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Abstract

Objective: To develop a system for training central venous catheterization that does not require 

an expert observer. We propose a training system that uses video-based workflow recognition and 

electromagnetic tracking to provide trainees with real-time instruction and feedback.

Methods: The system provides trainees with prompts about upcoming tasks and visual cues 

about workflow errors. Most tasks are recognized from a webcam video using a combination of 

a convolutional neural network and a recurrent neural network. We evaluated the system’s ability 

to recognize tasks in the workflow by computing the percent of tasks that were recognized and 

the average signed transitional delay between the system and reviewers. We also evaluated the 

usability of the system using a participant questionnaire.

Results: The system was able to recognize 86.2% of tasks in the workflow. The average signed 

transitional delay was −0.7s. The average usability score on the questionnaire was 4.7 out of 5 for 

the system overall. The participants found the interactive task list to be the most useful component 

of the system with an average score of 4.8 out of 5.
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Conclusion: Overall, the participants’ response to the system was positive. Participants 

perceived that the system would be useful for central venous catheterization training. Our system 

provides trainees with meaningful instruction and feedback without needing an expert observer to 

be present.

Significance: We are able to provide trainees with more opportunities to access instruction and 

meaningful feedback by using workflow recognition.
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I. INTRODUCTION

CENTRAL venous catheterization (CVC), otherwise known as a central line insertion, is the 

procedure of inserting a catheter into a major vein that provides a near direct path to the 

heart. Common sites for catheter insertion are the internal jugular, subclavian and femoral 

veins [1]. CVC is often performed in emergency situations and on critically ill patients. It is 

also used in non-emergency situations for patients that require frequent venous access, such 

as those undergoing chemotherapy. Since CVC has such a wide range of applications, it is 

considered as an essential skill that is taught in residency of most medical specialties.

This procedure, while common, is not without risks. Typical complications include 

hematoma, hemorrhage and sometimes stroke [2]. A major influence on the risk of 

complications is the experience of the physician performing the procedure. Studies have 

shown that patients are 35% more likely to experience complications from a central line 

if the procedure is performed by a novice compared to an expert physician [3]. Clearly, 

trainees need an environment to learn mastery of the procedure without posing risks to 

patients.

Training in a simulated setting is one way that risk to patients can be mitigated. Students 

trained on simulators have lower complication rates than those trained on live patients [4][5]. 

In addition, students trained in a simulated setting also typically require less assistance, 

make fewer errors and report higher confidence when they perform the procedure on live 

patients [6][7]. In general, training in a simulated setting has been shown to lead to a 

reduced complication rate and better patient outcomes than traditional training methods [8]. 

For CVC, simulated training involves performing the procedure on a part-task trainer which 

is comprised of a phantom with fluid filled vessels.

Unfortunately, static phantoms are missing a key component that can make them effective 

as standalone trainers. Feedback is widely regarded to be an essential component of trainee 

learning and frequent feedback has been shown to improve patient outcomes [9]. Most often 

this feedback comes from an expert observer and requires a large time commitment from 

instructors and evaluators. Studies have shown that attending physicians commonly cite lack 

of time as their most significant obstacle to providing trainees with feedback [10]. When 

physicians are unable to find time, this limits trainees’ opportunity to receive meaningful 

feedback. Research in medical education has shown that trainees are discontent with the 
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quantity of feedback that they receive [11]. Furthermore, research has shown that trainees 

cannot accurately assess their own performance without expert feedback [12]. This evidence 

suggests that trainees not only need an environment to practice that is safe for patients, 

but one that is also able to provide them with meaningful, actionable feedback on their 

performance.

Workflow recognition is one way to provide trainees with performance feedback without 

needing an expert physician to be present. In this way, a computer system can be used to 

provide instruction for upcoming tasks, or give feedback about errors that have been made. 

By using a computer to provide this feedback, this alleviates the time burden on instructors 

and proctors. Workflow recognition has been a substantial area of research in recent years. 

A common method of recognizing tasks in surgical workflow is to monitor the movements 

of tools using optical or electromagnetic (EM) tracking. Recently, approaches have focused 

on the recognition of tasks from video [13][14]. This is because video is widely available, 

inexpensive, and does not affect the use of various surgical tools by requiring bulky markers. 

Many of the studies that recognize workflow tasks from video rely on deep learning.

