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The objective of our study was to measure DLEU7-AS1 expression in de novo acute myeloid
leukemia (AML) whilst also analyzing its clinical relevance. We used gene expression data
from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Cancer Cell Line
Encyclopedia (CCLE) and Genotype-Tissue Expression project (GTEx) to assess the expres-
sion profile of DLEU7-AS1 in pan-cancers, cancer cell lines and normal tissues. Reverse
transcription-quantitative PCR was used to measure DLEU7-AS1 expression in bone mar-
row from 30 normal individuals and 110 patients with de novo AML. DLEU7-AS1 expression
was found to be markedly reduced in the AML samples of the TCGA pan-cancer datasets. In
our PCR validation, DLEU7-AS1 expression was significantly decreased in the AML samples
compared with that in controls (P<0.001). Low DLEU7-AS1 expression (DLEU7-AS1low) cor-
related positively with lower blood platelet counts (P=0.029). In addition, low DLEU7-AS1
expression was more frequently observed in the intermediate (58%; 44/76) and favorable
karyotypes (65%; 15/23) compared with that in the poor karyotype (10%; 1/10; P=0.005).
In particular, patients with high expression levels of DLEU7-AS1 (DLEU7-AS1high) showed
lower complete remission rates (P=0.002) than patients with DLEU7-AS1low. Survival anal-
ysis revealed that patients with DLEU7-AS1low had longer overall survival (OS) than patients
with DLEU7-AS1high (P<0.05). Multivariate Cox analysis demonstrated that in patients with
non-acute promyelocytic leukemia (non-M3) who were ≤60 years old, DLEU7-AS1 expres-
sion was an independent prognostic factor for OS. Furthermore, we found distinct correla-
tions among the expression of DLEU7-AS1, infiltration by immune cells and immune check-
point genes in AML.

Introduction
As an important group of common hematopoietic and highly heterogeneous malignancies, acute myeloid
leukemia (AML) is characterized by distinct chromosomal and genetic abnormalities, which ultimately
leads to the accumulation of anomalous myeloblasts. Although the prognostic importance of its high level
of molecular heterogeneity has been well established over the past two decades, translation of this novel
information into therapeutic strategy improvements and optimization remains at a primitive stage. The
prognosis for the majority of AML subtypes remains dismal due to a lack of effective diagnostic meth-
ods and optimal long-term therapeutic regimens [1–3]. It has been frequently reported that the typical
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AML phenotype results from complex epigenetic/genetic aberrations, which affects cell proliferation, differentiation
and apoptosis [4,5]. In particular, it is now becoming clear that cytogenetically normal AML (CN-AML) is highly het-
erogeneous on molecular levels according to the 2017 World Health Organization (WHO) classification of AML [6].
Cytogenetic alterations, combined with mutations in nucleophosmin 1 (NPM1), CCAAT/enhancer-binding pro-
tein α (CEBPA), fms-like tyrosine kinase 3- internal tandem duplication (FLT3-ITD) and TP53, have been incor-
porated into the current prognostic grading system for patients with AML [7]. In addition, the overexpression of brain
and acute leukemia cytoplasmic protein (BAALC), Echovirus 11 (EVI1) and E-26 transformation-specific-related
gene (ERG) has also been reported to be beneficial for outcome prediction with high accuracy [7]. Nevertheless, it re-
mains of key importance to identify a novel set of integrated AML-related biomarkers that can have profound impacts
on diagnosis, prognosis and individual treatment.

Long non-coding RNAs (lncRNAs) are non-coding RNAs that are >200 nucleotides in length and belong to an
emerging category of RNAs that can serve key roles in various types of cancer [8]. Due to their tumor-specific expres-
sion patterns, lncRNAs may either serve as tumor suppressors or oncogenes, rendering them important components
in the field of cancer research [9]. Previous studies have found that aberrant expression or mutation of lncRNAs can
not only increase susceptibility to cancer development but also promote tumorigenesis and metastasis by regulating
the expression of related protein-coding genes on different transcriptional levels [10]. As a result of next-generation
sequencing technologies, large quantities of novel, distinct lncRNAs have been discovered to be abnormally expressed
or mutated in a variety of cancers [11,12]. However, the majority of these lncRNAs have yet to be annotated [11,12].
Characterizing these lncRNAs in addition to understanding the mechanism underlying their function may assist in
improving diagnosis and highlight novel therapeutic targets.

