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Abstract

Spatial patterns of gene expression manifest at scales ranging from local (e.g. cell-cell 

interactions) to global (e.g. body axis patterning). However, current spatial transcriptomics 

methods either average local contexts or are restricted to limited fields of view. We introduce 

sci-Space, which retains single cell resolution while resolving spatial heterogeneity at larger 

scales. Applying sci-Space to developing mouse embryos, we capture approximate spatial 
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coordinates and whole transcriptomes of ~120,000 nuclei. We identify thousands of genes 

exhibiting anatomically patterned expression, leverage spatial information to annotate cellular 

subtypes, show that cell types vary substantially in their extent of spatial patterning, and reveal 

correlations between pseudotime and the migratory patterns of differentiating neurons. Looking 

forward, we anticipate sci-Space will facilitate the construction of spatially-resolved single cell 

atlases of mammalian development.

Single cell methods have the potential to transform our understanding of organismal 

development. In diverse models of embryogenesis, we and others have performed “whole 

organism” profiling of gene expression or chromatin accessibility at single cell resolution 

(1–7), yielding a richer view of the emergence and trajectories of cell types than was 

previously available or possible (8, 9).

Cells’ spatial organization plays a central role in normal development and homeostasis, 

as well as in pathophysiology. However, a key limitation of most single cell molecular 

profiling methods is that they operate on disaggregated cells or nuclei. Although in situ 
methods can measure the expression of many or all genes while retaining spatial information 

(10), these methods also have limitations (fig. S1). Some, including the original “spatial 

transcriptomics” (11) and Slide-seq (12) methods, barcode and then count mRNAs derived 

from positions across patterned arrays. Although these methods can be implemented at 

a range of spatial scales, the boundaries of spots have no natural correspondence to the 

boundaries of cells. As such, they yield aggregate profiles of small regions encompassing 

multiple cells and/or portions of cells, rather than truly resolving individual cells. Other 

methods, including MERFISH (13), seqFISH (14), and FISSEQ (15), rely on in situ 
hybridization or sequencing to measure the expression of many genes while retaining 

single cell (or even subcellular) resolution within each field of view. However, such 

methods are typically limited by long image acquisition times and complex instrumentation 

requirements. In sum, existing techniques necessitate tradeoffs such that assaying the whole 

transcriptomes of individual cells over large territories remains impractical.

Spatial labeling of nuclei with hashing oligonucleotide

Previously, we developed sci-Plex, a method for labeling or “hashing” nuclei using 

unmodified DNA oligos prior to single cell RNA-seq with combinatorial indexing (sci-

RNA-seq) (16). To leverage this workflow to capture spatial information, we spatially 

arrayed unique combinations of hashing oligos, and then transferred these oligos to nuclei 

within a tissue slice by diffusion (17). These hashing oligos, recovered in association with 

sci-RNA-seq profiles, capture each cell’s approximate tissue coordinates upon sequencing.

As a proof-of-concept of this “sci-Space” approach, hashing oligos were spotted onto 

glass slides coated with dried agarose. These grids contained 7,056 uniquely barcoded 

spots spanning a 18mm-by-18mm area (mean radius of 73.2 ± 14.1μm; mean spot-to-spot 

center distance of 222 ± 7.5μm; fig. S2). About 5% of spots, constituting an identifiable 

pattern, were also loaded with SYBR green fluorescent dye. After transferring the oligos 

to the tissue, the grid could be registered with an image of the tissue using these 

concurrently imaged fluorescent fiduciaries (figs. S2, S3). After optimization of hashing 
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oligo concentrations and dissociation protocols (figs. S4, S5), our protocol comprised four 

steps: 1) fresh-frozen tissue is sectioned; 2) sectioned tissue is permeabilized with a solution 

containing a slide-specific oligo and physically juxtaposed to a glass slide bearing the 

spatially gridded hashing oligos; 3) during oligo transfer, the assembly is imaged; and 4) 

nuclei from the tissue on the slide are extracted, fixed and subjected to sci-RNA-seq (Figs. 

1A, S6, S7).