Recent methods of surgical workflow recognition have begun combining convolutional 

neural networks (CNNs) with long-short term memory (LSTM) networks and have shown 

good success [15]. LSTMs have been shown to be very successful at recognizing events that 

are separated by long periods of time [16]. This makes them ideal for workflow recognition. 

This approach allows the network to make decisions based on the information contained in a 

series of images in a video, rather than basing the decision on a single frame.

In this paper, we demonstrate how the need for an expert observer during practice can 

be eliminated using a training system that incorporates workflow recognition to provide 

real-time instruction and feedback. This system, which we have called Central Line Tutor, 

uses a neural network on webcam video data along with EM tracking to recognize the tasks 

in CVC. We evaluate Central Line Tutor on both its ability to recognize the tasks in the 

workflow, and its usability for training novices in CVC.

II. METHODS

A. System Setup

Central Line Tutor is a system designed to provide instruction and feedback to trainees 

learning CVC without needing an expert observer to be present. Central Line Tutor currently 

uses a combination of video-based workflow recognition and recognition based on EM 

tracking to provide instruction. Though we are working hard to eliminate the need for the 

EM tracking system, it is still currently necessary to evaluate critical tasks in the workflow. 

The system is comprised of a computer, webcam, a central venous access phantom, an EM 

tracker and an ultrasound machine (Figure 1). EM sensors are placed on the ultrasound 

probe, needle and the phantom. The hardware interface is provided by PLUS-toolkit (https://

plustoolkit.github.io), which synchronizes and streams all data to the main application [17].

The software component of the system is also built on the platform 3D Slicer which is 

an open-source platform for medical image informatics (www.slicer.org). The system built 
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upon the Perk Tutor extension within 3D Slicer (www.perktutor.github.io). Perk Tutor is 

an open-source extension for training ultrasound-guided needle interventions. Perk Tutor 

uses the EM tracking information to measure performance metrics such as path length, 

translational movements and procedure completion time [18]. The Perk Tutor platform 

allows us to incorporate these previously validated metrics into our system.

A preliminary description of the system can be found in [19]. The system used in this paper, 

contains the same hardware setup, however the earlier paper presented only a rudimentary 

color-based method for recognizing the tasks in the workflow based on surgical tools used 

in the procedure. The earlier description of the system also did not include a detailed 

explanation of how the EM-based task recognition was performed and the study conducted 

in [19] used a dataset that contained only a single novice user. The previous study also 

utilized a different kit of central line tools compared to this study, therefore there is no 

overlap in data used between the two studies. In addition to using more sophisticated 

methods for workflow recognition, and testing on a larger, more varied dataset, this paper 

also goes beyond what was done previously by conducting face and content validity testing 

with a diverse group of users.

B. User Interface

The user interface displays both the ultrasound and webcam videos to the users. The 

interface also displays 3D models of the phantom, ultrasound probe and needle. The EM 

sensors placed on each of these components allow the trainee to visualize their movements 

in space via a series of coordinate transformations. Since the vessels are static within the 

phantom, trainees can see where the ultrasound probe and needle are with respect to the 

location of the vessels. Holden et al. have previously validated that the use of these 3D 

visualizations is an effective tool that improves trainee learning in ultrasound guided needle 

interventions [20].

In addition to the 3D visualizations, this system also provides users with three levels of 

difficulty with progressively fewer aides (Figure 2). The first level has the largest number of 

aides. Trainees are able to see the position of the ultrasound image plane and needle with 

respect to the vessels. The vessels are also color-coordinated to clearly identify the target 

vein. Trainees are also provided with a complete checklist of the tasks in the CVC workflow. 

This checklist is interactive and each time the trainee completes a task it is both checked 

and highlighted in green. Missed tasks are highlighted in red to clearly identify workflow 

errors. Trainees also receive a “current step prompt” that indicates which task the trainee 

should perform next. The second level reduces the checklist so that instead of a complete 

list of individual tasks, trainees are only given general categories of tasks. Furthermore, in 

this level trainees are no longer able to see the vessels and phantom in the 3D viewer. The 

trainees are only able to see the ultrasound probe and needle. This forces them to rely on the 

ultrasound video to determine where the ultrasound image is with respect to the vessels. In 

the final level, trainees are given only the ultrasound video and no instruction.
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C. EM-based Task Recognition

To update the checklists, Central Line Tutor uses two different methods of workflow 

recognition to identify the tasks in the CVC workflow. The first method uses EM tracking 

to recognize tasks that involve the ultrasound probe and the needle. These tasks are more 

critical than others in the workflow, and it is important that we can measure not only that 

they are completed, but they are completed correctly and efficiently. Using tracking for 

these tasks allows us to compute performance metrics using the aforementioned Perk Tutor 

extension. The tasks recognized by this method include cross section and long axis scans of 

the vessel with the ultrasound probe, and inserting the needle into the correct vessel.