The lncRNA deleted in lymphocytic leukemia 7-antisense RNA 1 (DLEU1), originating from 13q.14.3 region,
has been previously identified as an up-regulated oncogenic lncRNA in colorectal cancer (CRC). Following the
knockdown of DLEU7-AS1 in CRC cell lines HT-29 and HCT-116, the expression levels of key proteins in the
Wnt/β-catenin pathway β-catenin, c-Myc and cyclin D1 were all found to be markedly reduced [13]. This suggests
that DLEU7-AS1 may promote the occurrence and development of CRC by modulating the Wnt/β-catenin signal-
ing pathway [13]. However, the DLEU7-AS1 expression profile in hematopoietic malignancies remains poorly un-
derstood. Therefore, in the present study, we aimed to measure DLEU7-AS1 expression in patients with AML and
analyze its relevant clinical significance. Using bioinformatics analysis, we also analyzed the correlation between the
expression levels of DLEU7-AS1 with immunocyte infiltration and immune checkpoint genes in AML, in addition
to the potential biological functions of DLEU7-AS1.

Materials and methods
Patients and bone marrow samples
Bone marrow (BM) specimens were collected from a total of 30 healthy donors and 110 patients with AML. BM
mononuclear cells (BMMNCs) were extracted by gradient centrifugation and lymphocyte separation medium (TBD
Sciences, Tianjin, People’s Republic of China). According to the 2016 WHO criteria and French-American-British
(FAB) classification system [14,15], all patients with de novo AML enrolled had a detailed diagnosis. Karyotypes were
analyzed at first diagnosis using the conventional R-banding method whereas karyotype risk was classified into three
groups (favorable, intermediate or poor) according to the 2017 European leukemiaNET (ELN) risk stratification by
genetics [3]. In addition to cytogenetics, ELN 2017 assesses the risk of patients by taking into consideration the effects
of mutations in certain genes, such as NPM1, CEBPA, FLT3-ITD, runt-related transcription factor 1, additional
sex-combs like 1 and TP53 [3]. The detailed treatment information and inclusion criteria were kept consistent with
our previously published reports [16,17]. Briefly, all patients with AML included in this study received chemotherapy,
including induction therapy and subsequent consolidation treatment. Induction therapy for non-M3 AML consists
of two courses of daunorubicin combined with cytarabine. Subsequent consolidation treatment included high-dose
cytarabine, mitoxantrone with cytarabine and homoharringtonine combined with cytarabine. By contrast, patients
with M3 were treated with all-trans retinoic acid (ATRA) together with daunorubicin in combination with cytarabine,
followed by oral mercaptopurine, oral methotrexate and oral ATRA for >2 years as maintenance therapy. Our study
was authorized by the Ethical Committee and Institutional Review Board of the Affiliated People’s Hospital of Jiangsu
University (Zhenjiang, China). Patients and families were required to sign the informed consent permitting that their
BM samples would be utilized for scientific research on the principle of voluntary participation.
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Public datasets
In total, three publicly available AML datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Om-
nibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) were used to validate our results in this study. Of these data
sets, two consisted of expression data for large primary AML samples (GSE12417 and the TCGA dataset) and one
dataset contained both AML and healthy BM samples sorted by fluorescence-activated cell sorting (GSE63270).
GSE42519, which includes gene expression data of normal hematopoietic cells, was used to explore the expression
pattern of DLEU7-AS1 at various stages of normal hematopoiesis. The Genotype-Tissue Expression (GTEx; https:
//www.GTExportal.org/home/) and the Cancer Cell Line Encyclopedia (CCLE; https://www.broadinstitute.org/ccle)
databases were utilized to assess the expression of DLEU7-AS1 in different human tissues and cancer cell lines.

Reverse transcription-quantitative PCR (RT-qPCR)
The total RNA was separated from pre-extracted BMMNCs using TRIzol® reagent (Invitrogen, Carlsbad, CA, U.S.A.)
and then reverse transcribed (MBIFermentas, Hanover, MD, U.S.A.) into complementary DNA (cDNA) in an iCy-
cler Thermal Cycler (Eppendorf, Hamburg, Germany) as described in our previous article [18]. Subsequently, a 7500
Thermo cycler (Applied Biosystems, CA, U.S.A.) was utilized to perform qPCR, with each reaction system con-
taining 20 μl, consisting of 0.4 μM ROX Reference Dye II (Takara Bio, Inc., Tokyo, Japan), 0.8 μM primers, 10
μM SYBR Premix TB Green and 20 ng cDNA. The thermocycling conditions for the qPCR reaction were 95◦C
for 5 min, followed by 40 cycles at 95◦C for 10 s, 64◦C for 30 s, 72◦C for 30 s and 80◦C to collect fluorescence
for 30 s; the final step was 95◦C for 15 s, 60◦C for 60 s, 95◦C for 15 s and 60◦C for 15 s. Serial dilution was per-
formed and calibration curves were generated to test for PCR efficiency. Positive controls and negative controls
were used in each trial to exclude false negatives and false positives. The abundance of DLEU7-AS1 was calcu-
lated by normalizing to the housekeeping gene ABL1 [19]. The following primers were used for qPCR: DLEU7-AS1
reverse, 5′-AGTTCTCCCTTGCTGCACTC-3′ and forward, 5′-TATGGCCGAGCAGACATTGG-3′; ABL1 reverse,
5′-TCCAACGAGCGGCTTCAC-3′ and forward, 5′-TCCTCCAGCTGTTATCTGGAAGA-3′. The results were ana-
lyzed using the 7500 Thermo cycler software and the relative expression levels of DLEU7-AS1 were calculated using
the 2−��Cq method [19].