Spatially-resolved single cell sequencing of the mouse embryo

We applied sci-Space to profile fourteen sagittal sections derived from two E14.0 mouse 

embryos (C57BL/6N). After sequencing, quality filtering (18), and assignment of each cell 

to a slide (on the basis of its slide-specific hashing oligo), our dataset comprised 121,909 

spatially resolved single cell transcriptomes (mean 2,514 unique molecular identifiers 

(UMIs) and mean 1,231 genes detected per cell), without apparent batch effects between 

slides or embryos (figs. S8, S9). This corresponds to capture of 164 nuclei/mm2 of tissue 

on average, or sampling of 2.2% of the estimated nuclei present (fig. S10). Rather than 

annotating cell types ab initio, we co-embedded (19, 20) these data with published, non-

spatial sci-RNA-seq “mouse organogenesis cell atlas” (MOCA) dataset spanning E9.5 to 

E13.5 (1) and cells from a developing mouse brain atlas (DMBA) spanning E13.5 to E14.5 

(21). Reassuringly, these E14.0 data integrated well with both datasets (Figs. 1B, S11). Draft 

cell type annotations, inferred by nearest neighbor label transfer, were highly concordant 

with those recovered by Garnett (22), a semi-supervised annotation algorithm (fig. S11). We 

refined the annotations by manual inspection of differentially expressed genes (Fig. 1C; File 

S1).

Images of sectioned embryos and sequencing data were co-registered using SYBR 

waypoints (22, 24) (Figs. 2A, S12, S13). Each nucleus was mapped to the position 

matching its highest combination of spot and sector oligos within the imaged section. 

For ~9% of nuclei, the top assignment was not located near any other nuclei of the same 

cell type; for such “outliers”, alternative mappings were considered. Altogether, nuclei 

were well-localized (fig. S8C–F) to one of 15,102 spatial positions across 14 sections; on 

average, each spatial position was assigned 8.1 nuclei (10.5 s.d.) (fig. S14). To quantify the 

anatomical distribution of cell type annotations, each section was segmented by organ (Figs. 

2B, S15), aided by immunostaining of adjacent sections (25) (fig. S16). Neurons mapped 

largely within the spinal cord and brain outlined by cells of the developing meninges, 

cardiomyocytes within the heart, and white blood cells throughout the organism (Figs. 2C, 

2D, S18, S17). Analysis with Giotto (26), an unsupervised tool for segmenting spatial 

transcriptomic images into tissue “domains” of similar cell type composition, revealed 22 

domains shared across sci-Space slides. In addition to detecting boundaries between major 

organs, Giotto was able to automatically recognize more complex domains with distributions 

extending throughout the embryo (e.g. mesenchymal tissue and cartilage) (fig. S19).

Finally, wherever cells are captured, sci-Space data enables the visualization of any gene 

in the transcriptome akin to an in situ hybridization, albeit at lower spatial resolution. 

For example, a sci-Space “digital in situ” of the dopamine transporter Slc6a3 highlights a 

cluster of dopaminergic neurons at the midbrain-hindbrain boundary, consistent with stage- 
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and section-matched whole-mount in situs (27) (Figs. 2E, S20). Unlike conventional in 
situ data, sci-Space data also resolves gene expression by cell type. For example, in the 

heart, both cardiomyocytes and endothelial cells express the growth factor Fgf1, while only 

cardiomyocytes express the growth factor receptors Fgfr1, Fgfr2, and Fgfr3 (Fig. 2F).

Contrasting sci-Space and spatial transcriptome capture (STC) methods.

A key distinction between sci-Space and STC methods (fig. S1, left) is that because STC 

methods capture transcripts from lysed tissue sections (11, 12), each spot can include RNA 

from multiple cells and/or portions of cells. As such, STC methods are limited in their 

ability to resolve gene expression variation within individual cells or cell types. To quantify 

the consequences of this limitation, we spatially aggregated transcriptomes from sci-Space 

nuclei, effectively creating a “mock-STC” dataset. Cell types and clusters readily discernible 

in the single cell data were challenging to resolve in the mock-STC data (fig. S21A–C). 