Tasks that involve EM tracked tools are recognized based on the position and orientation 

of the tools with respect to the vessels in the phantom. Since the vessels are static within 

the phantom, we can track them by placing a sensor on the exterior of the phantom. The 

phantom serves as our reference coordinate system. To recognize the two different types of 

ultrasound scans, we determine if the plane created by the ultrasound image intersects both 

vessels, or only one. To do this, we first transform the coordinates of the four corners of the 

ultrasound image plane into our reference coordinate system (Figure 3). Cross section scans 

are defined as when the ultrasound image plane intersects the center line of both vessels 

(Figure 4(a)). Long axis scans are defined as being complete when the shortest distance from 

each of the vertical edges of the ultrasound image plane to the center line of a single vessel 

is less than the radius of the vessel (Figure 4(b)). The task of inserting the needle into the 

vessel is recognized in a similar manner. The coordinates of the tip of the needle are first 

transformed into our reference coordinate system. The needle insertion task is defined as 

being complete when the shortest distance from the needle tip to the center line of a vessel is 

less than half of the radius of the vessel. Since these tasks are defined based on the physical 

location of the US image with respect to the vessels within the phantom, there is no learning 

process needed for our system to recognize these tasks.

D. Video-based Task Recognition

The majority of tasks are recognized from the webcam video using a neural network. This is 

because video is less expensive than EM tracking and does not require additional sensors to 

be added to the tools. Additional sensors are bulky and can make practicing in a simulated 

setting feel less realistic. Furthermore, several tools are very small and they cannot perform 

their function if sensors are attached. For example, the guidewire must be threaded through 

the center of both the dilator and the catheter, neither of which have openings wide enough 

to accommodate an EM sensor.

The task recognition network runs in an Anaconda virtual environment and communicates 

with Central Line Tutor via the OpenIGTLink protocol, as shown in Figure 5. 3D Slicer 

passes the image to the Anaconda environment where the image is normalized, resized, then 

classified by the task recognition network. The task label and the confidence are passed 

from the environment back to 3D Slicer using the OpenIGTLink protocol implemented 

within the PyIGTLink library. The tasks that are recognized using the webcam include: 

applying local anesthetic, removing the syringe from the needle, inserting and removing the 
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guidewire, inserting and removing the dilator, cutting the skin with the scalpel and inserting 

the catheter.

1) Task Recognition Networks—The network that we use is a combination of a 

CNN and a network that uses an ensemble of parallel LSTM units. Since each task in 

the CVC workflow only uses one surgical tool at a time, we can define the various tasks 

in the workflow based on which tool is currently in the field of view. The CNN that we 

use for tool recognition is ResNet50 [21]. From now on we will refer to this network as 

CNNTool. To reduce the amount of data needed to train CNNTool we use transfer learning. 

The weights of CNNTool are initialized from those obtained by training on the much larger 

ImageNet dataset. This allows the network to learn basic image features before being trained 

on our specific dataset [22]. The model and the pre-trained weights are available through 

Keras’ application library (https://keras.io/api/applications/resnet/#resnet50-function). Once 

the weights have been initialized, we replace the final layer with a new softmax layer whose 

size corresponds to the number of tools. Finally, we train all layers of the network on our 

central line dataset. The final tool prediction is given by the class that produces the highest 

confidence in the softmax output of the network. While this approach works reasonably 

well, identifying tools in individual video frames does not provide any information about 

what is occurring within the context of the entire procedure.

To allow for the inclusion of contextual information we include information from previous 

frames and produce the task classification from a sequence of images, rather than a single 

snapshot. To create these sequences, we first classify each image with CNNTool to obtain the 

tool labels. Each sequence is composed of the tool classification output for the frame that we 

are currently analyzing and the tool classification output for the 49 previous frames. As the 

network receives a new image, the tool classification output of the new frame is appended to 

the end of the sequence and the tool classification of the oldest frame is removed from the 

start of the sequence. Each time the sequence is updated, it is fed to a second network that 

produces the task classification.