Gene mutation detection
Isocitrate dehydrogenase 1/2, C-KIT, NPM1, DNA methyltransferase 3A, U2 small nuclear RNA auxiliary factor
and N/K-RAS mutations were detected using high-resolution melting analysis [20–24], as this method was demon-
strated by our group to have high sensitivity and specificity for assessing these gene mutations. FLT3-ITD and CEBPA
mutations were detected by RT-qPCR [25,26]. Finally, direct DNA sequencing was used to verify all the positive sam-
ples (BGI Tech Solutions Co, Shanghai, China).

Statistical analyzes and bioinformatics
Data analyses were performed using the IBM SPSS Statistics 25.0 software (IBM Corporation, Armonk, NY, U.S.A.).
The expression values were first log2 transformed before the differences in expression were calculated using the
Wilcoxon rank-sum test. A receiver operating characteristic curve (ROC) was utilized to evaluate if DLEU7-AS1
expression could be used to distinguish patients with AML from healthy individuals. A Fisher’s exact test or Pear-
son’s χ2 analysis was applied to evaluate the association between each of the classification variables and patients in
the DLEU7-AS1high expression group or those in the DLEU7-AS1low group. The effect of DLEU7-AS1 expression on
the survival time of patients with AML was analyzed using the Kaplan–Meier method and Cox regression analysis,
with the optimal cut-off point determined using X-tile analysis. The correlation between DLEU7-AS1 and DLEU7
expression was analyzed through a Pearson’s correlation test. Correlation between the expression of DLEU7-AS1 with
immunocyte infiltration and immune checkpoint genes in the TCGA cohort were assessed using the Sangerbox soft-
ware 3.0 (https://sangerbox.com/). Differential gene expression analysis was performed using the limma R package.
Differentially expressed genes (DEGs) between patients with high and low DLEU7-AS1 expression were illustrated
using a volcano plot using the “EnhancedVolcano” R package. Genes with an adjusted P-value <0.05 and |log2 fold
change| ≥0.5 were considered to be DEGs. STRING database version 11.5 (https://www.string-db.org/) was applied
to analyze the protein-protein interactions (PPI) and Gene Ontology (GO) enrichment of DLEU7-AS1 co-expressed
genes. For PPI analysis, a confidence score >0.9 was considered to be the judgment criterion. Cytoscape version 3.8.2
was used to present the network. All graphs were produced using GraphPad Prism® 7.0 (GraphPad Software, San
Diego, California) and R version 4.0.3 (https://www.r-project.org/). P<0.05 was applied as the threshold of statistical
significance in all tests.
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Figure 1. The expression levels of DLEU7-AS1 in tissues of differing origin and different cancer cell lines

(A) mRNA expression of DLEU7-AS1 in different tissues according to data obtained from the GTEx database. DLEU7-AS1 showed

the highest expression in the bone marrow. (B) mRNA expression of DLEU7-AS1 in various tumor cell lines from the CCLE database.

DLEU7-AS1 showed the highest expression in the hematopoietic cancer cell lines.

Results
DLEU7-AS1 expression in normal human tissues and cancer cell lines
Analysis of transcriptional data from GTEx (http://www.GTExportal.org/home/) revealed that DLEU7-AS1 expres-
sion was the highest in the bone marrow (Figure 1A). Furthermore, CCLE database analysis identified relatively
high levels of DLEU7-AS1 mRNA expression in the hematopoietic cell lines (Figure 1B). It should be noted that
DLEU7-AS1 expression across all tissues was fairly even and the high expression observed in hematopoietic tissue is
probably a reflection of the larger expression variation across this tissue dataset.

DLEU7-AS1 expression levels in patients with AML and normal controls
We then integrated normal tissue transcription data from GTEx and tumor-adjacent normal tissue data from TCGA
to assess if DLEU7-AS1 expression was dysregulated in different types of cancer. Although DLEU7-AS1 expression
was found in AML among all malignancies analyzed, its expression was found to be markedly decreased in AML
compared with that in healthy controls (Figure 2A). In addition, decreased DLEU7-AS1 expression was also observed
in AML samples in an independent GEO dataset (GSE63270; P<0.001) (Figure 2B). To verify these findings, we
detected DLEU7-AS1 expression in 110 patients with newly diagnosed AML and 30 normal controls using RT-qPCR
as previously described [19]. The expression level of DLEU7-AS1 in the normal control group was between 0.002 and
38.349 (median, 2.953). However, the level of DLEU7-AS1 transcripts in patients with AML was between 0.015 and
143.529 (median, 0.068), which was found to be significantly lower compared with that in the normal control group
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Figure 2. The expression levels of DLEU7-AS1 in tissues of differing origin and different cancer cell lines