One approach to ameliorate this limitation involves mapping cells profiled by non-spatial 

single-cell RNA-seq onto a STC “scaffold”, thereby imputing cellular locations within a 

tissue (20, 28). To assess the viability of this approach, we applied such imputation to mock-

STC data, and compared it to the single nucleus data used to derive it (fig. S21D,E). The 

mean distance between a nucleus’ imputed position and its measured position was 11.6 spots 

(~2.5mm), a measure which varied by cell type (fig. S21F). Thus, despite sampling fewer 

transcripts than STC methods (fig. S21G–I), sci-Space’s single cell resolution--that is, its 

ability to unambiguously ascertain sets of transcripts expressed in the same cell--represents a 

key advantage over STC methods.

Analogously, we posited that sci-Space data could serve as a scaffold for the imputation 

of locations of cells profiled by non-spatial single-cell RNA-seq, but with the advantage of 

matching single cell transcriptomes. To test this, we aligned neurons from sci-Space and the 

developing mouse brain atlas (DMBA). Reassuringly, transfer of dissection-based DMBA 

anatomic annotations were consistent with sci-Space coordinates (fig. S23). Furthermore, 

this alignment mapped hundreds of DMBA transcriptional clusters to specific positions, 

many spatially restricted (fig. S23). For example, of 193 transcriptomic clusters from La 

Manno and colleagues (21) that mapped to slides 13 and 14, 94 and 115 clusters displayed 

statistically significant focal enrichment, respectively (FDR < 0.01; Getis-Ord Local G).

Spatial patterns of gene expression across cell types

To systematically examine these data for spatially patterned, cell type-specific gene 

expression across the E14.0 embryo, we quantified spatial autocorrelation--the degree to 

which the cells expressing a given gene are spatially proximate. Testing each annotated 

cell type separately, we identified hundreds to thousands of genes exhibiting positive 

spatial autocorrelation per cell type (File S2; Moran’s test, FDR < 0.001). Amongst the 

cell types analyzed, connective tissue progenitors and neurons had the most spatially 

autocorrelated genes detected (Fig. 3A; mean 12,150 ± 2,270 and 8,623 ± 3,846 genes 

per slide, respectively).
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One explanation for such spatial autocorrelation of genes within a cell type would be the 

presence of spatially-restricted, unannotated cell subtypes. For example, upon sub-clustering 

of connective tissue progenitors, we can indeed find spatially restricted cell subtypes 

(fig. S24A,B), such that the genes defining these subtypes are expected to be spatially 

autocorrelated. Alternatively, a gene’s spatial pattern of expression could arise from spatially 

restricted gene expression contributed by multiple cell subtypes. To distinguish between 

these scenarios, we calculated each gene’s spatial autocorrelation (Spatial Moran’s I) and 

compared this value to its autocorrelation in UMAP space (UMAP Moran’s I), a proxy 

for gene expression driven by a single cell subtype. Across all genes, the two measures 

were reasonably well-correlated (Pearson’s rho 0.49, p-value < 2e-16). However, a subset 

of genes, particularly in neurons, displayed higher spatial autocorrelation in the tissue 

context than in UMAP space (Figs. 3B, S25A,B). For example, Hox genes, a class of 

homeotic transcription factors that specify the body plan, featured prominently in this 

subset, consistent with spatial patterning that could not be explained solely by spatial 

restriction of a single cell subtype (Figs. 3B,C, S25A–D). Expression of HoxA cluster genes 

paralleled the establishment of the spinal cord’s anterior-posterior axis (29) (Figs. 3D, S25) 

with no cell subtype restriction observed across datasets (30) or modalities (fig. S26A–C).

Additional non-Hox genes also displayed excess spatial autocorrelation (Figs. 3E,F, 

S26D). One such gene, Cyp26b1, encodes an enzyme that metabolizes the developmental 

morphogen retinoic acid (RA). The spatial distribution of morphogens like RA can play 

a critical role in tissue patterning (29). Sci-Space data localized the focal expression of 

Cyp26b1 to the brainstem with expression observed in multiple neuronal subclusters (figs. 