The first layer of our task classification network is an ensemble of parallel, bidirectional 

LSTM units. We use one LSTM unit for each of the 7 tasks involved in the procedure. We 

also add one additional unit for the case of no task. The idea behind this approach was 

that by incorporating one unit for each task, this would in theory allow each unit to learn 

a binary response to the sequences that are characteristic of one specific task. Each of the 

units independently processes the sequence of classifications both forwards and backwards 

before producing a single output based on the entire sequence of classifications. Using 

this approach, we allow each LSTM layer to only be responsible for performing a binary 

classification rather than a multi-class classification. The output from the each of the LSTM 

layers is then concatenated before going through two dense layers with ReLU activation 

functions and a final softmax layer to produce the task classification. For each sequence the 

final task prediction label is determined by the class with the highest confidence from the 

softmax output. The network structure can be seen in Figure 6. We refer to this combination 

of networks as CNN+LSTM. The specific implementations for these networks can be found 

at: https://github.com/SlicerIGT/aigt/tree/master/DeepLearnLive/Networks
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2) Dataset—The central line dataset is composed of 40 videos in total. 20 videos 

were recorded from 4 medical students and 20 videos were recorded from 4 experienced 

clinicians. Each participant recorded five trials of the procedure using the Central Line Tutor 

setup. All recordings were done using the system’s first difficulty level that displays the 

entire task list. However, participants were given the opportunity to explore all difficulty 

levels and attempt the procedure using only US guidance. The students are fourth year 

medical students who are novices in the procedure and report having performed one CVC 

or fewer. The expert participants are experienced anesthesiologists, who routinely perform 

CVC in their practice. The recordings include the color video from the webcam, along 

with the ultrasound video and the positional information from the EM tracking system. 

The webcam video shows only the participant’s hands, the surgical tools in use and the 

area of insertion of the phantom. There are no identifying features visible in order to 

protect the anonymity of the participants. To ensure that the system can perform well 

in different environments the videos were recorded in different locations, with different 

lighting conditions and varying camera positions.

To create our dataset, each video is divided into individual frames. Each image is manually 

assigned two labels. The first label corresponds to the tool that is actively in use when 

the image was taken. In the rare case that multiple tools were visible in the frame, the 

active tool was assumed to be the tool that was in the participant’s hand. The possible tool 

labels include anesthetic, catheter, dilator, guidewire, guidewire casing, scalpel, syringe and 

no tool. These labels are used as the ground truth for training CNNTool. The second label 

corresponds to the task that is being performed. The possible labels in this category include 

apply anesthetic, insert needle, insert guidewire, use scalpel, dilate opening, insert catheter 

and no task. These task labels serve as the ground truth labels for training the LSTM portion 

of our CNN+LSTM network. A full breakdown of the number of images per class can be 

seen in Table 1.

In addition to labelling each frame with both task and tool labels, each video is annotated 

by three independent reviewers to identify transition points within the procedure. Transition 

points represent the time in a video when a new task begins. If a transition point is missing, 

this indicates that the associated task did not occur. For EM recognized tasks, these points 

occur when the ultrasound probe or needle are in a specific position or orientation. For 

webcam recognized tasks, these transition points typically occur when a specific tool enters 

or leaves the scene. A full list of transition points, tasks that they correspond to and their 

prevalence within the dataset is found in Table 2.

E. Experiments

1) Task Recognition Performance—One of the key features of Central Line Tutor is 

its ability to provide instructions and feedback in real-time. To demonstrate content validity, 

we compared the system’s ability to recognize transition points in real-time to the transition 

points recognized by human reviewers.

To test Central Line Tutor’s capabilities, the full recordings (consisting of the synchronized 

recordings of the EM tracking information, ultrasound video and webcam video streams) 

were replayed on the system to simulate the procedure being performed in real-time. The 
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system recorded the name and timestamp of each transition point as it occurred in the 

video. To compare our results to our previous studies, this process was repeated twice for 

each video. The first time using CNNTool to recognize the webcam transition points, as in 

previous studies, and the second time using CNN+LSTM.