(A) Comparison of DLEU7-AS1 mRNA expression among normal, peri-tumor and tumor samples, using combined data from the

TCGA and GTEx databases. The GTEx data profiled RNAseq samples from normal bone marrow, which were used as normal con-

trols of TCGA AML samples. * denotes expression of this gene in one sample. (B) Box plots showing the DLEU7-AS1 expression

levels in healthy individuals and patients with AML using the GSE63270 published dataset (n=104). (C) The levels of DLEU7-AS1

expression of in healthy individuals, whole-cohort patients with AML, patients with non-M3 AML, and patients with CN-AML as

measured using RT-qPCR. The distribution of log2-transformed DLEU7-AS1 expression in healthy individuals, whole-cohort pa-

tients with AML, patients with non-M3 AML and patients with CN-AML are presented as scatter plots. The mean and SD level of

DLEU7-AS1 expression in each group are presented with a horizontal line.

according to a non-parametric test (P<0.001) (Figure 2C). DLEU7-AS1 expression was also found to be significantly
lower in both non-M3 and CN-AML subgroups as compared with normal controls (Figure 2C). To validate these
findings and explore the expression pattern of DLEU7-AS1 during the different stages of normal hematopoiesis, the
level of DLEU7-AS1 transcripts was analyzed using another published GEO dataset (GSE42519). We found relatively
low DLEU7-AS1 expression during the early stages of hematopoietic differentiation, but the quantity of this transcript
was increased as the cell lineages matured, with the highest expression level observed in metamyelocytes (Figure 3).

Distinguishing capacity of using differential DLEU7-AS1 expression levels
ROC curve analysis revealed that differential DLEU7-AS1 expression levels could be used to distinguish whole co-
horts of patients with AML from the normal control group (Figure 4A). The area under the curve (AUC) was 0.820
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Figure 3. Expression of DLEU7-AS1 at multiple stages of hematopoietic cell differentiation using the GSE42519 dataset

DLEU7-AS1 expression was relatively low in the early stages but increased gradually in more differentiated blood cells from normal

individuals.

Figure 4. Expression of DLEU7-AS1 at multiple stages of hematopoietic cell differentiation using the GSE42519 dataset

The area under the curve values for (A) whole-cohort patients with AML, (B) for patients with non-M3 AML and (C) for patients with

CN-AML, which were calculated to be 0.820 (95% CI: 0.737–0.903; P<0.001), 0.821 (95% CI: 0.734–0.907; P<0.001) and 0.839

(95% CI: 0.748–0.930; P<0.001), respectively.

(95% CI: 0.737–0.903; P<0.001). Using the cut-off value of <0.089, the specificity and sensitivity for discriminating
AML were calculated to be 90 and 55%, respectively. In addition, significant differences were also observed in non-M3
AML subgroup of patients (AUC = 0.821; 95% CI: 0.734–0.907; P<0.001) (Figure 4B) and the CN-AML subgroup
of patients (AUC = 0.839; 95% CI: 0.748–0.930; P<0.001) (Figure 4C).

Comparison of clinical parameters between DLEU7-AS1low and
DLEU7-AS1high groups
We divided the entire group of patients with AML from our cohort (n=110) into the DLEU7-AS1low and
DLEU7-AS1high groups according to the cut-off value of 0.089 based on the ROC curve. A comparison of the clin-
ical parameters of the two groups in the respective available data are shown in Table 1. We observed no significant
difference in age, white blood cell (WBC) count, sex distribution, BM blasts ratio and hemoglobin levels between the
two groups of patients (P>0.05). There were also no statistically significant differences in the distribution of WHO
classifications or in the FAB subtypes between these two groups (P>0.05). However, the DLEU7-AS1low group had
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Table 1 Comparison of clinical parameters between AML patients with low and high DLEU7-AS1 expression

Patient’s parameters High (n=50) Low (n=60) P value

Sex, male/female 33/17 33/27 0.241

Median age, years (range) 60.50 (15-81) 53.50 (10-84) 0.074

Median WBC, ×109/L (range) 9.20 (3-528) 10.30 (0.8-207.9) 0.335

Median platelets, ×109/L (range) 50.00 (7-415) 30.00 (3-215) 0.029

Median hemoglobin, g/L (range) 76.50 (34-138) 78.50 (36-144) 0.358

BM blasts, % (range) 43.0 (1.0-97.5) 45.25 (3.0-95.0) 0.692

FAB 0.420

M0 0 1

M1 1 1

M2 19 21

M3 8 13

M4 12 10

M5 6 4

M6 1 0

Unclassified 3 10

Karyotype classification 0.008

Favorable 8 (16.0%) 15 (25.0%)

Intermediate 32 (64.0%) 44 (73.3%)

Poor 9 (18.0%) 1 (1.7%)

No data 1 (2%) 0 (0%)

