IV analyses. We strongly agree

that additional estimation and heterogeneity-diagnostic

procedures from the MR and IV analyses can be further

applied to validate the causality of implicated genes in

combination with the proposed joint analysis. Particularly,

the set of consistent findings identified from both the

TWAS scan and colocalization analyses form a strong set

of causal candidate genes for the downstream validation

and analysis. Finally, the proposed joint analysis can also

be used for identifying cases of horizontal pleiotropy. We

note that horizontal pleiotropy is a general statistical

term for the alternative to a direct causal path linking ge-

netic variants, molecular traits, and complex traits (i.e.,
rican Journal of Human Genetics 109, 825–837, May 5, 2022 835



vertical pleiotropy). Various biological mechanisms can

lead to the observed phenomenon of horizontal pleiot-

ropy. These findings can be critical to uncovering the full

molecular mechanisms underlying complex diseases and

deserve attention from the community.

Much of this work is motivated by a desire to understand

the inferential reproducibility between TWAS scanning and

colocalization analysis. Unlike the other types of reproduc-

ibility, namely, methods and results reproducibility, incon-

sistency in conclusions from different analytical methods

is anticipated in the analysis of inferential reproducibility.17

Furthermore, the primary aim is to identify analytical as-

sumptions and factors driving inferential differences and

understand the extent of inconsistency between methods.

These factors are particularly important for practitioners

who aim to design analysis schemes with all available tools.

As demonstrated in this paper, inferential reproducibility is

fundamentally different from inferential errors/mistakes. It

should be treated with care and, most importantly, in a

context-dependent manner.
Data and code availability

All real and simulated data used in this paper are publicly available

(see web resources). The locus-level colocalization method is im-

plemented in the software package fastENLOC v2.0, which is

freely available at https://github.com/xqwen/fastenloc. The Gi-

thub repository https://github.com/xqwen/TWAS_vs_coloc con-

tains the necessary code and scripts for reproducing the analyses

and simulations described in the paper.
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