To assess the how well Central Line Tutor was able to recognize tasks using each network, 

we measure the percentage of transition points recognized when the system incorporated 

CNNTool into its workflow recognition compared to CNN+LSTM. This metric is defined 

by the number of transition points that were recognized by the system divided by the 

total number of transition points that are present in all recordings. Except the task of 

inserting the needle, each task in the procedure corresponds to a single transition point. 

As such the percentage of correctly identified transition points provides a measure of the 

number of tasks that were recognized compared to the total number of tasks that were 

identified by the reviewers. We choose to measure the percentage of correctly identified 

transition points as opposed to the classification accuracy on the individual images in 

the dataset to address the issues of class imbalance. As seen in Table 1 there is a large 

discrepancy between the number of images in each class, with several classes being heavily 

underrepresented. Conversely, from Table 2 we can see that there is a more even distribution 

of transition points across all tasks in the recordings. This metric also allows us to measure 

the performance of the system on each trial as a whole, rather than the performance on 

individual images.

For this study, each of the networks were trained using a leave-two-user-out (L2UO) cross 

validation scheme. For each fold, we reserve all videos from one expert participant and one 

novice participant. From the remaining six participants, we reserve one video from each 

participant for validation and all remaining videos are used for training.

To assess how quickly Central Line Tutor can recognize tasks compared to the human 

reviewers we measured the average signed transitional delay (TDsigned) between the 

timestamps generated by the system and the average timestamp given by the three reviewers. 

Average signed transitional delay is defined in (1).

TDsigned =
∑i = 1

N ∑j = 1
M TCLT(i, j) − Tℎuman(i, j)

N * M
(1)

In this equation Thuman(i,j) and TCLT(i,j) represent the average timestamp on video i for 

transition point j generated by the human reviewers and Central Line Tutor respectively. 

In these equations N represents the number of videos, and M represents the number of 

transition points in the procedure. For average signed transitional delay, a negative value 

indicates that the system recognized the transition point ahead of the human reviewers. 

Conversely, a positive value indicates that the system recognized the transition point after the 

human reviewers. This metric allows us to discern whether the system is typically early or 

late to recognize tasks.

Finally, to establish the statistical significance of our results we measure the absolute intra-

class correlation (ICC) for each transition point in the dataset. This metric reports how 
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closely the times generated by Central Line Tutor compare to the average times given by 

the reviewers. For completeness, we also measure the agreement between each of the three 

reviewers using the same absolute ICC metric. In addition to computing the ICC between 

the reviewers and Central Line Tutor, we also test for significant difference by performing a 

paired t-test between the average timestamps generated by the reviewers and the system.

2) Participant Survey—Finally, to establish face validity we evaluate the usability of 

Central Line Tutor by asking participants to fill out a survey once they complete their trials. 

The survey asks questions about the realism of various aspects of the system, and how useful 

they believe they are. Each of the questions is answered on a 5-point Likert scale, where 1 

indicates that the participant strongly disagrees with the statement and 5 indicates that the 

participant strongly agrees. The questions are divided into three categories: how realistic 

the system is, how useful the various components of the system are for training, and how 

useful they believe the system will be for different use cases. We use an independent t-test 

to determine if there is a significant difference between the ratings given by the novices 

compared to the experts.

III. RESULTS

A. Task Recognition Performance

In our evaluation of content validity, we found that Central Line Tutor was able to recognize 

92.7% of transition points when using CNNTool and EM tracking. The system was able to 

recognize 86.2% of transition points when and CNN+LSTM was used in place of CNNTool. 

The tasks that were most reliably recognized from their transition points include: inserting 

the needle and inserting the catheter. The tasks that were least reliably recognized were 

the tasks involving the anesthetic, scalpel and dilator. The full results for the percent of 

transition points recognized can be seen in Table 3.

When we look at average signed transitional delay for the entire procedure, the combination 

CNN+LSTM and EM tracking had an average transitional delay of −0.8 ± 8.7s, whereas 

CNNTool and EM tracking had an average transitional delay of −7.4 ± 19.5s. When we 

compare EM-recognized tasks to the tasks recognized by the webcam, we see that the 

EM tracked tasks are recognized ahead of the human reviewers with an average signed 

transitional delay of −4.2± 8.4s. For the webcam tasks, CNN+LSTM typically recognized 

tasks after the human reviewers with an average signed transitional delay of 1.2 ± 10.0s, 

while CNNTool recognized tasks ahead of reviewers with an average signed transitional 

delay of −9.5 ± 26.4s. The breakdown of average signed transitional delay for each 

individual transition point is shown in Figure 7.