Karyotype 0.140

Normal 24 (48.0%) 38 (63.3%)

t (8;21) 2 (4.0%) 3 (5.0%)

t (15;17) 8 (16.0%) 11 (18.3%)

t (9;22) 0 (0%) 1 (1.7%)

+8 2 (4.0%) 1 (1.7%)

complex 7 (12.0%) 1 (1.7%)

others 6 (10.0%) 5 (8.3%)

No data 1 (6.0%) 0 (0%)

Gene mutation

CEBPA (+/-) 6/25 5/40 0.340

NPM1 (+/-) 3/28 6/39 0.730

FLT3-ITD (+/-) 4/27 6/38 1.000

C-KIT (+/-) 1/30 2/43 1.000

N/K-RAS (+/-) 3/28 2/36 0.651

IDH1/2 (+/-) 0/31 1/42 1.000

DNMT3A (+/-) 3/28 3/42 0.683

U2AF1 (+/-) 2/29 0/45 0.163

CR (-/+) 34/12 23/30 0.002

Abbreviations: AML/M, acute myeloid leukemia; BM, bone marrow; CR, complete remission; FAB: French-American-British; t, translocation; WBC, white
blood cell.

significantly lower baseline platelet counts compared with those in the DLEU7-AS1high group (P=0.029). In addi-
tion, a significant difference was found between the DLEU7-AS1low and DLEU7-AS1high groups in the distribution of
karyotype classification (P=0.008). The frequency of favorable karyotype (65%, 15/23) and intermediate karyotype
(58%, 44/76) was significantly higher compared with that of the poor karyotype (10%, 1/10) in the DLEU7-AS1low

group (P=0.005). The expression levels of DLEU7-AS1 in patients with favorable (median, 0.053) and intermediate
karyotypes (median, 0.053) were significantly decreased compared with those in the normal group (P<0.0001). By
contrast, those with poor karyotypes (median, 0.915) had a trend toward lower DLEU7-AS1 expression compared
with that in the normal control group (P=0.067) (Figure 5). However, there was no significant correlation between
the frequencies of common gene mutations (such as CEBPA, NPM1, and FLT3-ITD) and DLEU7-AS1 expression
(P>0.05) (Table 1).
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Figure 5. Relative expression levels of DLEU7-AS1 in healthy individuals and different karyotypic risk stratification groups

of patients with AML

The distributions of log2-transformed DLEU7-AS1 expression in controls and patients with AML with favorable karyotypes, inter-

mediate karyotypes and poor karyotypes are presented in the scatter plots. The mean +− SD expression of DLEU7-AS1 in each

patient group is presented with horizontal lines.

Association between DLEU7-AS1 expression and clinical outcomes in
patients with de novo AML
Next, the relationship between DLEU7-AS1 expression and outcome was analyzed in a total of 99 patients (our co-
hort) who had available follow-up data. Patients in the DLEU7-AS1low group had significantly higher complete re-
sponse (CR) rates compared with those in the DLEU7-AS1high group (57 vs. 26%; P=0.002) (Table 1). In addition,
the DLEU7-AS1low group also had significantly higher CR rates compared with those in the DLEU7-AS1high group
in the non-M3 subgroup [46%, (19/41) vs. 20% (8/40); P=0.012]. The difference in the CR rate between patients in
the DLEU7-AS1low and DLEU7-AS1high groups was not significant in the CN-AML subgroup [44% (14/32) vs. 22%
(5/23); P=0.09]. In addition, survival analysis revealed that patients in the DLEU7-AS1low group exhibited superior
overall survival (OS) rates (P=0.004) (Figure 6A) compared with those in the DLEU7-AS1high group in the whole

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. Investigation of using DLEU7-AS1 expression as a potential predictor of AML outcome

(A–C) Kaplan–Meier estimate for the OS of the Chinese cohort of patients in the whole-cohort (A), non-M3 (B) and (C) CN-AML

group. (D) Validation of the prognostic value of using DLEU7-AS1 expression in three independent cohorts of patients with AML

(GSE12417, n=79; GSE37642, n=136; TCGA microarray, n=183). Survival analyzes were performed on the DLEU7-AS1low and

DLEU7-AS1high groups and P-values were calculated using the Kaplan–Meier method.

AML cohort. However, the impact of DLEU7-AS1 expression on leukemia-free survival was not statistically signif-
icant (data not shown). We also tested the prognostic value of DLEU7-AS1 expression in the non-M3 (P=0.013)
(Figure 6B) and CN-AML subgroups (P=0.027) (Figure 6C), where it was found to be significantly associated with
longer OS. Overall, these results suggest that DLEU7-AS1 expression can be concluded to be a viable prognostic
predictor in both the whole cohort in addition to the non-M3 or CN-AML subgroups. Subsequently, the prognos-
tic value of DLEU7-AS1 expression for OS was also validated in one CN-AML cohort from the GSE12417 dataset
(n=79; P=0.004) and the dataset from two large primary AML cohorts (GSE37642, n=136, P=0.005; TCGA mi-
croarray, n=183, P=0.040) (Figure 6D), where low DLEU7-AS1 expression remained an indicator of favorable OS.