S25A,B, S26A,B). This result was validated by RNA FISH for Cyp26b1 and neuronal-

subtype specific genes (Figs. 3G, S26C). Together, these data identify Cyp26b1 expression 

both in progenitors (radial glia) lining the hindbrain and in their progeny, spatially-adjacent 

post-mitotic neurons, suggesting that the expression of Cyp26b1 is retained as these cells 

differentiate. This example illustrates how sci-Space can distinguish between spatial patterns 

of gene expression driven by a single cell type from those present across multiple cell types.

Quantifying the explanatory power of spatial position

To ask how each cell type’s transcriptome varied globally across the embryo, we calculated 

the angular distance between the transcriptomes of pairs of cells of the same type separated 

by varying distances. For many cell types, as the physical distance between cells increased, 

so did the angular distance between their transcriptomes. However, this trend varied 

considerably, e.g. particularly pronounced in radial glia, neurons, and endothelial cells (Figs. 

4A, S27A,B).

To quantify the contribution of spatial context to variation in gene expression across 

individual cells, we developed a statistical approach. Briefly, we first partitioned cells into 

groups on the basis of cell type and spatial location. Then, we computed the angular distance 

between each cell and the average expression profile for cells of that same type in the 

same spatial bin. After estimating and subtracting the technical variance attributable to data 

sparsity, we quantified how much of the remaining biological variance was due to each 

cell’s type and/or spatial position. To validate this approach, we decomposed the variance 
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attributed to lineage in the developing C. elegans embryo, where there is a relationship 

between two cells’ lineage relationship and their observed gene expression variance (2). 

Reassuringly, we found that our variance decomposition approach followed the Law of 

Total Variance (fig. S28C) and in agreement with Packer et al. (2), showed that variance 

attributable to a cell’s lineage relationship peaked around generation 7 (fig. S28D).

Applying this variance decomposition approach to the sci-Space data, we estimated that 

sparse UMI sampling accounted for 95.1% of the observed variance in global gene 

expression across cells and in subsequent analyses, we focused on the remaining 4.9% “non-

sampling” variance. Of this non-sampling variance in global gene expression, cell type alone 

accounted for 19%. However, a joint model that included both cell type and spatial position 

accounted for 50% (fig. S29). The implication--that spatial information explains as much, 

if not more, of non-sampling gene expression variance as major cell type--was supported 

by the recovery of cell type and spatial gene modules of similar size and composition (fig. 

S30). However, some cell types’ transcriptomes appeared more sensitive to spatial position 

than others (Fig. 4B). For example, chondrocytes were influenced by position within the 

embryo, reflecting the ongoing development of various connective tissue lineages at E14.0, 

and explained at least in part by subclusters that appear to correspond to digit condensates 

and craniofacial mesenchyme (Figs. 4C, S31). Other such cell types included neurons and 

their precursors, the radial glia.

Pseudotemporal sci-Space trajectories reflect neuronal migration dynamics

To explore how spatial context might relate to gene expression heterogeneity in a developing 

cell lineage, we focused on radial glia and neurons. In particular, we hypothesized that we 

might be able to detect and localize the coordinated processes of neuronal differentiation 

and migration (31). UMAP dimensionality reduction of these cell types revealed the 

presence of three distinct trajectories originating in radial glia and leading to neurons (Fig. 

5A). Gene expression dynamics along these three branches were consistent with neuronal 

differentiation -- the upregulation of cell cycle genes followed by expression of genes 

involved in migration (fig. S32). Each branch was strongly enriched for subtype specific 

marker gene expression -- Pou4f1+/Pax3+ tectal neurons, Isl1+/Lhx6+ cortical interneurons, 

and Emx1+/Neurod6+ cortical pyramidal neurons -- indicating that the embedding captures 

their specification from radial glia (Fig. 5B). We examined how these trajectories were 

anatomically distributed, by segmenting the brain from each section using the Allen 

Institute’s Anatomical Reference Brain Atlas (www.atlas.brain-map.org) as a guide. Cells 

from each trajectory overwhelmingly occupied a distinct brain region (Fig. 5C). To quantify 

progression through differentiation, we calculated pseudotime for each branch using radial 

glia as the root (Fig. 5D, S32). Intersecting pseudotime and spatial information, we observed 

that cells early in differentiation clustered around the ventricles in the forebrain and 

developing midbrain, while those farther away exhibited a more differentiated transcriptome 

(Figs. 5E, S33).