The absolute ICC between the average reviewer timestamps and those generated by Central 

Line Tutor were 0.97 when using a combination of CNNTool with EM tracking and 0.99 

when the combination of CNN+LSTM with EM tracking was used. Furthermore, the 

average absolute ICC between the three reviewers was 0.98. The results of the paired t-test 

indicate that there was no significant difference between the timestamps generated using 

Central Line Tutor and the reviewers when CNN+LSTM was used to recognize the webcam 
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transition points (p = 0.9). However, there was a significant difference when CNNTool was 

used (p < 0.001).

B. Participant Survey

The system was favorably received by all participants. The average score across all questions 

was 4.7 out of 5. On the questions concerning the realism of the system, which is of 

particular concern for face validity, the average score was 4.5 with participants finding the 

ultrasound visualization of tissue and vascular space to be the most realistic component. The 

average score for the usefulness of the various components of the system was 4.6. For this 

section, participants felt that the task list was the most useful component of the system. In 

terms of general usability, the average score across questions in this section was 4.8. The 

situations in which the participants believed the system would be most useful were in the 

improvement of ultrasound-handling proficiency, improvement of needle insertion and in 

facilitating preparedness. The results of the survey are shown in Figure 8. There results of 

the t-test indicate that there was not a significant difference between the ratings of the novice 

participants and the experts (p = 0.04).

IV. DISCUSSION

We evaluated Central Line Tutor’s ability to recognize tasks in the CVC workflow in real 

time. We compared two different networks for task recognition to determine which would 

allow Central Line Tutor to have the best performance. Finally, we tested Central Line 

Tutor’s usability through a participant survey.

To evaluate the real-time performance of the networks and establish content validity, we 

tested the networks’ ability to detect transition points in the procedure. These transition 

points were the time at which a new task began. Even though CNNTool recognized more 

transition points than CNN+LSTM, when we look at the average signed transitional delay, 

we can see that CNNTool had a large negative transitional delay indicating that it typically 

recognized tasks well ahead of the human reviewers. The fact that there was a significant 

difference between the reviewers and CNNTool indicates that CNNTool was most likely 

making erroneous predictions. Conversely, if we look at CNN+LSTM we can see from 

the positive average signed transitional delay that it tended to recognize tasks after the 

reviewers. Even though CNN+LSTM recognizes tasks after the reviewers, there was not a 

significant difference between the two. Furthermore, from the absolute ICC results we can 

see that the timestamps generated using CNN+LSTM were more closely correlated with 

the timestamps from the reviewers compared to CNNTool. These results suggest that using 

CNN+LSTM in Central Line Tutor for workflow recognition will improve the system’s 

ability to recognize tasks in the procedure over using CNNTool alone.

From the results we can also see that classes that had the fewest images such as the 

anesthetic, scalpel and dilator did have lower recognition accuracy for their corresponding 

tasks compared to larger classes. This is likely due to the lack of balance in our dataset. 

However, the lack of balance actually benefits a system designed to provide instruction. By 

ensuring that the training data contained a high percentage of “no tool” images, the system 

was biased towards false negatives. This is favorable because missing a task has minimal 
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effect on the instructions that the system provides while many false positives would cause 

the interactive checklist to move to different tasks in the workflow causing confusion for the 

user. In future studies, we will evaluate the effects of network accuracy on the detection of 

transition points.

Finally, we tested the usability of Central Line Tutor by asking participants to fill out a 

survey. Participants were asked to evaluate Central Line Tutor based on its realism and 

usability. Overall the system was well received by both expert and novice participants. The 

results of the survey indicated that participants felt that the system delivered a realistic 

training experience and that it had many useful features to help with the learning process. 

Trainees especially liked the interactive task list and the multiple levels of difficulty. In 

general, the survey results indicate that participants believed the system would be a useful 

tool for training CVC.

One limitation of this study was that we only have a single setup of the system available 

to us. We have done our best to ensure that this approach will be generalizable for others 

who may wish to replicate this work by including variations in lighting, setup location and 

camera position within our dataset. We also selected a tool kit that is easily available and 

widely used in many different hospitals. In future studies, we will test the generalizability 

of our models by testing our system using different phantoms and tool kits. We also cannot 

guarantee that the performance of this network structure was fully optimized during the 

training process. In the future we will determine if the accuracy of this model can be 

improved by testing various combinations of hyper-parameters and network structures.