Finally, common clinical parameters, including the cytogenetic risk group (favorable vs. intermediate vs. poor),
WBC counting (≥30 × 109/L vs. <30 × 109/L), age (≤60 vs. >60 years), DLEU7-AS1 expression status and molecular
mutations in our cohort were analyzed using univariate Cox models. Variables with P<0.2 in univariate analysis were
further included in a multivariate model. However, multivariate analysis failed to reveal the independent prognostic
significance of DLEU7-AS1 expression in patients with CN-AML (data not shown), whole-cohort AML (data not
shown) or non-M3 (Table 2).

We deemed that there may be other stronger prognostic indicators. As shown in Table 2, we observed that age was
an important independent risk factor in the non-M3 subgroup. Subsequently, patients who were aged ≤60 years old
were separated for further study. A In this subgroup analysis, significant difference was found in the OS of patients
in the DLEU7-AS1low and DLEU7-AS1high groups patients according to univariate analysis (P=0.047) (Table 3).
Multivariate Cox analysis indicated that DLEU7-AS1 expression was also an important prognostic indicator [HR =
2.146; 95% CI (1.023–4.501); P=0.043] (Table 3) in this subset.

Correlation between the expression levels of DLEU7-AS1 and DLEU7
Since DLEU7-AS1 is the non-coding strand of the DLEU7 gene, we hypothesized that their expression might be
correlated. To explore the relationship between the expression of DLEU7-AS1 and DLEU7, an independent cohort
containing the expression information of 183 patients with de novo AML derived from TCGA was included in this

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 Univariate and multivariate analysis of variables for overall survival in non-M3 AML patients

Variables Overall survival
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

WBC 1.891 (1.163–3.075) 0.010 1.524 (0.913–2.543) 0.107

Age 2.252 (1.367–3.709) 0.001 2.252 (1.367–3.709) 0.001

DLEU7-AS1 expression 1.786 (1.098–2.906) 0.019 1.502 (0.907–2.488) 0.114

Karyotype risk 1.439 (0.914–2.264) 0.116 1.248 (0.771–2.020) 0.368

FLT3-ITD mutation 1.348 (0.598–3.040) 0.471 – –

NPM1 mutation 1.146 (0.510–2.574) 0.742 – –

CEBPA mutation 0.649 (0.274–1.540) 0.327 – –

c-KIT mutation 0.367 (0.050–2.681) 0.323 – –

N/K-RAS mutation 0.429 (0.103–1.793) 0.246 – –

IDH1/2 mutation 1.938 (0.457–8.215) 0.369 – –

DNMT3A mutation 1.216 (0.477–3.100) 0.682 – –

Notes: Variables including, WBC (≥30 × 109 vs. <30 × 109 /L), age (≤60 vs. >60 years), DLEU7-AS1 expression (low vs. high), karyotype risk (favorable
vs. intermediate vs. poor) and gene mutations (mutant vs. wild-type). Multivariate analysis includes variables with P<0.200 in univariate analysis.
Abbreviations: AML, acute myeloid leukemia; CI, confidence interval; HR, hazard ratio; WBC, white blood cell.

Table 3 Univariate and multivariate analysis of variables for overall survival in non-M3 AML patients who are less than or
equal 60 years old

Variables Overall survival
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

WBC 2.381 (1.111–5.100) 0.026 2.429 (1.127–5.236) 0.024

DLEU7-AS1 expression 2.106 (1.009–4.397) 0.047 2.146 (1.023–4.501) 0.043

Karyotype risk 1.695 (0.800–3.590) 0.168 1.522 (0.668–3.468) 0.317

FLT3-ITD mutation 1.787 (0.406–7.858) 0.442 – –

NPM1 mutation 1.418 (0.522–3.852) 0.493 – –

CEBPA mutation 0.529 (0.156–1.796) 0.307 – –

N/K-RAS mutation 0.330 (0.044–2.475) 0.281 – –

DNMT3A mutation 0.957 (0.223–4.118) 0.953 – –

Notes: Variables including, WBC (≥30 × 109 vs. <30 × 109 /L), age (≤60 vs. >60 years), DLEU7-AS1 expression (low vs. high), karyotype risk (favorable
vs. intermediate vs. poor) and gene mutations (mutant vs. wild-type). Multivariate analysis includes variables with P<0.200 in univariate analysis.
Abbreviations: AML, acute myeloid leukemia; CI, confidence interval; HR, hazard ratio; WBC, white blood cell.

study. Pearson’s correlation analysis revealed that DLEU7-AS1 and DLEU7 expression were positively correlated (R
= 0.93; P<0.0001) (Figure 7A). Furthermore, the quantity of DLEU7 transcripts was significantly decreased in AML
samples compared with that in normal controls (GSE63270; P=0.0001) (Figure 7B).