The spatial gradients of cellular maturity estimated with sci-Space data are consistent 

with well-documented coordination of cellular differentiation and neuronal migration. In 

the pallium, immature neurons migrate and differentiate radially outwards leading to the 
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inside-out development of the cortical layers (31). In the sub pallium, cortical interneurons 

born in the ganglionic eminences migrate tangentially to populate the developing cortex 

and olfactory bulb (32). Our data also identify a third major pattern of migration in 

which precursors emanate from the dorsal aspect of the ventricular zone in the developing 

midbrain. These midbrain neurons seem to migrate both radially, towards the pial surface, 

and tangentially, parallel to the pial surface, to populate this region (Fig. 5E - slides 8, 13, 

and 14; fig. S33 - slides 4 and 7). Although radial and tangential migration are generally 

discussed as mutually exclusive phenomena, our data -- in line with some prior work (33, 

34) -- suggests otherwise in the developing midbrain. Furthermore, these cells share a 

common transcriptional program with differentiating and migrating neurons in the pallium 

and subpallium (Fig. 5F; File S3).

Discussion

In summary, sci-Space is a method for spatial transcriptomics that retains single cell 

resolution while capturing spatial information at a scale specified by a patterned array of 

cell hashing oligos. As a proof-of-concept, we applied sci-Space to retrieve the approximate 

spatial coordinates of transcriptionally profiled cells across whole mount sections from 

E14.0 mouse embryos. The sci-Space data are readily integrated with non-spatial single-cell 

RNA-seq data collected from mouse embryos at adjacent timepoints (1, 21), enabling rapid 

annotation of diverse cell types and visualization of cell type-specific, spatially patterned 

gene expression, i.e. digital in situs. We identify examples, some expected and others novel, 

of genes expressed in an anatomically patterned manner within cells of a given type.

The spatial resolution of sci-Space is presently limited by the patterned array of hashing 

oligos, here to approximately 200 microns. Although increasing spot density and decreasing 

spot size are a straightforward path to increasing resolution, sci-Space is unlikely to detect 

effects arising from interactions between adjacent cells. This is limited by recovery of 

only a fraction of cells from each serial section, such that we obtain a “survey”, rather 

than achieving dense measurements. Nonetheless, sci-Space fills a need not addressed 

by other technologies. Like other spatial transcriptome capture methods (e.g. Slide-seq), 

sci-Space can be applied, routinely and efficiently to large regions, e.g. whole embryo serial 

sections. However, unlike these methods, sci-Space recovers single cell transcriptomes. It 

can therefore capture patterns of spatial gene regulation private to specific cell types and 

estimate the contribution of each cell type to the expression of morphogens and other 

signalling molecules, both within and across anatomical regions. Moreover, sci-Space data 

can serve as a spatial “scaffold” for conventional, non-spatial single-cell RNA-seq atlases, 

which may be more challenging to map onto tissues profiled by spatial profiling methods 

that lack single-cell resolution.

Finally, using this spatially-resolved single cell data, we developed a statistical approach to 

identify cell types in the developing embryo that exhibit spatially regulated gene expression. 

Closer analysis of radial glia and neurons revealed gradients of developmental maturity 

in different regions of the brain indicative of known and novel patterns of neuronal 

migration. Together with data from complementary technologies, we anticipate that the 

further application of sci-Space to serial sections spanning entire embryos from many 
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timepoints will facilitate the construction of a set of highly time- and space-resolved 

4-dimensional atlases of gene expression across mammalian development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. sci-Space recovers single cell transcriptomes while recording spatial coordinates.
(A) Arrayed single-stranded oligos are transferred onto permeabilized nuclei in fresh-frozen 

tissue sections and imaged. Cells from each slide are also labeled with a section-identifying 

barcode so that multiple sections can be pooled prior to sci-RNA-seq. (B) Joint embedding 

of E14.0 single cell transcriptomes from this study and published data spanning E9.5 to 