In the future, we plan to conduct further testing to formally determine the effects of 

the system on the efficiency of training CVC. We also aim to expand on this work by 

making Central Line Tutor into a low-cost system that uses a minimal number of hardware 

components. By using simulated ultrasound and video-based tool tracking methods, we 

intend to eliminate the need for an ultrasound machine and EM tracking system. The 

removal of these two components will minimize the amount of maintenance required by the 

system and significantly reduce the cost of the system, thus making it more accessible.

V. CONCLUSION

We presented a functional system for training central venous catheterization. This system 

provides instruction and feedback to trainees learning the procedure without needing an 

expert observer to be present. To test the system’s ability to recognize tasks in CVC 

we compared a network that combines a CNN and an LSTM network to our previous 

methods of using a CNN alone. We showed that this combined network could recognize 

task transition points more consistently and with less delay when operating in real-time 

compared to the CNN alone. Central Line Tutor was well received by all participants who 

found that it was a realistic, useable training platform for central venous catheterization. 

Once we can reduce the system to a minimal number of components, we believe that it will 

become a helpful tool for improving access to quality instruction and feedback for medical 

trainees in the process of learning central venous catheterization.
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Figure 1. 
Central Line Tutor system setup
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Figure 2. 
Central Line Tutor user interface, showing visual aids for 3 difficulty levels. (a) Level 1, (b) 

Level 2, and (c) Level 3
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Figure 3. 
Coordinate transform from ultrasound image coordinate system to reference coordinate 

system
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Figure 4. 
Ultrasound scans showing both the position of the ultrasound probe and its corresponding 

ultrasound image. (a) Cross sectional scan, (b) Long axis scan
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Figure 5. 
Illustration of communication between Central Line Tutor, operating in 3D Slicer, and the 

task recognition network running in a virtual environment

Hisey et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Parallel LSTM network structure
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Figure 7. 
Average signed transitional delay results for each transition point. Each transition point 

corresponds with the start of a single task in the CVC workflow.

Hisey et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Results of participant survey
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TABLE I

Breakdown of number of images per class for task and tool labels

Tool Labels Task Labels

Label Image count Label Image count

Anesthetic 2084 Apply Anesthetic 2179

Syringe 16282 Insert needle 16288

Guidewire casing 10207 Insert Guidewire 10845

Scalpel 1045 Use Scalpel 1164

Dilator 2204 Dilate Opening 2215

Catheter 13336 Insert Catheter 10910

Guidewire 32384 Remove Guidewire 1584

No Tool 18264 No Task 50621
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Table II

List of tasks in the central venous catheterization workflow, along with their corresponding transition points

Task Transition Point Recognition Method Total Count

Scan vessel cross section Cross section scan 1 EM 39

Apply local anesthetic Anesthetic found Webcam 39

Insert needle into vessel
Syringe found Webcam 40

Needle in vessel EM 40

Remove syringe from needle Syringe removed Webcam 40

Insert guidewire Guidewire casing found Webcam 40

Remove needle Needle removed EM 40

Scan vessel cross section Cross section scan 2 EM 39

Scan vessel long axis Long axis scan EM 39

Cut skin with scalpel Scalpel found Webcam 39

Insert dilator Dilator found Webcam 39

Remove dilator Dilator removed Webcam 39

Insert catheter Catheter found Webcam 40
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Table III

Percentage of tasks and transition points recognized by Central Line Tutor

Task Transition Point EM & CNNTool EM & CNN+LSTM

Scan vessel cross section Cross section scan 1 89.7% 89.7%

Apply local anesthetic Anesthetic found 71.8% 66.7%

Insert needle into vessel
Syringe found 100% 100%

Needle in vessel 97.5% 97.5%

Remove syringe from needle Syringe removed 100% 100%

Insert guidewire Guidewire casing found 97.5% 95.0%

Remove needle Needle removed 100% 100%

Scan vessel cross section Cross section scan 2 100% 100%

Scan vessel long axis Long axis scan 94.9% 94.9%

Cut skin with scalpel Scalpel found 94.9% 43.6%

Insert dilator Dilator found 79.5% 66.7%

Remove dilator Dilator removed 79.5% 66.7%

Insert catheter Catheter found 100% 100%
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