Association between the expression levels of DLEU7-AS1 with
immunocyte infiltration and immune checkpoint genes in AML
Next, we investigated the possible correlation between DLEU7-AS1 expression and immunocyte infiltration levels
using CIBERSORT in the TCGA AML cohort. We found DLEU7-AS1 expression to be negatively correlated with
tumor-suppressive components, such as activated CD8 T cells and natural killer cells (Figure 8A). The most significant
negative association was observed for type 17 T helper cells (P=0.0016), whilst monocytes (P=0.079) and type 2 T
helper cells (P=0.063) also showed a trend toward significant association with DLEU7-AS1 expression (Figure 8A).

Subsequently, we analyzed the association between DLEU7-AS1 expression and checkpoint gene expression. We
found a positive association between DLEU7-AS1 expression with V-Set domain-containing T Cell activation in-
hibitor 1, adenosine A2A receptor, CD160 and tumor necrosis factor (TNF)-related immune genes (TNFRSF8,
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Figure 7. Correlation between the expression levels of DLEU7-AS1 and DLEU7

(A) Pearson’s correlation analysis between DLEU7-AS1 and DLEU7 expression in patients with primary AML (TCGA microar-

ray, n=183). (B) Box plots showing DLEU7 expression in healthy individuals and patients with AML using a published dataset

(GSE63270, n=104).

TNFRSF14, TNFSF14 and TNFSF15), whilst the expression of DLEU7-AS1 was negatively correlated with trans-
membrane and immunoglobulin domain-containing 1 (TMIGD1), HERV-H LTR-associating 2 (HHLA2; a re-
ceptor of the B7 family member). TMIGD1 and HHLA2 were previously reported to be potential therapeutic targets
in cancers [27] (Figure 8B).

Associations between genome-wide gene expression profiles and
DLEU7-AS1 expression
To further assess the role of DLEU7-AS1 in AML, we derived DLEU7-AS1-associated gene expression profiles
using the TCGA microarray data (n=183). We identified 14 up-regulated and 373 down-regulated genes that
were found to be significantly associated with DLEU7-AS1 expression (adjusted P<0.05; |log2 fold change| >0.5)
(Figure 9A,B). Subsequently, we constructed a PPI network using the DEGs by STRING to explore potential inter-
actions among them. In this network, we noticed that the expression of one potential therapeutic target, EGFR, was
up-regulated in the DLEU7-AS1high group, where it directly interacted with WASP-like actin nucleation promoting
factor, formin binding protein 1, LGNAI1, leucine rich repeat kinase 1, FYN, plasminogen activator, urokinase,
YES1, epidermal growth factor receptor pathway substrate 8 and disabled homolog 2 (Figure 9C). In addition,
GO analysis was performed to analyze the potential role of DLEU7-AS1 and the co-expressed genes. We found
that several metabolism-related biological processes, such as regulation of primary metabolic process, regulation
of macromolecule metabolic process, regulation of metabolic process and regulation of cellular metabolic process
were enriched (Figure 9D). Moreover, cellular components, including intracellular, intracellular organelle, organelle,
membrane-bounded organelle, cytoplasm, intracellular membrane-bounded organelle, cell, nuclear lumen, cytosol
and intracellular organelle lumen, were significantly associated with the DLEU7-AS1 alteration (Figure 9D). How-
ever, no significant enrichment in molecular functions or pathways were found for these DEGs.

Discussion
DLEU7-AS1 is an antisense lncRNA that was previously found to be uniquely expressed in specific cancer types
or differentiated tissues [28]. Antisense lncRNAs are a specific type of noncoding RNA that can regulate gene ex-
pression in the nucleus and cytoplasm through RNA–DNA interactions, transcription interference or RNA–RNA
interactions [29]. A number of studies have previously indicated that antisense lncRNAs are also involved in genomic
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Figure 8. Correlation between the expression levels of DLEU7-AS1 with the immune component of the TCGA LAML cohort

(A) Immunocyte infiltration. (B) Immune checkpoint genes.
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Figure 9. Associations between genome-wide gene-expression profiles and DLEU7-AS1 expression

(A) Volcano plot and (B) heatmap of DEGs between high and low levels of DLEU7-AS1 expression in the TCGA cohort. (C) PPI

network of these DEGs. The nodes denote proteins whereas the edges denote the interactions of proteins. Blue points indicate

down-regulated genes whilst red points indicate up-regulated genes. (D) GO analysis of DLEU7-AS1 and its co-expressed genes.

imprinting [30], X-chromosome inactivation [31,32], progression and development of certain diseases [33]. How-
ever, the DLEU7-AS1 expression pattern and its downstream role in hematological malignancies remain unknown.
Since negative DLEU7 expression and hypermethylation of its promoter were previously found in patients with B-cell
chronic lymphocytic leukemia (B-CLL), DLEU7 was previously proposed to be a candidate cancer suppressor gene
in CLL located in 13q14 [34]. The most common aberration is 13q deletion, which results in the reduced expression
of microRNAs, such as miR-15a and miR16-1 [34,35]. They were also considered to be important in the pathogenesis
of CLL and have an influence on TP53 expression and activity [34,35]. These results suggested that DLEU7-AS1 and
DLEU7 can serve an important role in AML.