E13.5 (1). Major trajectories are labeled. (C) UMAP embedding of 121,909 cells from 

sectioned E14.0 mouse embryos. Cell types are denoted by color and number in legend.
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Figure 2. sci-Space captures spatially and cell type resolved gene expression across the embryo.
(A) Co-registered DAPI stained section image and oligo array, superimposed. SYBR 

waypoints are highlighted in green. (B) Anatomical regions of Slide 1 (left) and an adjacent 

immunostained serial section aligned to Slide 1 (right). (C) Highlighted cell types mapping 

to a single slide. (D) UMAP embedding colored by anatomical regions. (E) Gene expression 

of dopamine transporter Slc6a3 from sci-Space data (left) and published (27) section/stage 

matched in situ (right). (F) Smoothed percentage of gene expression for Fgf1, Fgfr1, Fgfr2 
and Fgfr3 in cardiomyocytes (top) or endothelial cells (bottom). Color scaled to maximum 

percentage within each gene. Scale bars in panels (A-C) = 0.5 mm.
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Figure 3. Spatially restricted gene expression in developing neurons.
(A) Number of spatially significant (Moran’s test, FDR < 0.001) autocorrelated genes 

within each slide (color) and cell type. Only cell types with more than 50 cells per slide 

were included. (B) Log-log (log10) plot of autocorrelation in UMAP embedding (x-axis) 

versus autocorrelation in spatial coordinates (y-axis) for each gene. Computed on excitatory 

neurons from Slide 1. Moran’s I values close to 1 indicate perfect spatial correlation, 

while a value of 0 indicates a random spatial distribution. Hox genes are highlighted. (C) 

log10-scale boxplot of Moran’s I statistic for Hox genes displayed in (B) versus all other 

expression level-matched genes (p-value < 0.001, two sided t-test). (D) Gene expression of 

HoxC cluster in Slide 1. (E) Similar to (B), log-log (log10) plot of autocorrelation in UMAP 

embedding (x-axis) versus autocorrelation in spatial coordinates (y-axis) for each gene with 

genes in different regimes highlighted for Slide 1. (F) Expression patterns across Slide 1 

for other spatially restricted genes that are not restricted to a single neuron subcluster. (G) 

Comparison of sci-Space (Slide 14) and RNA FISH (RNAscope) detected Cyp26b1 patterns 

of expression (gray) and coexpression with markers (colors as indicated in key) for neuronal 

and supportive cell types.
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Figure 4. Quantifying the variance in gene expression attributable to spatial position.
(A) Pairwise angular distance (radians) between global transcriptomes of cells of the 

indicated cell types. Cell pairs are grouped by distance on the physical array (mm) (** 

p-value < 0.001, *** p-value < 0.0001, Wald linear regression test). (B) Proportion of 

non-technical variance, explained within cells of each type by spatial position. Point size 

indicates number of cells and point color indicates the slide of origin. (C) Recovered 

positions of chondrocytes from Slides 6, 11 and 14 colored by subcluster. Arrows indicate 

focal concentrations of craniofacial mesenchyme (green) and digit condensate subclusters 

(red). Insets to the right of each plot 9 show parts of each image with similarly positioned 

arrows. White text of each inset labels the anatomic structure displayed. Scale bars in panel 

(C) = 0.25 mm.
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Figure 5. Pseudotemporal spatial trajectories capture migratory patterns in the developing 
brain.
(A-D) UMAP embedding displaying the neural trajectories colored by (A) cell type, (B) 

specific gene expression, (C) cortical region, or (D) pseudotime. (E) Neurons and radial glia 

in the cortex colored by pseudotime or otherwise colored grey. Insets of caudal (above) and 

rostral (below) brain outlines are shown to the right of each slide (M-Midbrain, P-Pallium, 

SP-Sub Pallium, V-Ventricle). (F) Scaled and centered gene expression for genes (rows) 
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significantly varying over pseudotime in all three trajectories. Enriched Gene Ontology 

Biological Processes terms (GO BP) are displayed next to clustered genes.
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