In the present study, we first investigated DLEU7-AS1 expression levels in patients initially diagnosed with
AML and then analyzed its clinical impact. The results revealed that DLEU7-AS1 expression was dramatically
down-regulated in patients with AML compared with that in normal controls. Indeed, the BMMNCs from AML
and normal samples contain hematopoietic cells of nonmyeloid origin so that the results can be taken in context. It
is recommended that positive sorting or lymphocyte depletion was performed prior to sample processing in future
works assessing DLEU7-AS1 expression. Since the treatment outcome of M3 and non-M3 patients are very different,
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patients with M3 subtype are thought as confounding factors. While the CN-AML are indeed a heterogeneous group
of patients with normal karyotypes. Therefore, in most analyses, we have included the whole cohort, the non-M3 and
the CN-AML subsets. ROC curve analysis also revealed that differential DLEU7-AS1 expression could be used to
distinguish patients with whole AML, CN-AML and non-M3 from healthy controls.

During analysis of the expression pattern of DLEU7-AS1 in the different karyotypic classifications, we revealed
that DLEU7-AS1 expression was markedly reduced in patients with AML with favorable/intermediate karyotypes, but
not in patients with poor karyotypes. This seemingly contradictory result may be caused by the relatively small size of
our cohort, especially patients with poor karyotypes (n=10). In addition, since all patients in this study were selected
retrospectively, a potential bias relating to the unbalanced clinical features with treatment heterogeneity cannot be
ruled out. Finally, since patients with low DLEU7-AS1 expression generally had favorable prognosis, this may explain
the decreased DLEU7-AS1 expression in patients with favorable karyotypes. Further prospective studies with larger
sample sizes are required to validate this result.

Combining our investigation using Kaplan–Meier analysis together with multivariate analysis, we concluded that
the patient’s age and WBC count may have had a stronger influence on the prognosis than DLEU7-AS1 expression.
DLEU7-AS1 repression during leukemogenesis may depend on the context of favorable and intermediate karyotypes,
which may also act as a potential prognostic factor for longer OS in AML. This can add an additional prognostic
parameter for stratifying the patients. Additionally, deletion of 13q and the expression of miR-15a and miR16-1 may
also be used to explain the differences in OS.

Although increased DLEU7-AS1 expression has only been reported in CRC, which correlated positively with
the Wnt/β-catenin pathway [13]. This suggests that the higher the DLEU7-AS1 expression level, the poorer the
outcome [13]. Our observation in AML, which is consistent with this published data with CRC, suggests that the
DLEU7-AS1 expression profile and its role in tumorigenesis and development may be tissue-specific. In fact, dys-
regulation of Wnt/β-catenin signaling was previously found to be necessary for leukemia stem cell self-renewal and
survival [36] and associated with AML initiation and progression [37]. We speculate that reduced DLEU7-AS1 ex-
pression may inhibit Wnt/β-catenin signaling through conserved binding sites in the favorable/intermediate kary-
otypes of patients with AML. To support this hypothesis, we performed correlation analyses between DLEU7-AS1
expression and 117 Wnt pathway genes retrieved from GSEA (https://www.gsea-msigdb.org/gsea/msigdb/cards/
KEGG WNT SIGNALING PATHWAY) using the TCGA dataset. The results favorably agreed with the reported
role of DLEU7-AS1 in Wnt pathway. We found that DLEU7-AS1 was significantly associated with Wnt target genes
such as WNT1, SOX17 and SFRP4 (P<0.05, |r| > 0.3; Supplementary Data S1). However, the positive association
between the expression of DLEU7-AS1 with DLEU7 and Wnt target gens warrants further experimental verification,
in addition to the regulatory relationship between DLEU7-AS1 and DLEU7 expression in AML. Functional follow
ups and prospective validations will be necessary to further interpret the mechanisms of altered DLEU7-AS1 expres-
sion in AML. It is a promising observation that conserved binding sites for a number of transcription factors can be
found in the DLEU7 promoter, several of which have been reported to serve significant roles in the tissue-specific
expression of genes upstream of cell differentiation and proliferation [34]. However, to the best of our knowledge
this has not been investigated in other cancer types. Therefore, the underlying pathological roles of DLEU7-AS1 in
different malignancies remain largely unknown and require further study.

In conclusion, our study found that decreased DLEU7-AS1 expression was associated with favorable/intermediate
karyotypes. In addition, in patients with de novo AML, downregulation of DLEU7-AS1 expression may serve as a
potentially viable prognostic indicator.
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